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A stochastic vulnerability-based robust design procedure of isotropic shell structures possessing uncer-
tain initial geometric as well as material and thickness properties that are modeled as random fields is
assessed against conventional and reliability-based robust design procedures. The main idea of the vul-
nerability-based design philosophy is to achieve robust optimum designs while allowing designers to
determine explicitly accepted probabilities that various performance objectives will not be exceeded,
by introducing additional probabilistic (vulnerability) constraints. For this purpose, a stochastic finite ele-
ment methodology is incorporated into the framework of an efficient two-objective robust design opti-
mization formulation. This combined approach is then implemented in order to obtain optimum designs
of an “imperfect” shell structure involving random geometric deviations from its perfect geometry as well
as a spatial variability of its modulus of elasticity and thickness. Two-objective functions, the material
volume of the structure and the coefficient of variation of the buckling load of the shell, are used for
the description of the optimization problem, subject to deterministic, reliability and vulnerability
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1. Introduction

Deterministic formulations of structural optimization problems
are not capable to reach unbiased, feasible and realistic optimum
structural designs due to the fact that such formulations ignore
the uncertainties involved in the various parameters affecting the
structural behaviour. Once a deterministic optimum design is mate-
rialized to a real physical system, its optimal performance may van-
ish because of the unavoidable scattering values of the parameters,
which might also be unfavorable since the performance of the
“implemented” design may be far worse than expected. In practical
applications, however, finding the global optimum in the presence
of uncertainties in various structural parameters, such as material
properties, geometric imperfections, loading variations, uncertain
boundary conditions, etc., is a difficult and computationally inten-
sive task, since for any candidate design a full stochastic analysis
has to be performed for estimating various statistical quantities.
Efficient methodologies are therefore required for the solution of
the stochastic and the optimization part of the problem. A complete
survey on these methodologies can be found in [1].

Such probabilistic optimum design formulations are usually
distinguished, depending on the probabilistic system response
quantities that are taken into account, in two categories: reliabil-
ity-based optimization (RBO) [2-4] and robust design optimization
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(RDO) [5-7]. The main goal of RBO formulations is to design for
safety with respect to extreme events by determining design
points that are located within a range of target failure probabilities.
On the other the fundamental principle of RDO is to improve prod-
uct quality or stabilize performances by minimizing the effects of
variations without eliminating their causes. This is usually
achieved by considering the mean value and/or the standard devi-
ation of a response quantity as an objective function and trying to
establish the designs that minimize the aforementioned quantities
considering deterministic or reliability constraints. Further to RDO
and RBO formulations the reliability-based robust design optimiza-
tion (RRDO) formulation has been addressed [8] in order to ac-
count for the influence of the probabilistic constraints in the
framework of RDO of realistic structures. The recent advances in
RBO, RDO and RRDO structural optimization problems can be
found in the book by Tsompanakis et al. [9].

The traditional design procedures followed for imperfect shell-
type structures are based on conservative corrections of determin-
istic non-linear analyses by means of the well-known empirical
“knock-down” factors. A step forward to the aforementioned
“traditional” procedure was recently achieved through accurate
predictions of the scatter of the buckling loads that was accom-
plished via realistic descriptions of the various uncertainties
involved in the problem. Such task is realizable only in the frame-
work of stochastic finite element method (SFEM) formulations that
can efficiently and accurately handle the geometric as well as
physical non-linearities of shell-type structures [10-16]. This
type of SFEM approaches, however, can provide with reasonable


http://dx.doi.org/10.1016/j.strusafe.2009.06.006
mailto:vpapado@central.ntua.gr
mailto:nlagaros@central.	
http://www.sciencedirect.com/science/journal/01674730
http://www.elsevier.com/locate/strusafe

476 V. Papadopoulos, N.D. Lagaros /Structural Safety 31 (2009) 475-482

estimates of the scatter of the buckling loads only if the full prob-
abilistic characteristics (marginal pdfs and correlation structures)
of the involved stochastic fields are derived on the basis of corre-
sponding experimental surveys. As this requirement is rarely satis-
fied, such SFEM approaches are usually implemented as “worst
case” studies, based on sensitivity analyses with respect to the
aforementioned parameters.

