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One of the most widely used techniques for the simulation of non-homogeneous random fields is the
spectral representation method. Its key quantity is the power spectrum, which characterizes the random
field in terms of frequency content and spatial evolution in a mean square sense. The paper at hand pro-
poses a method for the estimation of separable power spectra from a series of samples, which combines
accurate spectrum resolution in space with an optimum localization in frequency. For non-separable
power spectra, it can be complemented by a joint strategy, which is based on the partitioning of the
space-frequency domain into several sub-spectra that have to be separable only within themselves. Char-
acteristics and accuracy of the proposed method are demonstrated for analytical benchmark spectra,
whose estimates are compared to corresponding results of established techniques based on the short-
time Fourier, the harmonic wavelet and the Wigner–Ville transforms. It is then shown by a practical
example from stochastic imperfection modeling in structures that in the presence of strong narrow-
bandedness in frequency, the proposed method for separable random fields leads to a considerable
improvement of estimation results in comparison to the established techniques.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Within the last three decades, computational stochastic
mechanics has evolved into a self-contained and prolific field of re-
search, which has brought forth a wide range of sophisticated and
well-established methodologies for the stochastic simulation of
uncertain engineering systems [6,8,33,40,42]. Due to the rapidly
growing availability of large-scale and cheap computer power,
the intensive computational demands of these techniques become
more and more manageable today, which makes stochastic simula-
tion increasingly interesting for actual use in engineering practice.
One emerging field of application is the stability analysis of thin-
walled structures [7,40], where the random variability of geomet-
ric and material imperfections leads to considerable uncertainty in
corresponding buckling loads. As a starting point, a series of com-
putational studies has recently shown that the influence of random
imperfections on the size and variability of the ultimate strength of
cylindrical shells can be reproduced with respect to corresponding
experimental tests [1,23–26,32–34,38].

Apart from algorithmic maturity, the quality of stochastic
simulation methods predominantly depends on the accurate
reproduction of the random physical key phenomena by corre-
sponding random field models. In the case of imperfection trig-
ll rights reserved.
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er).
gered buckling, a small misrepresentation of the physical
imperfection wave length in the imperfection model can lead to
a large discrepancy between real and simulated system response,
because the dominant buckling mode might shift to a higher Eigen-
form, leading to an unphysical increase in ultimate strength. One of
the most widely used techniques for the simulation of imperfec-
tions as random fields is the spectral representation method
[9,35,36,39]. The key quantity of spectral representation is the
power spectrum [18,27,28,30,31,44], which is related to the aver-
age energy of the random field and is obtained for example in
earthquake applications by estimation from measured ground mo-
tion accelerations [4,12,37]. Despite its decisive importance for
realistic stochastic buckling simulations, only little experience ex-
ists so far in transferring experimental imperfection measure-
ments, which typically are strongly narrow-band functions at
very low frequencies, into accurate evolutionary power spectra.
Up to now, measurement based evolutionary imperfection model-
ing relies on the adoption of established time–frequency analysis
techniques from digital time signal processing [24,25].

Against this background, the present paper intends to shed
some light on key issues related to the evolutionary power spec-
trum estimation of strongly narrow-band random fields, with spe-
cial emphasis on their application to imperfection modeling in
structures. First, a concise review of existing methods for the esti-
mation of evolutionary power spectra [2,3,27] is presented.
Second, a simple yet effective method for evolutionary spectrum

http://dx.doi.org/10.1016/j.cma.2009.11.008
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estimation of separable random fields is introduced, referred to as
method of separation in the following, which provides accurate
spectrum resolution in space at an optimum localization in fre-
quency. Third, a joint strategy for non-separable fields is proposed,
which is based on partitioning the space-frequency domain into
several sub-spectra that have to be separable only within them-
selves and can thus be treated consecutively by the method of sep-
aration. Fourth, the presented methods are applied for the
estimation of benchmark spectra with different bandwidths and
frequency content, comprising a modulated Kanai–Tajimi spec-
trum [13,37] and a practical example of geometric imperfections
in an I-section flange [11]. The results demonstrate weaknesses
of the established techniques, i.e. the limitation of simultaneous
space-frequency localization or the appearance of negative spectral
density, and the advantages of the proposed method in terms of
accurate space-frequency localization of its spectrum estimates,
which is of particular importance in the presence of strong nar-
row-bandedness in frequency.

The present paper is organized as follows: Section 2 briefly
summarizes relevant elements of stochastic process theory. Sec-
tions 3 and 4 contain a short overview of established space-fre-
quency analysis techniques and an in-depth derivation of the
method of separation, respectively. Section 5 illustrates difficulties
of evolutionary spectrum estimation in the presence of strong nar-
row-bandedness and shows the results of each method for the
imperfection example.

2. Some elements of stochastic process theory

A random field h(x), equivalently known as a stochastic process
in a time–frequency context, represents an ensemble of spatial
functions, whose exact values are a priori indeterminate, but fol-
low a predefined probability distribution [18,27,44]. It can be split
into a deterministic mean l(x) = E[h(x)] and a zero-mean random
field f(x) = h(x) � l(x). The stochastic structure of f(x) is character-
ized by a number of higher moments, starting with the variance or
mean square E[jf(x)j2], and an autocorrelation function R(x,s),
which determines for any f(x) the dependence of neighbouring val-
ues as a function of their spatial distance s [18,27,44]. The operator
E[] denotes mathematical expectation, which can be evaluated by
simple ensemble averaging [18].

