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Abstract: In this paper, the effect of random initial geometric, material and 
thickness imperfections on the buckling load of isotropic cylindrical shells is 
investigated. To this purpose, a stochastic spatial variability of the elastic 
modulus as well as of the thickness of the shell is introduced in addition to the 
random initial geometric deviations of the shell structure from its perfect 
geometry. The modulus of elasticity and the shell thickness are described by 
two-dimensional univariate (2D-1V) homogeneous non-Gaussian translation 
stochastic fields. The initial geometric imperfections are described as a 2D-1V 
homogeneous Gaussian stochastic field. A numerical example is presented 
examining the influence of the non-Gaussian assumption on the variability of 
the buckling load. In addition, useful conclusions are derived concerning the 
effect of the various marginal probability density functions as well as of the 
spectral densities of the involved stochastic fields on the buckling behaviour of 
shells, as a result of a detailed sensitivity analysis. 

Keywords: stochastic finite element; buckling load; random imperfections; 
non-Gaussian stochastic fields; spectral representation. 

Reference to this paper should be made as follows: Stefanou, G., 
Papadopoulos, V. and Papadrakakis, M. (2011) ‘Buckling load variability of 
cylindrical shells with stochastic imperfections’, Int. J. Reliability and Safety, 
Vol. 5, No. 2, pp.191–208. 

Biographical notes: George Stefanou graduated from the School of Civil 
Engineering of the National Technical University of Athens (NTUA). He 
received his post-graduate and PhD degrees in the field of Computational 
Stochastic Mechanics from NTUA. He is currently a Research Associate at  
the Institute of Structural Analysis and Antiseismic Research of NTUA. His 
research activity is mainly focused on the development and the application of 
computer methods for stochastic finite element analysis of real-world structures 
and on the efficient numerical simulation of stochastic processes and fields.  
He is member of the Scientific Committee of an IUTAM Symposium, reviewer 
for 24 scientific journals, one publishing company and 10 international 
conferences. 

 



   

 

   

   
 

   

   

 

   

   192 G. Stefanou, V. Papadopoulos and M. Papadrakakis    
 

    
 
 

   

   
 

   

   

 

   

       
 

Vissarion Papadopoulos received his Civil Engineering degree and PhD in 
Stochastic Finite Element Method (SFEM) from the National Technical 
University of Athens (NTUA). In 2006, he joined the School of Civil 
Engineering of NTUA and specifically the Institute of Structural Analysis and 
Antiseismic Research, where he is currently a Lecturer and teaches five courses 
in the graduate and post-graduate levels, including structural analysis and 
design using SFEM (post-graduate course). His research activity is devoted to 
computational mechanics with emphasis on system uncertainties described by 
random fields. 

Manolis Papadrakakis is a Professor of Structural Engineering at the School of 
Civil Engineering of the National Technical University of Athens. His research 
activity is focused on the development and the application of computer 
methods and technology to Simulation Based Engineering Science. He is 
Editor of the International Journal of Computer Methods in Applied Mechanics 
and Engineering (CMAME); Honorary Editor of the International Journal  
of Computational Methods (IJCM); President of the European Community  
on Computational Methods in Applied Sciences (ECCOMAS); Member  
of the editorial board of 16 international scientific journals and reviewer for  
50 scientific journals.  

 

1 Introduction 

The buckling behaviour of shell structures is strongly influenced by their initial 
imperfections which occur during the manufacturing and construction stages. It was soon 
realised that the wide scatter in measured buckling loads of shell structures could only be 
approximated through numerical modelling taking into account the randomness of the 
imperfect geometries (Chryssanthopoulos and Poggi, 1995; Bielewicz and Górski, 2002; 
Schenk and Schuëller, 2003; Stull et al., 2008). In addition to the initial geometric 
imperfections, other sources of imperfections such as the variability of thickness, material 
properties, boundary conditions and misalignment of loading are also responsible for the 
reduction and scatter of the buckling load of shell structures (Palassopoulos, 1993; 
Morris, 1996; Li et al., 1997; Elishakoff, 2000; Arbocz and Starnes, 2002).  