A design procedure is proposed in the present paper that ad-
dresses the vulnerability-based optimization (VBO) concept of iso-
tropic shell structures possessing uncertain initial geometric as
well as material and thickness properties that are modeled as ran-
dom fields. The VBO concept used in this work is based on the trad-
ing-off performance and robustness framework that has been
proposed by Mourelatos and Liang [17]. The main motivation for
proposing the VBO formulation is that despite the fact that RBO
and RRDO formulations lead to design points that are located with-
in a range of target failure probabilities, intermediate (prior-to-fail-
ure) limit states possibly crucial for the structural behaviour and
operational integrity are ignored. The main difference between
VBO and RBO formulations is that multiple limit states are consid-
ered in VBO, apart from the failure one. Thus, VBO can be consid-
ered as an RBO procedure with multiple probabilistic constrains.
The main novelty of the proposed procedure with respect to an
RBO formulation with multiple probabilistic constrains, is that
the definition of the multiple probabilistic constrains, named here-
after “vulnerability constrains”, is associated with the classical
structural vulnerability analysis. Thus, the vulnerability constraints
are related to acceptable damage and/or serviceability limit states,
prior and up to total structural failure, of increasing intensity.

In the present paper, the aforementioned VBO design methodol-
ogy is combined with the robust design optimization leading to the
vulnerability-based robust design optimization (VRDO) formula-
tion. In VRDO, an optimum robust design is achieved while the vul-
nerability (probabilistic) constraints are simultaneously satisfied.
This is accomplished by combining a classical vulnerability analy-
sis in the context of a stochastic finite element method (SFEM) ap-
proach with an efficient objective robust design optimization
formulation. Two-objective functions, the material volume of the
structure and the coefficient of variation of the buckling load of
the shell, are simultaneously used for the description of the optimi-
zation problem, while in addition to deterministic constraints, im-
posed by the Eurocode 3 [18], vulnerability constraints are also
taken into account.

This combined approach is then implemented in order to obtain
rational optimum designs of an “imperfect” isotropic shell struc-
ture involving stochastic geometric deviations from its perfect
geometry as well as a spatial variability of the modulus of elasticity
and the thickness of the shell. Two algorithms are employed for the
solution of the two-objective optimization problem at hand; the
first one is the non-domination sort evolution strategies II (NSES-
II) algorithm, which is based on [19], while the second one is the
Strength Pareto Evolution Strategies 2 (SPES 2) which is a variant
algorithm of the one proposed in [20]. Numerical results are pre-
sented for a cylindrical panel, demonstrating the applicability of
the proposed stochastic optimization methodology and the im-
proved efficiency of the SPES 2 over the NSES-II algorithm in
obtaining rational optimum designs of imperfect shell-type struc-
tures, which also satisfy the vulnerability design criteria.

2. Stochastic finite element formulation

2.1. Description of random geometric imperfections

Following an approach similar to the one described in [10], ini-
tial geometric imperfections are modeled as 2D-1V homogeneous

Gaussian stochastic fields. Thus, geometric imperfections are intro-
duced as fluctuations around a, so called, ‘perfect’ structural geom-
etry as follows:

D(x.y) =Do(1 + fi(x,y)) (1)

where Dy is the domain of the perfect shell geometry which in this
case coincides with the mean geometry of the structure and fi(x,y)
is a zero mean 2D Gaussian homogeneous stochastic field. The
amplitude of the imperfections is controlled by the standard devia-
tion of the stochastic field. The coordinates x, y are the global Carte-
sian coordinates of the unfolded panel. Moreover, the shape of the
imperfections is controlled by the correlation lengths of the sto-
chastic field fi(x,y) in directions x and y, respectively.

It must be mentioned here that the assumption of homogeneity,
although not generally applicable for the description of initial
imperfections of shells, is adopted in this study and elsewhere
[10,11,14] due to the fact that there is no experimental data avail-
able for this particular type of cylindrical panels. However, the pro-
posed approach can be easily extended to non-homogeneous cases
by using the spectral representation method together with an
evolutionary power spectrum [11] or some other representation
method such as the Karhunen-Loeve expansion [16,21]. In cases
where there is lack of experimental data, a sensitivity analysis is
always required with respect to various probabilistic quantities
of the stochastic fields that describe the imperefections [14,16].