The Fourier transform F(x), which decomposes a zero-mean
random field f(x) of length L by projecting it onto the basis of sines
and cosines as a function of frequency x [14,18,22], reads

FðxÞ ¼ 1
2p
�
Z L

0
f ðxÞ � e�Ixx dx; ð2:1Þ

where I denotes the imaginary unit. The transformation of Eq. (2.1)
can be evaluated in discrete form by the computationally efficient
Fast Fourier Transform (FFT) [14,18]. In view of its trigonometric
decomposition, f(x) can be completely characterized by a two-sided
power spectrum S [18,27,28,30,31,44], which is called homoge-
neous, if S(x) depends only on frequency x, and evolutionary, if
S(x,x) depends on both frequency x and space x. Mathematically,
the power spectrum is defined as the Fourier transform of the auto-
correlation function R(x,s) (Wiener–Khintchine theorem) [30,31].
An intuitive approach to the power spectrum is provided by its
interpretation as the distribution of the mean square of the random
field f(x) over the space-frequency domain, so that it holds

E½jf ðxÞj2� ¼ 2
Z 1

0
Sðx; xÞdx: ð2:2Þ

In this context, Eq. (2.2) is also denoted as the incremental en-
ergy or instantaneous power in space. Analogous to Eq. (2.2), the
incremental energy in frequency is defined as
E½jFðxÞj2� ¼
Z L

0
Sðx; xÞdx: ð2:3Þ

Eqs. (2.2) and (2.3) are also known as the marginal spectral den-
sities of a random field [3]. The power spectrum is called narrow-
band, if the bulk of its energy is located only within a very small
frequency band [18]. Additionally, the power spectrum satisfies
spectral separability, if it can be multiplicatively decomposed into
a homogeneous spectrum part S(x) and a modulating spatial enve-
lope g(x) as

Sðx; xÞ ¼ SðxÞ � gðxÞ: ð2:4Þ

The corresponding random field is then called separable.
If the power spectrum S(x,x) of a random field is known, an

arbitrary number m of corresponding Gaussian random samples
can be generated by the spectral representation method
[9,35,36,39], which reads for a one-dimensional univariate zero-
mean Gaussian random field

f ðiÞðxÞ ¼
ffiffiffi
2
p XN�1

n¼0

An cos xnxþ /ðiÞn

� �
; ð2:5Þ

with

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � Sðxn; xÞ � Dx

p
; ð2:6aÞ

xn ¼ n � Dx; ð2:6bÞ
Dx ¼ xup=N; ð2:6cÞ
A0 ¼ 0 or Sðx0 ¼ 0; xÞ ¼ 0; ð2:6dÞ

where i = 1,2, . . . ,m and n = 0,1,2, . . . , (N � 1). The parameter xup is
the cut-off frequency, beyond which the power spectrum is as-
sumed to be zero, the integer N determines the discretization of
the active frequency range, and /ðiÞn denotes the (i)th realization of
N independent phase angles uniformly distributed in the range
[0, 2p]. For non-Gaussian random fields, the translation field theory
can be used to generate random samples from a simple transforma-
tion of an underlying Gaussian field [10,40].

The performance of the evolutionary spectrum estimation
methods to be presented in the following is tested by a uniformly
modulated Kanai–Tajimi spectrum, which is defined according to
Eq. (2.4) by its separable components

SðxÞ ¼
1þ 412 x

x0

� �2

1� x
x0

� �2
� �2

þ 21 x
x0

� �2
" # ; ð2:7Þ

gðxÞ ¼ e�0:25x � e�0:5x

0:25
: ð2:8Þ

Parameters x0 = 10rad/mm and 1 = 0.24 represent the natural
frequency and the damping ratio, respectively. The Kanai–Tajimi
spectrum of Eq. (2.7) has been widely applied in a time–frequency
context for the stochastic simulation of seismic ground accelera-
tion, and various modulating terms leading to both separable and
non-separable spectra can be found in the literature [13,16]. The
specific values for x0 and 1 in conjunction with the exponential
modulating function of Eq. (2.8) are adopted from [37] and yield
a power spectrum with equally pronounced evolution in space
and frequency directions, therefore representing a suitable bench-
mark for evolutionary estimation techniques (see Figs. 1 and 2). In
view of the energy interpretation of the spectrum, Eq. (2.7) can be
conceived of as the incremental energy distribution in frequency
direction, which does not change its shape, but is merely modu-
lated in amplitude along the spatial axis by Eq. (2.8).

For a performance test in the non-separable case, a composed
benchmark spectrum is defined as
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Fig. 1. Analytical components of the Kanai–Tajimi and composed benchmark spectra: (a) homogeneous spectra Si(x); and (b) modulating envelopes gi(x).

Fig. 2. Analytical reference solutions of the two benchmark spectra: (a) exact separable Kanai–Tajimi spectrum; and (b) exact non-separable composed spectrum.
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Sðx; xÞ ¼
X3

i¼1

SiðxÞ � giðxÞ: ð2:9Þ

The first component of Eq. (2.9) is the modulated Kanai–Tajimi
spectrum as defined by Eqs. (2.7) and (2.8); the second and third
components are spectra of exponential type defined by pairs

S2ðxÞ ¼
e�0:15ð�xþ24Þ2

0:26
and g2ðxÞ ¼ e�0:08ð�xþ12Þ2 ; ð2:10Þ

S3ðxÞ ¼
e�0:1x � e�0:25x

0:12
and g3ðxÞ ¼ e�0:03ð�xþ30Þ2 : ð2:11Þ

The first two pairs [Si,gi] Eqs. (2.7), (2.8) and (2.10) again repre-
sent spectrum components with pronounced evolution in both
space and frequency directions (see Figs. 1 and 2). The complete
composed spectrum is non-separable, emphasized by the third pair
Eqs. (2.11) with its longer ridge in frequency, but can be parti-
tioned into sub-spectra that are separable within themselves,
which makes it a suitable benchmark for the joint strategy.

The homogeneous parts Si(x) and the spatial envelopes gi (x) as
well as the corresponding separable and non-separable benchmark
spectra are illustrated in Figs. 1 and 2, respectively, and provide
reference solutions in the following performance tests. Each
benchmark spectrum is used in the spectral representation for-
mula Eq. (2.5) to generate 10,000 corresponding random field sam-
ples f(i)(x), i = 1, . . . ,10,000. Estimates of the analytical benchmark
spectra are obtained by substituting f(i)(x) into the estimation
methods introduced in the following, which can then be assessed
by comparing the results with the initial exact spectra.