One of the first attempts to represent shape (radius and thickness) imperfections  
by spatially varying stochastic fields is that of Choi and Noh (2000). In that paper,  
the response variability of a reinforced concrete cooling tower shell due to shape 
imperfections is investigated. The variability of the random buckling loads of beams and 
plates with stochastically varying material and geometric properties is studied by Graham 
and Siragy (2001) using the concept of the variability response function. Tsouvalis et al. 
(2003) examined the effect of geometric imperfections and of boundary conditions on the 
buckling behaviour of composite cylinders under external hydrostatic pressure in a 
deterministic finite element framework. Papadopoulos and Papadrakakis (2004, 2005) 
computed the buckling load variability of cylindrical panels with geometric, material and 
thickness imperfections described by Gaussian stochastic fields. Papadopoulos and 
Iglesis (2007) further examined the effect of random boundary imperfections (simulated 
as a non-uniform random axial loading) on the buckling behaviour of isotropic thin-
walled imperfect cylindrical shells. Schenk and Schuëller (2007) investigated the effect 
of random boundary and geometric imperfections on the critical load of isotropic  
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thin-walled cylindrical shells with rectangular cut-outs under axial compression. Onkar  
et al. (2007) presented a stochastic buckling analysis of laminated composite plates, with 
and without circular cut-outs, based on a first-order perturbation technique. The effect of 
uncertain material properties on the buckling strength of the laminated plates is studied 
taking into account the influence of variation in microlevel constituents on the effective 
macrolevel elastic properties. 

An accurate prediction of the buckling behaviour of shells requires a realistic 
description of all uncertainties involved in the problem. Such a task is realisable only in 
the framework of a robust Stochastic Finite Element Method (SFEM) formulation that 
can efficiently and accurately handle the geometric as well as physical nonlinearities of 
shell-type structures (e.g. Choi and Noh, 2000; Graham and Siragy, 2001; Argyris et al., 
2002b; Bielewicz and Górski, 2002; Schenk and Schuëller, 2003; Papadopoulos and 
Papadrakakis, 2004; Stefanou and Papadrakakis, 2004; Papadopoulos and Papadrakakis, 
2005; Onkar et al., 2007; Papadopoulos and Iglesis, 2007; Schenk and Schuëller, 2007; 
Chang et al., 2008; Stull et al., 2008; Papadopoulos et al., 2009; Alibrandi et al., 2010). 

Recent research efforts were mainly focused on the application of the SFEM to the 
buckling analysis of shell-type structures aiming at reducing the scatter of the computed 
buckling loads with respect to experimental results. The main difficulty in applying this 
methodology has been the lack of experimental data that would enable a proper 
quantification of the involved uncertain parameters. As a result, a sensitivity analysis was 
usually required with respect to various probabilistic characteristics describing the involved 
stochastic fields, such as standard deviation and spectral density, leading to the identification 
of ‘worst case’ scenarios with regard to the mean value and standard deviation of the 
predicted buckling loads. In these studies, a Gaussian assumption was always made  
for the corresponding marginal probability density functions (Choi and Noh, 2000; 
Graham and Siragy, 2001; Papadopoulos and Papadrakakis, 2004; Papadopoulos and 
Papadrakakis, 2005; Papadopoulos and Iglesis, 2007; Schenk and Schuëller, 2007; Chang 
et al., 2008). 

In this paper, the effect of combined geometric, material and thickness variations on 
the buckling load of thin isotropic imperfect cylindrical shells is examined taking into 
account additional sensitivities due to various non-Gaussian assumptions. To this purpose, 
a non-Gaussian spatial variability of the elastic modulus as well as of the thickness of  
the shell is introduced in addition to the random initial geometric imperfections. The 
initial geometric imperfections are described as a two-dimensional univariate (2D-1V) 
homogeneous Gaussian stochastic field, which is simulated via the spectral representation 
method (Shinozuka and Deodatis, 1996). The modulus of elasticity and the shell 
thickness are described by 2D-1V uncorrelated homogeneous non-Gaussian stochastic 
fields using the spectral representation method in conjunction with the translation field 
theory (Grigoriu, 1984; Grigoriu, 1995; Deodatis and Micaletti, 2001; Lagaros et al., 
2005; Bocchini and Deodatis, 2008). 