2.2. Non-linear finite element analysis

The finite element simulation is performed using the non-linear
multilayer triangular shell element TRIC, which is based on the
natural mode method. The TRIC shear-deformable facet shell ele-
ment is a reliable and cost-effective element suitable for linear
and non-linear analysis of thin and moderately thick isotropic as
well as composite plate and shell structures. The element has 18
degrees of freedom (six per node) and hence 12 natural straining
modes. Three natural axial strains and natural transverse shear
strains are measured parallel to the edges of the triangle. The nat-
ural stiffness matrix is derived from the statement of variation of
the strain energy with respect to the natural coordinates. The geo-
metric stiffness is based on large deflections but small strains. The
elastoplastic stiffness of the element is obtained by summing up
the natural elastoplastic stiffnesses of the element layers.

The solution of the non-linear system of equations at each
Monte Carlo simulation is performed using the standard incremen-
tal-iterative Newton Raphson algorithm in conjunction with the
arc-length path-following technique. The effective stress for the
elastoplastic analysis is computed according to the Von Mises yield
criterion. Such a procedure enables the prediction of the full non-
linear pre and post-buckling load-displacement path. The pre-
dicted critical buckling load is assumed to correspond to the load
level at which the first negative eigenvalue of the tangent stiffness
matrix of the structure appears. A detailed description of the linear
elastic, geometric and elastoplastic stiffness matrix of the TRIC
shell element can be found in [22-24].

2.3. Stochastic stiffness matrix

For the calculation of the stochastic stiffness matrix of TRIC the
modulus of elasticity as well as the thickness of the structure are
also considered in the present study as ‘imperfections’, in addition
to geometric imperfections, due to their spatial variability. These
parameters are also described as two independent 2D-1V homoge-
neous stochastic fields

E(x,y) = Eo[l1 +f2(x,y)] (2)
tx,y) = to[1 +f5(x,y)] 3)
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where Ey is the mean value of the elastic modulus, ty is the mean
thickness of the structure and f5(x,y), f3(x,y) are two zero mean 2D
Gaussian homogeneous stochastic fields corresponding to the vari-
ability of the modulus of elasticity and the thickness of the shell,
respectively. Stochastic fields f5(x,y) and f3(x,y) are assumed uncor-
related. The stochastic stiffness matrix of the shell element is de-
rived using the midpoint method as this is implemented in [11,15].

The generation of sample functions for stochastic fields f;(x,y),
fo(x,y) and f3(x,y) corresponding to the variations of the geometric,
material and thickness imperfections, respectively, is performed
using the spectral representation method [25]. The two-sided
power spectral density function used for the description of the
above mentioned fields is assumed to correspond to an autocorre-
lation function of exponential type and is given by

O—Z
sfofo(K17 K'z) = #b] bz exp

~5 (b1 +b353)| @)

where oy denotes the standard deviation of the stochastic field and
by, b, denote the parameters that influence the shape of the spec-
trum which are proportional to the correlation distances of the sto-
chastic field along the xq, x, axes, respectively, and ki, K, are wave
numbers. A large number Nsavp of sample functions are produced,
leading to the generation of a set of stochastic stiffness matrices
while first and second order moments of the computed buckling
loads are estimated by the brute-force Monte Carlo simulation.

3. Vulnerability-based robust design optimization

Vulnerability-based robust design optimization (VRDO) aims to
minimize both the weight and the variance of the structural capac-
ity when the geometric and/or material properties are considered
as random, while ensuring that a series of target probabilities (vul-
nerability objectives) will not be exceeded. These probabilities are
defined as the frequencies with which various performance param-
eters (for example displacements or stresses) violate increasing
limit state conditions. These limit states are defined as being con-
ditional to corresponding (predefined) increasing loading condi-
tions (actions) with the final limit state being the structural
failure. Thus, vulnerability-based design of shell structures re-
quires the calculation of a series of limit state probabilities for a
corresponding series of limit states conditioned to a given, mono-
tonically increasing, sequence of loads.