3. Existing methods for evolutionary power spectrum
estimation

The homogeneous Fourier estimation of a power spectrum is a
standard method [27,28,30,44], which can be obtained from a ser-
ies of samples f(i)(x) by the so-called periodogram

~ShðxÞ ¼ E
1

2pL
� j
Z L

0
f ðiÞðxÞ �w x� L

2

� �
� e�Ixx dxj2

� �
; ð3:1Þ

with L being the total sample length and window w centered at
x = L/2. The homogeneous spectrum estimate ~ShðxÞ of the evolu-
tionary Kanai–Tajimi benchmark obtained from 10,000 samples
f(i)(x) is shown in Fig. 3. Whereas the energy distribution in fre-
quency direction is predicted correctly, the spatial location of the
energy peak is lost, since the Fourier transform in Eq. (3.1) averages
the energy variation in space over the whole length L. To preserve
this spatial information, samples f(i)(x) have to be transferred into
evolutionary power spectra, for which different established meth-
ods of time–frequency analysis are available today [2,3] that are
briefly reviewed in the following.



Fig. 3. Periodogram based estimate of the Kanai–Tajimi spectrum.
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3.1. The short-time Fourier transform

The most common approach is based on the short-time Fourier
transform (STFT), also referred to as the moving window or Gabor
transform [2]. The basic idea of STFT is to emphasize the samples
f(i)(x) at a distinct spatial position x = v, whose local properties
are to be studied, and to suppress them at positions farther away
from v. This is achieved by multiplying the samples with a window
w(x � v) of finite width T centered at the position of interest v. The
window is then moved along the spatial axis, usually at n equally-
spaced positions x = vj, j = 1 . . . ,n, and the Fourier transform is ap-
plied at each vj. This strategy results in homogeneous spectrum
components ~Sjðx; xÞ for each vj

~Sjðx; xÞ ¼ E
1

2pT
� j
Z vþT=2

v�T=2
f ðiÞðxÞ �w x� vj

� �
� e�Ixx dxj2

" #
: ð3:2Þ

The complete evolutionary spectrum estimate, also known as
the spectrogram, can be obtained by combining all components
j = 1 . . . , n. The basic limitation of the method is its inability to
achieve simultaneous localization in both frequency and space
due to the uncertainty principle [2,3]. Originally motivated by Hei-
senberg’s observations in quantum mechanics, the uncertainty
principle has turned out to be a general property of Fourier analysis
[29,41]. It states that the two components of a Fourier transform
pair, such as a sample f(i)(x) and its squared windowed Fourier
Fig. 4. STFT based power spectrum estimates of the two benchmark spectra: (a) s
transform ~S of Eq. (3.2), cannot be completely localized at the same
time [2,3,18,29,41]. This means that if the spatial resolution is in-
creased by shortening the window width T, the frequency localiza-
tion of the spectrum deteriorates. In turn, if the width T is
increased, frequencies are resolved better, but the spatial localiza-
tion is reduced.

The results of the STFT based estimation for the two benchmark
problems are shown in Fig. 4. Due to the uncertainty principle, a
compromise in the spatial localization of the window function
has to be chosen, that allows for a fair localization in space without
distorting the frequency localization too severely. For the Kanai–
Tajimi spectrum in Fig. 4a, a simple non-overlapping rectangular
window [2,3,27]

wðxÞ ¼
1 �T=2 6 x 6 T=2;
0 elsewhere;

	
ð3:3Þ

centered at 16 equally-spaced positions vj is applied. The effect of
the uncertainty principle can be decreased by using special window
functions [2,3,27], such as the Hamming window

wðxÞ ¼ 0:53836� 0:46164 cos 2p ðxþT=2Þ
T

� �
�T=2 6 x 6 T=2;

0 elsewhere:

(

ð3:4Þ

The application of a non-rectangular function Eq. (3.4) reduces
the signal levels at the beginning and end of the window, leading
to an energy bias called window-processing loss, which can be re-
duced by letting successive windows partly overlap into preceding
ones [14,22]. This is illustrated in Fig. 4b by the STFT based esti-
mate of the composed spectrum, for which six equally-spaced
Hamming windows of width T = L/3 have been chosen, leading to
an overlap of L/12 and a smoother spectrum surface.

3.2. The harmonic wavelet transform

A relatively new approach to space-frequency analysis is pro-
vided by the theory of wavelets [5,15]. For the joint space-fre-
quency representation of evolutionary power spectra, harmonic
wavelets developed by Newland [18–21] have proved to be espe-
cially suitable due to their exact box-like Fourier spectrum. The
spatial window-like representation of the generalized harmonic
wavelet functions can be summarized as

wm;n x� k
n�m

� �
¼ eIn2p x� k

n�mð Þ � eIm2p x� k
n�mð Þ

I2pðn�mÞ x� k
n�m


 � ; ð3:5Þ
eparable Kanai–Tajimi spectrum; and (b) non-separable composed spectrum.



Fig. 5. Harmonic wavelet based estimate of the Kanai–Tajimi spectrum.