The numerical example presented herewith examines the relative influence of the 
non-Gaussian assumption (a lognormal and three different beta distributions are used) on 
the variability of the buckling load, which is calculated by means of the Monte Carlo 
Simulation (MCS) method. For the determination of the limit load of the shell, a 
stochastic formulation of the geometrically nonlinear elastoplastic facet triangular shell 
element TRIC is implemented (Argyris et al., 1998; Argyris et al., 2002b). A shallow 
hinged isotropic cylindrical panel with a point load at the mid of its top surface is  
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selected as test example. This shell exhibits a limit point buckling with large pre-
buckling deformation response. As a result of a detailed sensitivity analysis, useful 
conclusions are derived concerning the effect of the spectral characteristics of the geometric, 
material and thickness imperfections on the buckling behaviour of the shell structure. 

2 Finite element formulation 

The finite element simulation is performed with the triangular element TRIC, which is 
based on the natural mode method. The TRIC shear-deformable facet shell element is a 
reliable and cost-effective element suitable for linear and nonlinear analysis of thin and 
moderately thick isotropic as well as composite plate and shell structures (Argyris et al., 
1998; Argyris et al., 2002a; Argyris et al., 2002b). The element has 18 degrees of 
freedom (6 per node) and hence 12 natural straining modes (Figure 1). Three natural 
axial strains and natural transverse shear strains are measured parallel to the edges of the 
triangle. The stiffness is contributed only by deformations and not by the associated rigid 
body motions. The natural stiffness matrix can be produced from the statement of 
variation of the strain energy with respect to the natural coordinates. 

Figure 1 The multilayer TRIC shell element; coordinate systems 

 

The geometric stiffness is based on large deflections but small strains and consists of two 
parts: a geometric stiffness matrix generated by the rigid-body movements of the element 
and a natural geometric stiffness matrix arising from the coupling between the axial 
forces and the symmetric bending modes (stiffening or softening effect). In order to form 
the geometric stiffness, small rigid-body rotational increments about the local Cartesian 
axes are considered:  

[ ]T2
0 04 05 06dρ dρ dρ dρ=  (1) 
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These rigid-body rotational increments correspond to nodal Cartesian moments dM0 
along the same axes. Using the fact that the resultants of all forces produced by  
rigid-body motion must vanish, the following expression is derived for dM0: 

2
0 GR 0

(3x1) (3x3) (3x1)
dM k dρ=  (2) 

where GRk  is the local rigid-body rotational geometric stiffness. As can be seen in paper 

by Argyris et al. (1998), GRk  has a simple analytical form. Only the middle plane axial 
natural forces, which fully represent the pre-stress state within the material, are included 
in the stiffness matrix. The natural geometric stiffness matrix arising from the coupling 
between the axial forces and the symmetric bending modes is of diagonal form: 

NG α β γ
1k . . . P . P . P . . . .

12
⎡ ⎤= ⎣ ⎦  (3) 

where Pα, Pβ, Pγ are the middle plane axial natural forces. The natural geometric stiffness 
is first transformed to the local and ultimately to the global coordinate system. 

In the case of material nonlinearity (Argyris et al., 2002a), the elastoplastic 
constitutive matrix el

ctκ  is established by obtaining the relation between the natural strain 
and stress increments for each layer ‘r’ within a given load step: 

r
r el el el T r
c ct ct N ct N tT el

N ct N

1dσ κ (κ s )(κ s ) dγ
H s κ s

⎡ ⎤
= −⎢ ⎥+⎣ ⎦

 (4) 

where H is the hardening parameter, sΝ is obtained by the normality flow rule as 
T

Ns
c c c c

F F F F

α β γσ σ σ σ
⎡ ⎤∂ ∂ ∂ ∂

= = ⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

 (5) 

and the expression in brackets corresponds to the elastoplastic material stiffness matrix 
el-pl
ctκ  valid for every layer ‘r’: 

r
el pl el el el T
ct ct ct N ct NT el

N ct N

1[κ ] κ (κ s )(κ s )
H s κ s

r− ⎡ ⎤
= −⎢ ⎥+⎣ ⎦

 (6) 

The natural elastoplastic stiffness of the element is finally obtained by summing up the 
natural elastoplastic stiffnesses of the element layers. 