A general formulation of the VRDO problem can be stated as a
multi-objective problem as

Minser  f = [C(S, 1(X)), COVresp(s, n(X))]"
subject to
(a) deterministic constraints :

(b)vulnerability constraints :
pi[l/(S, u(X)) > yi|P:P,] < Di target i=1,....,m

where f are the objective functions related to the material cost C and
the vector that contains the coefficient of variation of selected re-
sponse quantities COV,s,. In many structural design problems the
main objective is to find economical designs, this is the reason for
choosing the material cost C as the first objective to minimize. It
is important, thought, to fulfill structural performance constraints
in a probabilistic environment; for this reason COV,.,, is selected
as the second objective to be minimized. Vector s represents the de-
sign variable vectors, and p(X) represents the vector of the random
field used for the description of the uncertain parameters involved
in the problem, which is a function of the position vector X. Fis the
feasible region where all the deterministic constraint functions
g; are satisfied while the maximum conditional probability

Di [v(s,u(X)) > vi\,,:,,i] that the performance variables u(s,u(X))
(for example displacements and/or stresses) are greater than the
desired design levels v, given that the load level is P;, does not ex-
ceed a predefined target probability p;target.

With reference to Eq. (5), the step of minimizing the objective
function with respect to the deterministic constrains is the part
of the RDO, which is an integral part of the VRDO procedure. In
addition, the mth limit state in Eq. (5) corresponds to structural
failure and for this limit state the vulnerability constraint is equiv-
alent to the classical reliability constraint p;(s, n(X)) < Py rarget> Ps
being the probability of structural failure. Therefore, the final (ulti-
mate) limit state for the VRDO procedure coincides with the con-
ventional structural reliability criterion (probability of structural
failure), as this is defined in a RRDO formulation. Thus, the VRDO
may be seen as a generalization of the RRDO methodology with
multiple probabilistic constraints associated with various prior-
to-failure structural performance levels. If only the final probabilis-
tic constrain is considered, then the VRDO reduces to a RRDO pro-
cedure. Similar to the RRDO, the basic philosophy of VRDO consists
in allowing designers to determine explicitly accepted probabili-
ties that various performance objectives will not be exceeded, by
introducing additional probabilistic (vulnerability) design checks.
A comparison between conventional RDO, RRDO and VRDO, both
in terms of their specific formulations as well in terms of the opti-
mum results that they produce, will be given in detail through an
example in Section 5.

4. Solving the multi-objective optimization problem

Several methods have been proposed in the past for treating
structural multi-objective optimization problems [26,27]. In this
work two algorithms are used in order to handle the two-objective
optimization problem at hand. The first one is based on the non-
domination sort genetic algorithm II (NSGA-II) developed by Deb
et al. [19] while the second one is based on the strength Pareto evo-
lutionary algorithm 2 (SPEA 2) developed by Zitzler et al. [20]. The
evolution strategies (ES) method has been proved very efficient for
solving single objective structural optimization problems [28,29].
In both basic algorithms this is the reason for being combined with
the philosophies of the two multi-objective optimization methods.
The resulting multi-objective optimization algorithm are denoted
as NSES-II(u + /,4) and SPES 2(u + /,4).

4.1. Non-dominated sorting evolution strategies (NSES-II)

The main part of the NSES-II algorithm is the fast-non-domina-
tion-sort procedure according to which a population is sorted in
non-dominated fronts and it is based on the work by Deb et al.
[19]. This algorithm identifies non-dominated individuals in the
population, at each generation, to form Pareto fronts, based on
the concept of non-dominance. After this, the basic operators of
ES are performed. In the ranking procedure, the non-dominated
individuals in the current population are first identified. Then,
these individuals are assumed to constitute the first non-domi-
nated front with a large dummy fitness value. All these solutions
have an equal reproductive potential. In order to maintain popula-
tion diversity, these non-dominated solutions are then shared with
their dummy fitness value. Afterward, the individuals of the first
front are ignored temporarily, and the rest of the population is pro-
cessed in the same way to identify individuals for the second non-
dominated front. They are assigned a dummy fitness value, which
is a little smaller than the worst shared fitness value observed in
the solutions of the first non-dominated front. This process contin-
ues until the whole population is classified into non-dominated
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fronts. Since the non-dominated fronts are defined, the population
is then reproduced according to the dummy fitness value.