Fig. 6. Wigner–Ville based estimate of the Kanai–Tajimi spectrum.
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where the frequency scales (m,n) consist of touching, but not over-
lapping pairs of integers, controlling the frequency bandwidth of
each wavelet function. The variation of k and (m,n) leads to a trans-
lation in space and dilation in frequency, respectively. Wavelets Eq.
(3.5) can be interpreted as a collection of window functions that are
mutually orthogonal, so that a generalized wavelet transform of a
series of samples f(i)(x) can be constructed as

aðiÞðm;nÞ;k ¼ ðn�mÞ
Z L

0
f ðiÞðxÞ wm;n � x� k

n�m

� �
dx; ð3:6Þ

where (*) denotes complex conjugation. Because of the localized
amplitudes of harmonic wavelets of the same frequency scale
(m,n) at different positions (x � k/(n �m)), corresponding wavelet
coefficients aðiÞðm;nÞ;k can be used to distinguish local events of sam-
ples f(i)(x) at the same frequency. On this basis, Spanos and co-
workers [37,43] have recently shown that an evolutionary power
spectrum can be estimated from the wavelet coefficients Eq.
(3.6) as

~Sðm;nÞ;k ¼
4E jaðiÞðm;nÞ;kj

2
h i
n�m

: ð3:7Þ

This formula defines the localized spectral density in the discrete
space-frequency regions

m2p
L
6 x <

n2p
L

and
kL

n�m
6 x <

ðkþ 1ÞL
n�m

; ð3:8Þ

where k = 0 . . . , (n �m � 1) determines the coupling between space
and frequency localization.

Analogous to Fourier analysis, the uncertainty principle limits
simultaneous space-frequency localization in wavelet analysis
[15], which is illustrated by the interdependence of space and fre-
quency resolution in Eqs. (3.8). It allows either for a fine resolution
in frequency, if differences in scales (m,n) are small, or for a fine
resolution in space, if differences in scales (m,n) are large. The
wavelet based estimate for the Kanai–Tajimi benchmark is shown
in Fig. 5, showing reasonable localization due to a compromise in
space-frequency resolution.

3.3. The Wigner–Ville transform

A qualitatively different approach is provided by the Wigner–
Ville transform [2,3,17], which yields the following evolutionary
spectrum expression from a series of samples f(i)(x)

~Sðx; xÞ ¼ E
1

2p
�
Z L

0
f ðiÞ xþ s

2

� �
� f ðiÞ x� s

2

� �
� e�Ixs ds

� �
; ð3:9Þ

where s is a shifting parameter. Eq. (3.9) can be interpreted as the
Fourier transform of an autocorrelation estimate, defined as [18,27]

Rðx; sÞ ¼ E f ðiÞ xþ s
2

� �
� f ðiÞ x� s

2

� �h i
; ð3:10Þ

and thus provides a power spectrum estimation on the basis of the
Wiener–Khintchine theorem [30,31].

The major strength of the method is the accurate representation
of the marginal densities of Eqs. (2.2) and (2.3), which is a key indi-
cator for accurate space-frequency localization. Drawbacks are the
large number of localized oscillations [2] and the potential ability
of the Wigner–Ville method to yield negative spectral values,
which contradicts the mathematical definition of the power spec-
trum and its physical energy interpretation [2,3]. The Wigner–Ville
estimate of the Kanai–Tajimi benchmark is shown in Fig. 6. Due to
the large number of 10,000 input samples, localized oscillations
responsible for the irregular surface, and negative spectrum values
are considerably reduced, leading to good accuracy with respect to
the analytical reference Fig. 2a.
4. The method of separation: robust evolutionary spectrum
estimation of separable random fields

Besides existing space-frequency analysis techniques, a further
method is introduced in the following. It is generally valid for the
estimation of separable power spectra, but in particular designed
to cope with the challenge of simultaneous localization in space
and frequency, which is of major importance for the accurate evo-
lutionary spectrum estimation of strongly narrow-band random
fields.

4.1. Theory and derivation

The present approach, which will be called method of separa-
tion in the following, assumes that input samples f(i)(x) represent
a separable or at least approximately separable random field. The
essential advantage of this assumption in the present case is the
breakdown of the combined evolutionary spectrum estimation
into a frequency and a spatial part, which can be dealt with sepa-
rately. The definition of spectral separability Eq. (2.4) allows that
its multiplicative components can be chosen arbitrarily from a
group of pairs [S

0
;g

0
] that satisfy with respect to the original com-

ponents [S;g]



Fig. 7. p- and q-partitioning of the space-frequency domain for the composed
spectrum.
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S0ðxÞ ¼ k � SðxÞ; ð4:1aÞ

g0ðxÞ ¼ 1
k
� gðxÞ; ð4:1bÞ

where k is an arbitrary positive number. Eq. (4.1) constitute sets of
geometrically similar functions, whose energy content, i.e. area un-
der the curves, is varied by k, but whose energy distributions over
frequency or space, i.e. the relative shapes of the curves, remain
the same. The product of Eq. (4.1) yields always the correct evolu-
tionary spectrum S(x,x) of Eq. (2.4). In the method of separation,
the spectrum component Eq. (4.1a) is chosen as the homogeneous
Fourier power spectrum

ShðxÞ ¼
1
L
�
Z L

0
Sðx; xÞdx ¼ kh � SðxÞ; ð4:2Þ

corresponding to the frequency content of the evolutionary spec-
trum S(x,x) averaged over the signal length L. Its counterpart
gh(x) can be obtained from Eq. (4.1b) by factor

kh ¼
1
L
�
Z L

0
gðxÞdx: ð4:3Þ

The evolutionary spectrum S(x,x) in the method of separation is
thus decomposed into

Sðx; xÞ ¼ ShðxÞ � ghðxÞ: ð4:4Þ

An estimate ~ShðxÞ of the homogeneous Fourier power spectrum
in Eq. (4.4) can be readily obtained from Eq. (3.1), where the fre-
quency content of the separable input samples are averaged over
their length L by the Fourier transform [3,18,27], which corre-
sponds to the definition of Sh(x) in Eq. (4.2). Accordingly, an esti-
mate ~ghðxÞ for the spatial envelope can be derived from the mean
square of samples f(i)(x). The basic analytical expression is found
from Eq. (2.2) as