3 Stochastic initial geometric imperfections 

The imperfect geometry of shell structures is usually represented as a two-dimensional 
univariate (2D-1V) stochastic field. The statistical properties of this stochastic field 
modelling the initial geometric imperfections can be based either on experimental 
measurements or on an assumed variation in cases where no experimental results are 
available. Previous work on the subject (Schenk and Schuëller, 2003; Papadopoulos and 
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Papadrakakis, 2005) has been mainly focused on the buckling behaviour of axially 
compressed cylinders for which a data bank of experimentally measured initial imperfections 
is available (Arbocz and Abramovich, 1979). In this early work, the stochastic description 
of the geometric imperfections was based on a statistical analysis of the experimentally 
measured imperfections. The obtained results clearly demonstrated that the stochastic 
field of the initial geometric imperfections is non-homogeneous, while the Gaussian 
distribution fits well the experimental data. 

In the present paper, initial geometric imperfections are modelled as a homogeneous 
two-dimensional Gaussian stochastic field. The assumption of homogeneity, although  
not generally applicable for the description of initial imperfections of shells, is adopted  
in this study and elsewhere (Papadopoulos and Papadrakakis, 2004; Papadopoulos  
and Papadrakakis, 2005) for simplicity as well as due to the fact that there are no 
experimental data available for the particular type of cylindrical panel used as test example. 
For this reason, a parametric study was performed by Papadopoulos and Papadrakakis 
(2004), with respect to the correlation lengths of the stochastic field in both x and y 
directions. The outcome of the parametric study revealed the ‘worst’ imperfection mode 
of the shell. 

More specifically, the radius of the cylindrical shell is assumed to be a 2D-1V 
homogeneous stochastic field, which can be expressed as follows: 

( ) 0r x,y r g(x,y) h= + ⋅  (7) 

where r(x,y) is the varying initial radius at each point of the structure, r0 is the radius  
of the perfect geometry, g(x,y) is a zero-mean homogeneous Gaussian stochastic field 
and h is the height of the cylindrical panel. In the present work, the amplitude of the 
imperfections, which is controlled by the standard deviation of the stochastic field, is 
selected to be a percentage of the height ‘h’ of the cylindrical panel. The coordinates x 
and y are the global Cartesian coordinates of the unfolded panel. 

4 Stochastic finite element analysis 

The modulus of elasticity and the thickness of the shell are also considered in the present 
study as ‘imperfections’, due to their spatial variability. These parameters are described 
by two uncorrelated 2D-1V homogeneous non-Gaussian stochastic fields: 

( ) [ ]0 1E x,y =E 1+f (x,y)  (8) 

( ) [ ]0 2t x,y =t 1+f (x,y)  (9) 

where E0 is the mean value of the elastic modulus, t0 is the mean thickness of the 
structure and f1(x,y), f2(x,y) are two zero-mean non-Gaussian homogeneous stochastic 
fields corresponding to the variability of the modulus of elasticity and the thickness of 
the shell, respectively. 

The stochastic stiffness matrix of the shell element is derived using the midpoint 
method, i.e. one integration point at the centroid of each finite element is used for the 
computation of the stiffness matrix. 
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5 Simulation of material and thickness imperfections using non-Gaussian 
translation fields 

In this work, a non-Gaussian assumption is made for the distribution of material and 
thickness imperfections. This choice is in accordance to the fact that several quantities 
arising in practical engineering problems (e.g. material and geometric properties of 
structural systems) are found to exhibit non-Gaussian probabilistic characteristics. In 
addition, the non-Gaussian assumption permits to efficiently treat the case of large  
input variability without violating the physical constraints of the material and geometric 
properties. 