4.2. Strength Pareto evolution strategies (SPES 2)

The basic option of SPES 2(u + /,4) algorithm was proposed in
[20] as an approach that incorporates several of the desirable
features of other well-known multi-objective evolutionary algo-
rithms. SPES 2(u +/,4) implements elitism through the mainte-
nance of an external set of best solutions found during the whole
iteration loop. Elitism, when applied by an evolutionary algorithm,
guarantees that the solutions with higher fitness will not be
eliminated during the run of the optimization algorithm. The
non-dominated solutions in the external set are used to determine
the fitness of the current population (set of solutions) and also take
part in the selection process for reproduction. In SPES 2(u + /,4), the
fitness of a solution in the population depends on the best
solutions in the external set but is independent of the number of
solutions this solution dominates, or is dominated by, within the
population. The most important aspects of this algorithm are the
fitness assignments and the clustering procedure. In each iteration,
a population of individuals B;g) is obtained, and the non-dominated
solutions of this population are copied in A® (external population).
Next, the solutions of A®® that are dominated by other solutions are
eliminated, obtaining the front of Pareto of A®, In SPES 2(u + /,4),
the number of externally stored non-dominated solutions is lim-
ited to 4. If the number of solutions of the Pareto front is greater
than /, it is necessary to reduce the external population by some
means of clustering.

5. Numerical results

The hinged isotropic cylindrical panel of Fig. 1 is considered in
order to illustrate the efficiency of the proposed vulnerability-
based robust design optimization formulation having both sizing
and shape design variables. The loading, the length L in both direc-
tions as well as the mean material properties of the perfect shell is
also shown in Fig. 1. Considering the geometric properties of the
shell, only the length L is considered as constant during the optimi-
zation procedure, while the mean thickness t, of the panel and the
angle 0 are considered as design variables subjected to the con-
straints 4° < 0 < 8° and 2 mm < tp < 6 mm. The curve edge nodes
of the panel are assumed to be free in all directions while the nodes
along the sides are hinged (fixed against translation only). The
material is considered to be elastic-perfectly plastic.

The geometrically non-linear elastic as well as elastoplastic re-
sponse of point A of the perfect cylinder with respect to the applied
vertical load P, is shown in Fig. 2 for the mean values of the design
parameters, i.e., 6 =6 and to =4 mm. The cylindrical panel is dis-
cretized with a 21 x 21 mesh of 400 TRIC shell elements. A mesh
convergence study for this particular example is presented in a

E=3105N/mm
v=0.3
L=508mm

o =4.2N/ mm

Fig. 1. Geometry, and material data of the cylindrical panel.
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Fig. 2. Central load-displacement curve of the perfect cylindrical panel (¢t =6 mm,
0=6°).

previous investigation [10] where the computational efficiency of
the TRIC element in non-linear shell analysis was demonstrated.
For the discretization of the stochastic fields, the same mesh used
for the finite element analysis is implemented since it is a fraction
of the correlation length parameters adopted in this example [10].
The ultimate load of the perfect configuration is found to be
P, =217 N for the elastic shell and P, =152 N for the elastoplastic.

5.1. Parametric study

A parametric study is performed with respect to the correlation
lengths of the stochastic fields modeling the geometric material
and thickness imperfections in x, y directions, since no experimen-
tal data of initial imperfections is available for this specific type of
structure. This parametric study is performed for the cylindrical
panel possessing the mean values of the design parameters, i.e., an-
gle 0 = 6° and thickness t; =4 mm. Two dimensional (2D) stochas-
tic imperfections were considered in order to investigate their
effect on the buckling load using an alternative version of Eq. (1)

r(x.y) =ro(1+fi(x.y)) (6)

where 1 is the radius of the perfect geometry. For all cases, the
standard deviation oy of the stochastic field f1(x,y) of the initial geo-
metric imperfections is assumed to be gf=0.0001 ro. This value for
the standard deviation corresponds to a deviation of the nodal coor-
dinates with respect to the perfect geometry of the order of 5% of
the shell thickness. For the material and thickness imperfections
the standard deviation was assumed to be g7=0.1 Eg and o7=0.1
to, respectively.

Fig. 3 presents the mean value and coefficient of variation (COV)
of the buckling load considering initial geometric imperfections as
a standalone case, as a function of the correlation length parameter
b = by = b, used for the definition of the power spectrum of Eq. (4).