E jf ðxÞj2
h i

¼ 2
Z 1

0
ShðxÞ ghðxÞdx ¼ ghðxÞ � 2

Z 1

0
ShðxÞdx: ð4:5Þ

The estimate ~ghðxÞ can then be obtained by replacing in Eq. (4.5)
the analytical homogeneous spectrum Sh(x) and mean square E
[jf(x)j2] by the corresponding estimates, which yields

~ghðxÞ ¼
E jf ðiÞðxÞj2
h i

2
R1

0
~ShðxÞdx

: ð4:6Þ

The final estimate of the spectrum can now be established by
replacing the analytical expressions in Eq. (4.4) by their estimates
~ShðxÞ of Eq. (3.1) and ~ghðxÞ of Eq. (4.6), which yields

~Sðx; xÞ ¼ E jf ðiÞðxÞj2
h i

�
~ShðxÞ

2
R1

0
~ShðxÞdx

: ð4:7Þ

Factor 1/2 in the right-hand side fraction is necessary, because
Eq. (4.7) takes into account only one side of the symmetric two-
sided power spectrum. The validity of Eq. (4.7) can be succinctly
illustrated by energy considerations. The right-hand side fraction
contains the estimate ~ShðxÞ in the numerator, which is normalized
by the denominator in the sense that its total energy content, i.e.
the area under the curve ~ShðxÞ, is a constant of 1. This can be triv-
ially verified by integration of the right-hand side fraction in Eq.
(4.7) over frequency asZ 1

0

~ShðxÞR1
0

~ShðxÞdx
dx ¼ 1: ð4:8Þ

The left-hand side contains the mean square of samples f(i)(x),
which due to Eq. (2.2) is an estimate of the incremental energy
in space. Hence, Eq. (4.7) can be interpreted at each position x as
the distribution of the mean square over the frequency domain
by a normalized homogeneous spectrum. This makes the method
of separation a direct implementation of the initial intuitive con-
cept of the power spectrum.
4.2. A joint strategy for non-separability

A limitation of the method of separation in view of its applica-
tion to general power spectra is its separability assumption. Com-
plex benchmark spectra such as chirps [2,3] cannot be estimated
properly, since Eq. (4.7) forces their changing energy distribution
in frequency direction into a separable unified form. The capacity
of the present method can be considerably increased by a joint
strategy based on the partitioning of the space-frequency domain
into several parts, which have to be separable only within them-
selves. Thus, the hypothesis of spectral separability can be replaced
by a much weaker assumption, which requires the non-separable
spectrum to be decomposable or approximately decomposable in
several separable sub-spectra only. The space-frequency localiza-
tion of each sub-spectrum can then be refined by applying the
method of separation across corresponding sub-regions. The re-
assembly of all sub-spectra provides the final spectrum estimate
for the complete space-frequency domain.

Rectangular and non-overlapping sub-regions can be defined by
corresponding pairs of space and frequency segments [xr,xr+1] and
[xs,xs+1], respectively (see Fig. 7). On the one hand, this can lead
to p separable sub-spectra that are aligned along the spatial axis
in successive segments [xr,xr+1], r = 1, . . . ,p. The simple separation
of the series of input samples f(i)(x) according to the spatial seg-
ments [xr,xr+1] allows for a direct application of the method of sep-
aration in the p sub-regions. On the other hand, this can lead to q
separable sub-spectra aligned along the frequency axis in succes-
sive segments [xs,xs+1], s = 1, . . . ,q. In the case of q-partitioning,
the method of separation has to be modified, since the estimation
of q spatial envelopes ~ghðxÞs, s = 1, . . . ,q by Eq. (4.6) requires a
decomposition of samples f(i)(x) according to their contribution to
the respective frequency segment [xs,xs+1] in the form

~ghðxÞs ¼
E ju f ðiÞðxÞ

� xsþ1

xs
j2

h i
2
Rxsþ1
xs

~SðxÞdx
; ð4:9Þ

u½�xsþ1
xs

denotes a filter operator, separating the trigonometric com-
ponents within frequency bandwidth [xs,xs+1] from the complete
input samples f(i)(x). With Eq. (2.2), the numerator of Eq. (4.9) can
be expressed as the integration of the evolutionary spectrum
S(x,x) over the respective frequency segment [xs,xs+1] of the sub-
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region. S(x,x) can then be replaced in each sub-region by its har-
monic wavelet based estimate ~Sðm;nÞ;k Eq. (3.7). This leads to

~ghðxÞs ¼
Rxsþ1
xs

Sðx; xÞdx
2
Rxsþ1
xs

~SðxÞdx
¼

2
Rxsþ1
xs

E jaðiÞðm;nÞ;kj
2

h i
dx

ðn�mÞ
Rxsþ1
xs

~SðxÞdx
; ð4:10Þ

where aðiÞðm;nÞ;k are the wavelet coefficients of each input sample f(i)(x)
according to Eq. (3.6). The key point of Eq. (4.10) is the appropriate
choice of the scales (m,n), so that the partitioning of the wavelet fre-
quency bandwidths coincide with segments [xs,xs+1], as

m ¼ xs

2p
and n ¼ xsþ1

2p
: ð4:11Þ

Eqs. (4.11) ensure the accurate filtering of the input samples
f(i)(x), since corresponding wavelet coefficients aðiÞðm;nÞ;k perform a
separation of the energy contained in the frequency bands
[xs,xs+1].

A fundamental prerequisite of the proposed methodology is the
apriori knowledge of the spectrum shape, so that separable sub-
spectra can be detected and an adequate partitioning of the
space-frequency domain can be chosen. In a general application
with samples from an unknown non-separable power spectrum,
the decision how to sub-divide the space–frequency domain best
can be based on preliminary spectrum estimation across the com-
a b

Fig. 9. Frequency and spatial components of the method of separation for the Kanai–Ta
(right-hand side fraction of Eq. (4.7); and (b) estimates of mean square (left-hand side o

Fig. 8. Method of separation based power spectrum estimates of the two benchmark
spectrum.
plete domain by one of the existing spectrum estimation tech-
niques introduced in Section 3.