Since all the joint multi-dimensional density functions are needed to fully characterise 
a non-Gaussian stochastic field, much of the existing research has focused on a more 
realistic way of defining a non-Gaussian sample function as a simple transformation of 
some underlying Gaussian field with known second-order statistics. Thus, if g(x) is a 
homogeneous zero-mean Gaussian field with unit variance and spectral density function 
(SDF) ( )ggS κ  (or equivalently autocorrelation function ( )ggR ξ ), a homogeneous non-

Gaussian stochastic field f(x) with power spectrum ( )T
ffS κ  can be defined as: 

1f ( ) [g( )]F −= ⋅Φx x  (10) 

where Φ is the standard Gaussian cumulative distribution function and F is the non-
Gaussian marginal cumulative distribution function of f(x). The transform 1F − ⋅Φ  is a 
memory-less translation since the value of f(x) at an arbitrary point x depends only on the 
value of g(x) at the same point and the resulting non-Gaussian field is called a translation 
field (Grigoriu, 1984).  

Translation fields have a number of useful properties such as the analytical 
calculation of crossing rates and extreme value distributions (Grigoriu, 1995). They also 
have some shortcomings, the most important of which from a practical point of view  
is the possible incompatibility between their marginal distribution F and correlation 
structure ( )T

ffS κ  (Deodatis and Micaletti, 2001). Since experimental data can lead to a 

theoretically incompatible pair of F and ( )T
ffS κ , iterative algorithms have been recently 

developed, which extend the translation field concept and lead to the generation of  
non-Gaussian fields having the prescribed characteristics (Deodatis and Micaletti, 2001; 
Lagaros et al., 2005; Bocchini and Deodatis, 2008). 

In the present work, non-Gaussian translation sample functions obtained from 
equation (10) are used, since there are no experimental data imposing a specific pair of 

( )T
ffF S− κ . The SDF ( )ggS κ  of the underlying Gaussian field used in the numerical 

example is assumed to correspond to an autocorrelation function of square exponential 
type and is given by: 

2 2 2 2 21 2
1 2 1 1 2 2

b b 1(κ ,κ ) exp (b κ +b κ )
4 4gg gS σ
π

⎡ ⎤= −⎢ ⎥⎣ ⎦
 (11) 

where σg denotes the standard deviation of the stochastic field and 1 2b ,b  denote the 
parameters that influence the shape of the spectrum, which are proportional to the 
correlation lengths of the stochastic field along the x, y axes, respectively. The SDF of 
the translation field obtained from equation (10) will slightly differ from ( )ggS κ  as 
shown by Papadopoulos et al. (2009).  
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6 Numerical example 

A test example is presented in this section in order to demonstrate the applicability as 
well as the efficiency of the proposed methodology. It is a shallow hinged isotropic 
cylindrical panel shown in Figure 2. This example is chosen because it exhibits a highly 
nonlinear behaviour with considerable influence of the physical nonlinearities on the 
overall structural response. The loading as well as the geometric and material properties 
of the perfect shell are also shown in Figure 2. The cylindrical panel is discretised with  
a 21 × 21 mesh of 800 TRIC shell elements. The material is considered to be elastic-
perfectly plastic. The curve edge nodes of the panel are assumed to be free in all 
directions while the nodes along the sides are hinged (fixed against translation). 

Figure 2 Geometry, material data and finite element mesh used in the discretisation of the 
cylindrical panel 

  

L/2 

L 
P 

R 

A 

L/2 E = 3105 N/mm2

ν = 0.3 
L = 508 mm 
R = 2540 mm 
t = 12.7 mm 
fy = 4.2 Ν/mm2 
FE mesh: 21×21 = 
800 TRIC elements  

The geometrically nonlinear elastic as well as elastoplastic response of point A of  
the perfect cylinder with respect to the applied vertical load P is shown in Figure 3. The 
load-displacement curve has been obtained using a path-following strategy based on the 
arc-length method, described in detail by Argyris et al. (1998) where a mesh convergence 
study for this particular example is also presented. For the discretisation of the stochastic 
fields, the same mesh used for the finite element analysis is implemented since it is a 
fraction of the correlation length parameters adopted in this example. Thus, it is considered 
dense enough for the accurate representation of the fluctuations of the stochastic fields 
(Li and Der Kiureghian, 1993). The ultimate load of the perfect configuration is found to 
be Pu = 2205 N for the elastic and Pu = 1240 N for the elastoplastic shell. 