160 T -8
= 156
E3 16

z
% 152 =
2 43
§ 148 o
]

2 144 | r2
= Mean Value

——COV (%)
140 ; : . 0
50 100 250 500

Corelation length parameter b

Fig. 3. Mean value and coefficient of variation COV (%) of the ultimate load P, as a
function of the correlation length parameter b for 2D variation of initial geometric
imperfections.
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Z (mm)

Fig. 4. One sample function of 2D random initial geometric imperfections for
07=0.10 and b =250 (t =6 mm, 0 = 6°).
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Corelation length parameter b

Fig. 5. Mean value and coefficient of variation COV (%) of the ultimate load P, as a
function of the correlation length parameter b for 2D variation of material and
thickness imperfections, combined with geometric imperfections with b = 250.

It can be observed from Fig. 3 that the lowest mean value and the
largest COV correspond to the same correlation length parameter
b =250. The mean value and the COV of P, for this value of b is
found to be 147 N and 7.6%, respectively. Using now this value of
b =250 as fixed, the previous parametric study is repeated consid-
ering the combined effect of geometric material and thickness
imperfections. In Fig. 4 one sample function, generated using the
aforementioned correlation parameter b = 250, is presented.

Fig. 5 presents the mean value and coefficient of variation of the
buckling loads as a function of the correlation length parameter b
used for the modeling of the modulus of elasticity and thickness
according to Eqgs. (2) and (3). From this figure it can be observed
that the lowest mean value and the largest COV correspond to
the same correlation length parameter b =500. The mean value
and the COV of P, for this value of b is found to be 145N and
35.3%, respectively. From the comparison of Figs. 3 and 5 it can
be seen that the incorporation of the material and thickness imper-
fections to the model of the initial geometric imperfections results
in a significant increase of the COV, while the mean value of P, re-
mains almost constant. Therefore, the “worst” imperfection mode
for this case corresponds to a correlation length parameter
b;=b,=250 for the initial geometric imperfections and
b1 = b, =500 values for the random material and thickness imper-
fections. These values were assumed fixed for the subsequent opti-
mization procedure.

5.2. Solving the optimization problem

In the second part of this study, the RDO, RRDO and VRDO prob-
lems are considered and the efficiency of the NSES-II(x + 7) and

SPES 2(u + 1) algorithms is studied. All three formulations are de-
fined as a two-objective optimization problem where the material
volume and the coefficient of variation of the buckling load are to
be minimized, while the critical correlation lengths derived from
the previously described parametric study. The formulation of
the RDO problem is defined as

Minge  VOL(S, p(x.y)). COVi(s, n(x,y))]"

s=1[0,to"
. NN . .
subject to bounds of the design variables
2mm < tp < 6mm

Ovon mises < 0y/1.10,0, = 4.2 N/mm? 7)

where the material volume (VOL) of the structure and the coeffi-
cient of variation of the buckling load (COVP) constitute the two
objectives of the problem. Using the COVp, a combined criterion is
applied taking into account simultaneously the effect of both the
mean and the standard deviation of the shell buckling load. Essen-
tially we are seeking for a maximum mean buckling load with a
simultaneous minimum standard deviation. The von Mises yield
criterion is employed in order to assess deterministically the value
of an equivalent stress that will be compared with the yield stress
o,. Therefore the following expression has to be satisfied for each
triangular shell element

Ovon Mises = \/O-% + O-% - 30162 + 3T2 < O-y/VMo (8)

where 74, 05, T are the stresses in the middle surface of the triangle
and yyo is a safety factor equal to 1.10, according to Eurocode 3 [18].
The design loads considered for this check are the shell self-weight,
10 N/m? permanent load and 15 N/m? live load.

Considering now the RRDO problem, this defined as follows:

minge  [VOL(s, p(x,y)), COVp(s, n(x,y))]"
s=1[0,t]"
. 4 <08 . .
subject to bounds of the design variables
m < tp < 6mm

Oyon Mises < O'y/].l0,0'y:4.2 N/mmz
p(P, <50N) < 1.0% 9)

where the reliability constraint imposed is defined as the probabil-
ity that the buckling load is less than 50 N not to be greater than
1.0%.