4.3. Performance test with benchmark spectra and comparison with
established techniques

The general validity of the method of separation is first tested
by the Kanai–Tajimi benchmark. The complete spectrum estimate
of the method of separation along with the two principal compo-
nents of Eq. (4.7), i.e. the estimated mean square and the estimated
normalized frequency distribution, are shown in Figs. 8a and 9,
respectively. The method of separation captures exact spectrum
gradients and peak values (Fig. 2a) considerably better than STFT
and wavelet transforms (Figs. 4a and 5) and leads to a more regular
spectrum surface than the Wigner–Ville transform (Fig. 6). The
geometric similarity of the component estimates in Fig. 9 with re-
spect to the analytical components in Fig. 1 illustrates the validity
of the fundamental expressions in Eq. (4.1). The marginal densities
of Eqs. (2.2) and (2.3), which are an excellent indicator for the qual-
ity of space and frequency localization, respectively [3], are plotted
in Fig. 10. The method of separation and the Wigner–Ville trans-
form are able to reproduce the analytical incremental energies ex-
actly due to their accurate localization properties in both space and
frequency directions, whereas STFT and harmonic wavelet based
jimi spectrum from different sample sizes: (a) estimates of frequency distribution
f Eq. (4.7)).

spectra: (a) separable Kanai–Tajimi spectrum; and (b) non-separable composed
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Fig. 10. Marginal densities (incremental energies) for the Kanai–Tajimi estimates: (a) marginal density in space (mean square); and (b) marginal density in frequency.

Fig. 11. Convergence of the examined estimation techniques for the Kanai–Tajimi
spectrum.
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methods exhibit observable deviations from the exact solutions as
a consequence of the uncertainty principle. The marginal densities
in space and frequency for STFT and wavelet methods reflect the
quality of the trade-off between spatial and frequency localization.
Stochastic convergence in a Monte-Carlo sense [27] is tested by the
a

Fig. 12. Marginal densities (incremental energies) for estimates of the composed spe
frequency.
squared difference between exact analytical and estimated Kanai–
Tajimi spectra Sex and ~Sm, respectively, integrated over the space-
frequency domain in the form

eðmÞ ¼
Z 1

0

Z L

0
Sex � ~Sm

� �2
dxdx: ð4:12Þ

The error e Eq. (4.12), which depends on the number m of input
samples f(i)(x), i = 1, . . . ,m used for the computation of ~Sm, is plotted
in Fig. 11 for each estimation method. Whereas STFT and wavelet
estimates do not converge due to the systematic error of the uncer-
tainty principle, the method of separation achieves monotonic con-
vergence, approaching the exact solution faster than the Wigner–
Ville method. Thus, the method of separation based estimate of
the Kanai–Tajimi spectrum is shown to be more accurate in terms
of regularity of the spectrum surface, space-frequency localization
and convergence towards the exact spectrum than the results of
the established estimation techniques.

For the estimation of the non-separable composed spectrum, it
is assumed here that the spectrum shape analytically defined by
Eqs. (2.7) through (2.11) is unknown and the only information
available consists of 10,000 samples of the corresponding random
field generated by spectral representation. Thus, an apriori idea of
the spectrum shape has to be obtained first for the adequate parti-
tioning of the space-frequency domain, for example by application
of the STFT approach. Based on its result in Fig. 4b, the three sep-
b

ctrum: (a) marginal density in space (mean square); and (b) marginal density in
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arable sub-spectra can be clearly identified and the partitioning of
the space-frequency domain can be chosen according to Fig. 7. The
spectrum estimate resulting from the joint strategy for non-sepa-
rability is shown in Fig. 8b. It captures the spectrum peaks in terms
of maximum values and gradients better than the STFT based esti-
mate of Fig. 4b, but exhibits slight discontinuities at the sub-region
boundaries. The corresponding marginal densities in Fig. 12 dem-
onstrate that the space-frequency localization achieved by the
joint strategy and the method of separation is considerably im-
proved in comparison to the STFT marginals. The slight deviation
of the method of separation based results from the exact analytical
solutions of Figs. 2b and 12 is due to the overlapping of some en-
ergy from neighbouring sub-regions, which introduces a slight
non-separability of the benchmark spectrum within each sub-
region.

5. Stochastic imperfection modeling in structures: accurate
estimation of strongly narrow-band power spectra

The introduced space-frequency analysis techniques are now
applied for the stochastic simulation of structural imperfections,
where input samples typically are strongly narrow-band in fre-
quency. The example problem considered here consists of six mea-
c

Fig. 13. The I-section beam experimentally investigated by Hasham and Rasmussen
[11]: (a) perfect geometry of the I-section beam; (b) true geometry with 150�
enlarged imperfections; and (c) measured flange edge imperfections d.
surements of geometric imperfections in an I-section flange, from
which an evolutionary power spectrum should be estimated. The
measurements were obtained by surveying the flange edges of
six nominally identical I-section beams of length L = 2000 mm
[11]. They represent the deviation d of the true flange edge position
from perfect plate geometry along the beam axis as illustrated in
Fig. 13. The zero-mean parts of the imperfection measurements
represent six input samples f(i)(x),i = 1, . . . ,6, plotted in Fig. 14a. In
the following, the validity of the hypothesis of spectral separability
for the present example is first examined. Then, the aspects of
spectral leakage, spectral dispersion and small sample size are dis-
cussed in detail. Finally, the performance of the presented tech-
niques in the presence of strong narrow-bandedness are
compared and assessed.