6.1 Initial geometric imperfections 

2D stochastic geometric imperfections are first introduced to the model in order to 
investigate their effect on the buckling load of the panel. The mean thickness of the shell 
is considered to be equal to the height ‘h’ at the apex of the cylinder, i.e. t0 = 12.7 mm. 
The standard deviation σg of the Gaussian stochastic field describing the imperfections is  
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assumed to be 20%. Since no experimental data of initial imperfections are available for 
this specific type of structure, a parametric study was performed by Papadopoulos and 
Papadrakakis (2004) with respect to the correlation lengths of the stochastic field in both 
x, y directions using a sample size NSAMP = 100. This sample size is sufficient for the 
accurate computation of the first two statistical moments of the buckling load. It was 
assumed that the correlation lengths in both directions are equal (b1 = b2 = b) since there 
is no evidence of any specific manufacturing procedure or boundary conditions that 
would indicate a different assumption. The outcome of the parametric study was the 
evaluation of the ‘worst’ imperfection mode of the shell (Figure 4), which led to the 
estimation of the lower bound of the buckling load of the shell with and without physical 
nonlinearities (900 and 1250 N, respectively). A non-Gaussian assumption for the 
geometric imperfections (with the same standard deviation σf = 20%) resulted in 
practically the same ‘worst’ imperfection mode and lower bounds of the buckling load of 
the shell. 

Figure 3 Central load – displacement curve of the perfect cylindrical panel for t = 12.7 mm  
(see online version for colours) 

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35

Displacements (mm)

Lo
ad

 P
 (N

)

elastoplast ic

elastic
 

Figure 4 Sample function of 2D initial imperfection shapes of the cylindrical panel for σg = 20% 
and b1 = b2 = 250 mm (‘worst imperfection mode’) (see online version for colours) 

Im
pe

rf
ec

tio
ns

 

x -  a x is  
y -  a x is  

 



   

 

   

   
 

   

   

 

   

   200 G. Stefanou, V. Papadopoulos and M. Papadrakakis    
 

    
 
 

   

   
 

   

   

 

   

       
 

6.2 Material and thickness imperfections 

Sensitivity analyses for a Gaussian variation of the Young modulus and shell thickness 
have been performed by Papadopoulos and Papadrakakis (2004). As explained in Section 5, 
a non-Gaussian assumption is made in this work for the distribution of the two uncertain 
parameters. In Figures 7 and 8, the mean value and the coefficient of variation (Cov)  
of the buckling load are plotted against the correlation length parameter ‘b’ of the 
underlying Gaussian field for a non-Gaussian stochastic variation of the Young modulus 
and thickness of the structure. A lognormal and three different cases of beta distribution 
with zero mean and σf  = 10% are assumed to describe the variation of the two uncertain 
properties. The parameters of the aforementioned distributions are presented in Table 1. 
Sample functions of the corresponding stochastic fields are generated for each value of 
‘b’ using equations (10), (11) and the spectral representation method (Shinozuka and 
Deodatis, 1996) for the simulation of the underlying Gaussian fields. Monte Carlo 
Simulation (MCS) with sample size NSAMP = 100 is again used for the calculation of the 
buckling load variability. Statistical convergence is achieved within this number of 
simulations for the first two moments of Pu, as shown in Figure 5a. Only the lognormal 
distribution is examined in Figures 5, 7 and 8. The three beta distributions lead to similar 
results.  

Figure 5 Mean value and coefficient of variation (Cov) of the ultimate load Pu as a function of 
the number of simulations for 2D variation of (a) the modulus of elasticity, and  
(b) combined geometric, material and thickness imperfections (lognormal distribution – 
elastic shell) 
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Figure 6 Mean value and coefficient of variation (Cov) of the ultimate load Pu as a function of the 
correlation length parameter b for 2D variation of (a) the modulus of elasticity, and (b) the 
thickness (Gaussian distribution, σf = 10% – elastic shell) (see online version for colours) 
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(b) 

Figure 7 Mean value and coefficient of variation (Cov) of the ultimate load Pu as a function of the 
correlation length parameter b for 2D variation of (a) the modulus of elasticity, and (b) the 
thickness (lognormal distribution, σf = 10% – elastic shell) (see online version for colours) 
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Figure 8 Mean value and coefficient of variation (Cov) of the ultimate load Pu as a function of 
the correlation length parameter b for 2D variation of (a) the modulus of elasticity, and 
(b) the thickness (lognormal distribution, σf = 10% – elastoplastic shell) (see online 
version for colours) 
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Table 1 Range of definition and shape parameters of lognormal and beta distributions 

 Lower bound Upper bound Shape parameters 

Lognormal –1 +∞ – – 
Beta – Case 1 –0.5 0.5 p =12 q = 12 
U-beta – Case 2 –0.16 0.16 p = 0.8 q = 0.8 
L-beta – Case 3 –0.13 0.26 p = 0.8 q = 1.6 

As can be seen in Figures 7 and 8 which is also observed in the case of Gaussian material 
and thickness variability (Figure 6), the ‘worst’ imperfection mode corresponds to a 
correlation length parameter b1 = b2 = 2000 mm (for both cases of geometric and physical 
nonlinearity), which is markedly different from b1 = b2 = 250 mm, corresponding to the 
‘worst’ imperfection mode for initial geometric imperfections (Figure 4). For the elastic 
shell (Figures 6 and 7), the Cov of the buckling loads reaches a maximum value of 
approximately 13% (=1.3σf) for the material imperfections, while the maximum Cov for 
the spatial variation of the thickness is 26% (=2.6σf). Slightly smaller values of Cov are 
observed for the elastoplastic response of the shell (Figure 8). The results indicate a large 
magnification of uncertainty, which is even more pronounced for the case of combined 
geometric, material and thickness imperfections examined below. The mean value of the  
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buckling load is almost the same with the buckling load of the perfect shell for the Young 
modulus variation (Figures 6a–8a) while, in the case of thickness variation, it is somehow 
higher especially for large values of ‘b’ (Figures 6b–8b).  

It is worth noting that the selection of the ‘worst’ imperfection mode in all cases is 
based on the maximum value of Cov and the minimum value of the lowest buckling load 
which occur at b1 = b2 = 2000 mm for both material and thickness variability. The term 
‘lowest buckling load’ (Plow) means that the probability p of not exceeding Plow is equal to 
1/NSAMP with a corresponding confidence level. Sample functions of the stochastic fields 
related to the smallest buckling load for Young modulus and thickness variation 
considered as stand-alone cases are shown in Figure 9. 

Figure 9 Sample functions of the stochastic fields leading to the smallest buckling load for  
(a) Young modulus and (b) thickness variation considered as stand-alone cases 
(lognormal distribution – elastic shell, Lx, Ly are the number of points in the x- and  
y-axes, respectively) (see online version for colours) 
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6.3 Combined geometric, material and thickness imperfections 

All the above imperfections are now combined and introduced simultaneously to  
the model. For this purpose, the ‘worst’ imperfection modes and the corresponding 
correlation length parameters from the previously studied cases are combined. These 
values are b1 = b2 = 250 mm for the initial geometric imperfections (σg = 20%) and b1 = b2 
= 2000 mm for the variation of the modulus of elasticity and the thickness of the shell  
(σf = 10%). For the combined imperfections, MCS is performed using a sample size  
NSAMP = 1000, as opposed to NSAMP = 100 used in the previous cases, since a larger 
sample size is required for the accurate prediction of the lowest buckling load of the 
panel. Statistical convergence is achieved within this number of simulations for the first 
two moments of Pu, as shown in Figure 5b.  