5.1. Spectral separability

The assumption of spectral separability in the method of sepa-
ration introduces an error in case of non-separable input samples.
Non-separability implies that the energy distribution over the fre-
quency domain, i.e. the spectrum shape in frequency direction, dif-
fers along x, as illustrated by the non-separable composed
spectrum Fig. 2b. In the case of the strongly narrow-band imper-
fection measurements, possible variations of energy distribution
in frequency are considerably limited, since the main lobe is lo-
cated only within a very small fixed bandwidth. This is illustrated
by a STFT based spectrum estimate according to Eq. (3.2), obtained
at six equally-spaced positions vj by a non-overlapping Hamming
window of length L/6. The six individual STFT components plotted
in Fig. 15 are normalized analogous to Eq. (4.8), so that they would
coincide in case of exact spectral separability. The discrepancy be-
tween the plotted curves with respect to shape and amplitude thus
indicates the degree of non-separability. Within the narrow-band
main lobe, which ranges from 0 to around 0.03 rad/mm (see
Fig. 15) and contains about 95% of the total energy, approximate
spectral separability can be readily verified, since the six curves ex-
hibit the same qualitative shape and diverge only slightly. Beyond
the narrow-band main lobe, the curves show larger divergence,
and hence indicate non-separability (see logarithmic plots in
Fig. 15). Since the divergent parts of spectrum components cover
only about 5% of the total energy, the present imperfection exam-
ple can still be assumed to be approximately separable.

5.2. Spectral leakage and spectral dispersion

Fourier analysis of finite length signals is biased by two phe-
nomena known as spectral leakage and spectral dispersion, which
both lead to an unphysical frequency distribution of part of the sig-
nal’s energy.

Spectral leakage results from the discrete nature of the finite
length Fourier transform [14]. The FFT algorithm is constrained
to operate on a finite set of N input values, sampled at the sampling
rate fS = N/L, and yields discrete frequency information at the fol-
lowing frequency points xj [14]

xj ¼ 2p � j � fS

N
¼ j � 2p

L
with j ¼ 0; 1; 2; . . . ; N � 1: ð5:1Þ

In the present example, the measured imperfection signals con-
sist of N = 80 points at a distance of 25 mm. Finite length Fourier
transforms can correctly attribute only those energy components
of the input signals, which precisely occur at the frequencies given
in Eq. (5.1). Energy components of intermediate frequencies, how-
ever, tend to leak out away from their correct frequency positions.
The discrete Fourier transform of strongly narrow-band functions
is especially sensitive to leakage errors, since almost all of their fre-
quency content is located between only a few discrete frequency
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Fig. 14. Zero-mean parts of the input measurements f(i)(x) and six samples generated from method of separation and STFT based spectrum estimates: (a) zero-mean part of
measurements; (b) method of separation based simulation; and (c) STFT based simulation.

Fig. 15. STFT based spectrum components normalized by their incremental energy
in space.

Fig. 16. Leakage from main lobe into side lobes in the periodogram.
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points xj. The leakage sensitivity of the present example is illus-
trated in Fig. 16 by its periodogram Eq. (3.1). It consists of a main
lobe between 0 and 0.005rad/mm, which contains the correctly
attributed energy, and unphysical periodic peaks at higher fre-
quencies, known as side lobes, which contain the leaked energy.
Windowing the input signals with the Hamming window Eq.
(3.4) reduces the leakage effect [14] (see Fig. 16).

Spectral dispersion is a direct consequence of the uncertainty
principle [2,3,29,41]. It occurs, when the signal length L is limited
by the introduction of a finite length window to achieve better
space-frequency resolution, such as in Eqs. (3.2) or (3.6). Its charac-
teristic mechanism is succinctly illustrated in Fig. 17 for the pres-
ent imperfection example. Localization in space of the mean square
E [jf(i)(x)j2] is obtained by applying a Hamming window centered at
v = L/2, as shown in Fig. 17a. Comparison with Fig. 17b reveals that
an increase in spatial mean square localization, i.e. a decrease in
window width T, necessitates spectral dispersion about x = 0 in
the corresponding two-sided spectrum estimate ~SðxÞof Eq. (3.1).
Strongly narrow-band spectra with evolutionary power in space
are especially sensitive to this phenomenon, since their true band-
widths are considerably smaller than the frequency spread intro-
duced by a window width, which has to be small enough for a
reasonable localization in space.

5.3. Number of samples and spectral smoothing

In most practical applications, only a very limited number of
measurements are available. The resulting insufficient ensemble
averaging in the evaluation of the operator E[] in Eq. (4.7) leads
to spurious oscillations in the evolutionary spectrum estimate,
due to localized under-and overestimation of the true spectrum



a

b

Fig. 17. Spectral dispersion in the imperfection example: (a) increase in localization in the mean square E[—f(i)(x)—2] about x = L/2; and (b) decrease in localization in the two-
sided spectrum estimate ~SðxÞ about x = 0.

D. Schillinger, V. Papadopoulos / Comput. Methods Appl. Mech. Engrg. 199 (2010) 947–960 957
(see Fig. 9). The spurious oscillations are stronger in spatial direc-
tion x, because the evaluation of the right-hand fraction implies an
additional averaging of frequency content over length L (see Eq.
(3.1)). An effective damping of the spurious oscillations in spatial
direction can be accomplished by spectral smoothing algorithms,
as for example proposed in [18] in the form

Ŝ x; xkð Þ ¼ 1
2nþ 1

Xn

m¼�n

~S x; xkþmð Þ; ð5:2Þ

where xk denote sample points in space of the discrete spectrum
representation and Ŝ is the smoothed spectrum. Eq. (5.2) can be
imagined as a window, which is moved in small steps along the spa-
tial axis, successively replacing the central spectrum values by the
arithmetic average of all visible values. The empirical window size
(2n + 1) has to be chosen small enough not to distort the evolution-
ary trend, but large enough to effectively smoothen the spurious lo-
cal oscillations.
5.4. Performance of available estimation techniques