Figure 10 presents the histograms of the buckling loads for the combined 
imperfections case, with and without physical nonlinearities. The first three statistical 
moments of Pu along with the lowest buckling loads observed in all the distribution cases 
considered, are summarised in Table 2. As can be seen in Figure 10 and in Table 2, the 
first two statistical moments of the buckling load seem to be independent from the 
marginal probability density function of the input parameters. This can be attributed to 
the fact that the initial geometric imperfections predominate due to the assumed high 
degree of variability (σg = 20%). For all the distributions examined, the mean value of the 
buckling loads is around 2300 N for the elastic shell and 1300 N for the elastoplastic, 
which are a little bit higher than the respective buckling loads of the perfect shell. For the 
elastic shell, the Cov of Pu is around 40%, which is twice the value of Cov of geometric 
imperfections (σg = 20%) and four times the value of Cov of material and thickness 
variation (σf = 10%). In the elastoplastic case, the Cov of Pu is around 30%, which is  
1.5 times the value of Cov of geometric imperfections and three times the value of Cov 
of material and thickness variation. However, the shape of the buckling load distribution 
is markedly different in each case, an observation that is confirmed by the different 
values of skewness given in Table 2. The lowest buckling loads are computed at 486 N  
in the elastic case (beta distribution) and 496 N in the elastoplastic case (normal 
distribution). It is worth noting that these values represent only the 22% and 40% of the 
buckling load of the perfect shells which are 2205 and 1240 N, respectively. 
Table 2 Mean value, Cov, skewness and lowest values of Pu for different marginal probability 

density functions of Young modulus and thickness 

  Mean value Cov (%) Skewness Lowest Pu 

Gaussian 2336 40 0.87 501 
Lognormal 2375 40 0.99 565 
Beta 2324 39 0.77 486 
U-shaped beta 2308 37 0.61 717 

Elastic shell 

L-shaped beta 2347 39 0.95 792 
Gaussian 1296 30 0.73 496 
Lognormal 1317 30 0.94 503 
Beta 1295 30 0.70 521 
U-shaped beta 1292 29 0.50 598 

Elastoplastic 
shell 

L-shaped beta 1299 31 0.96 637 
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Figure 10 Histograms of the buckling load Pu for 2D variation of combined geometric, material 
and thickness imperfections: (a) Gaussian, (b) lognormal, (c) beta, (d) U-shaped beta 
and (e) L-shaped beta distribution of the material and thickness imperfections  
(see online version for colours) 
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Figure 10 Histograms of the buckling load Pu for 2D variation of combined geometric, material 
and thickness imperfections: (a) Gaussian, (b) lognormal, (c) beta, (d) U-shaped beta 
and (e) L-shaped beta distribution of the material and thickness imperfections  
(see online version for colours) (continued) 
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7 Conclusions 

In this paper, the buckling load variability of isotropic cylindrical shells with random 
initial imperfections has been investigated. The modulus of elasticity and the shell 
thickness were described by uncorrelated homogeneous non-Gaussian translation fields. 
A detailed sensitivity analysis with respect to various marginal probability density 
functions and spectral characteristics of the material and thickness imperfections has 
been performed. As a result of this analysis, the first two statistical moments of the 
buckling load seemed to be independent from the marginal probability density function 
of the input parameters. However, the shape of the buckling load distribution was 
markedly different in each case. A large magnification of uncertainty has been observed 
in the buckling load variability, especially for the case of combined geometric, material 
and thickness imperfections. In that case, the Cov of the ultimate load has been found 
1.5–2 times higher than the Cov of geometric imperfections and 3–4 times higher than 
the Cov of material and thickness imperfections. In addition, the lowest buckling loads  
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were found to represent only the 22% and 40% of the buckling load of the perfect elastic 
and elastoplastic shell, respectively. These observations underline the importance of 
realistic uncertainty quantification in shell buckling problems and can serve as guidelines 
for the robust design of imperfect shell structures.  
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