The spectrum estimates of the corresponding imperfection
example obtained from the wavelet, Wigner–Ville, and STFT based
techniques and the method of separation are shown in Fig. 18.
Motivated by the discussion of spectral leakage in Section 5.2, all
measurements have been multiplied by a Hamming window prior
to the application of Fourier transforms in order to prevent the
development of side lobes. Note that the method of separation is
not affected by a possible window-processing loss [14,22], because
this effect cancels out in the right-hand side fraction of Eq. (4.7).
The harmonic wavelet based estimate in Fig. 18a exhibits satisfac-
tory localization in frequency direction, which can be obtained by
the smallest possible difference in scales n �m = 1, but no localiza-
tion in space due to the restriction of Eq. (3.8). The Wigner–Ville
estimate in Fig. 18b can be expected to give an accurately localized
impression of the true power spectrum, but negative spectral den-
sity appears over large parts of the space-frequency domain. The
estimates in Fig. 18a and b are thus inaccurate or unsuitable to
be used in the framework of spectral representation. The STFT
based estimate in Fig. 18c, which has been obtained with 16 over-
lapping Hamming windows of width L/8, exhibits good localization
in space. However, in comparison to the Wigner–Ville and method
of separation based estimates, which rely on a Fourier transform
with full window width T = L, the STFT based estimate is severely
biased in frequency direction by spectral dispersion. Its detrimen-
tal impact as discussed in Section 5.2 is succinctly summarized by
corresponding marginal densities in Fig. 19, which illustrate an
accurate reproduction of the evolutionary trend in space, but a se-
vere spread of the main lobe in frequency.

The applicability of the method of separation requires at least
approximate spectral separability of the input samples, which
can be presumed for the present imperfection example as dis-
cussed in Section 5.1. The accurately localized estimation result
of the method of separation is shown in Fig. 18d. Due to the small
number of only 6 available measurements, spectral smoothing as
discussed in Section 5.3 is applied, which results in the final
smoothed estimate Fig. 18e. In view of spectral dispersion, the fre-
quency localization in the Fourier transform of a strongly narrow-
band function corresponds to the availability of a sufficiently long
signal length L. Since the method of separation Eq. (4.7) allows the
use of the full available length L in the Fourier transforms involved,
its spectrum estimate thus guarantees an optimum frequency
localization and a minimum spread of the energy distribution.
The excellent space-frequency localization of the method of sepa-
ration is further evidenced by its marginal densities in Fig. 19.
The qualitative accordance of its energy distribution and peak val-
ues with the Wigner–Ville estimate Fig. 18b additionally supports
the plausibility of the smoothed estimate Fig. 18e.

Finally, the STFT based spectrum estimate of Fig. 18c and the
smoothed spectrum estimate of the method of separation of



Fig. 18. Evolutionary spectrum estimates for the narrow-band imperfection example: (a) harmonic wavelet based estimate; (b) Wigner–Ville based estimate; (c) STFT based
estimate; (d) method of separation based estimate; and (e) smoothed method of separation based estimate.
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Fig. 18e are used to generate six random imperfection samples by
spectral representation with Eq. (2.5), which are plotted in Fig. 14b
for the method of separation and Fig. 14c for the STFT. The charac-
teristic variation of measured imperfection amplitudes can be
reproduced accurately by both groups of simulated samples. As a
result of the large frequency spread in the STFT based spectrum,
the wave-lengths in the corresponding samples in Fig. 14c largely
deviate from the measurements in Fig. 14a, best illustrated by the
frequent crossing of the zero line. The wave-lengths of the method
of separation based samples in Fig. 14b can be observed to slightly
underestimate the experimental wave-lengths in the interval
x = [0,500], which is likely to be a consequence of the spectral sep-
arability assumption discussed in Section 5.1. In general, they
nonetheless correlate considerably better with the measured coun-
terparts than the STFT based samples.

6. Summary and conclusions

The present paper is focused on space-frequency analysis tech-
niques for the estimation of evolutionary power spectra from a ser-
ies of experimental measurements, which are used in engineering
practice for the accurate stochastic simulation of random physical
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Fig. 19. Marginal densities (incremental energies) for STFT and method of separation based estimates of the imperfection example: (a) marginal density in space (mean
square); and (b) marginal density in frequency.
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phenomena by spectral representation. First, established evolu-
tionary spectrum estimation techniques based on the short-time
Fourier, the harmonic wavelet and the Wigner–Ville transforms
have been briefly reviewed. Second, a method for the estimation
of separable power spectra has been introduced, whose mathemat-
ical derivation directly implements the physical interpretation of
the power spectrum as the distribution of the total energy over
the space-frequency domain. For the estimation of the separable
Kanai–Tajimi benchmark spectrum, the so-called method of sepa-
ration has been confirmed to be more accurate in terms of surface
regularity, space-frequency localization and stochastic conver-
gence than each of the established techniques. The assumption of
spectral separability, however, limits the method of separation to
cases, where input samples do not or only slightly vary in fre-
quency bandwidth along their length. Behind this background, it
has been demonstrated that the constraint of spectral separability
can be bypassed for a class of non-separable spectra, which can be
partitioned into sub-regions of several separable sub-spectra.

The performance of the STFT, wavelet and Wigner–Ville based
techniques and the proposed method of separation has been finally
examined in the presence of strong narrow-bandedness and simul-
taneous spatial evolution on the basis of a practical example from
imperfection modeling in structures. It has been shown that none
of the established space-frequency analysis techniques is able to
provide accurate evolutionary estimation results, which are suitable
to be applied in the framework of spectral representation. In contrast
to the established techniques, the method of separation has been
demonstrated to yield good localization in space and frequency even
in the presence of strong narrow-bandedness. In particular, it guar-
antees optimum frequency resolution, since the involved Fourier
transforms take into account the complete available length of the
measurements. The evaluation of marginal densities and the com-
parison of simulated imperfection samples with the experimental
measurements could confirm the advantages of the method of sep-
aration in the case of strongly narrow-band input samples.
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