31.0

NSES-II
30.0

% ASPES 2
29.0 S
28.0 %

S
>
O 270 %“
26.0 YN
25.0
LN
24.0

800 900 1000 1100 1200 1300 1400 1500 1600
Volume (cm?3)

Fig. 6. Comparison of Pareto front curves obtained after 15 generations with the
NSES-II(50 + 50) and SPES 2(50 + 50) optimization schemes.
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Finally, the VRDO formulation is defined as follows:

Mminer  [VOL(S, p(x.))), COVp(s, p(x.y))]"
s=[0,t0]"
subject to 4 <0<8 bounds of the design variables
2mm < tp < 6mm
OvonMises < 0y/1.10, @, = 4.2 N/mm?
p(ua >4mmjp_zy) < 5.0%
p(ua >6mmjp_ygy) < 3.0%
p(P, <50N) < 1.0% (10)
32.0
31.0 RDO
RRDO
30.0 VRDO
~ 290
s
S 280
o
O 27.0
26.0
25.0
24.0

800 900 1000 1100 1200 1300 1400 1500 1600
Volume (cm?3)

Fig. 7. Pareto front curves for the RDO, RRDO and VRDO formulations, all obtained
after 15 generations with the SPES 2(50 + 50) optimization scheme.

Table 1
Formulations of the optimization problem - a comparative study.
Design Design (angle 0, mean thickness t) Volume (cm?) COV (%)
D1 4.00°, 3.32 mm 857 32.43
D2 4.09°, 4.04 mm 1043 30.98
D3 4.00°, 5.19 mm 1342 27.23
D4 4.16°, 6.00 mm 1549 25.18
mean = 56.01 N
450 7 StDev = 18.17 N
400 M cov = 32.43 %
350 1
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Q
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3
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where the two additional vulnerability constraints are defined with
reference to a performance variable assumed to be the vertical dis-
placement of node A. These additional probabilistic constraints en-
force the condition that the probability that u, is greater than 4 and
6 mm, under the condition that the vertical load P is equal to 30 and
40 N, is less than the target levels of 5% and 3%, respectively. These
additional probabilistic constraints are assumed to correspond to
prior-to-failure acceptable serviceability levels of the shell struc-
ture. In Egs. (7), (9) and (10), p(x,y) denotes the vector of the ran-
dom fields involved in the problem given by

n(x.y) = [fi (%) f(x,) f3(x,9)]" (11)

where fi(xy), f2(x.y), fs(x,y) are the random fields of Egs. (1)-(3),
respectively. In all cases considered, the probabilities of exceedance
are estimated using a brute-force MCS with Nsayp = 1000.

In order to define the optimization scheme that combines com-
putational efficiency and robustness the Pareto fronts after 15 gen-
erations obtained with NSES-II(50+50) and SPES 2(50 +50)
optimization schemes are compared (see Fig. 6) corresponding to
the solution of the RRDO optimization problem of Eq. (9). It can
be seen that for the problem at hand the optimization scheme SPES
2(50 + 50) outperforms NSES-II(50 + 50) obtaining a better quality
Pareto front. Thus, for all test cases examined, the SPES 2(50 + 50)
optimization scheme is employed. The corresponding three Pareto
front curves obtained with the SPES 2(50+50) optimization
scheme for the three formulations (RDO, RRDO and VRDO) are
shown in Fig. 7.

In order to examine the variability of the designs composing the
three Pareto front curves obtained from the formulations of Egs.
(7), (9) and (10), four designs are selected from the three front
curves, as shown in Fig. 7, in order to be compared with respect
to the mean value and COV of the buckling load along with proba-
bility of violation. Three of these designs, i.e., designs D1, D2 and
D3, correspond to the one extreme end of the three Pareto front
curves where the material volume is the dominant criterion, while
design D4 corresponds to the optimum design obtained if the coef-
ficient of variation of the buckling load is the dominant criterion.
The four designs, along with the material volume, the coefficient
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Fig. 8. Histograms of the buckling load factor P, for the four designs (a) D1, (b) D2, (c) D3 and (d) D4 with the combined geometrical, material and thickness imperfections.
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Fig. 9. Fragility curves for the (a) first, (b) second and (c) buckling load limit states.

of variation of the buckling load are given in Table 1. As it can be
seen designs D1 and D4 vary significantly, the material volume
of D1 is half of that of D4 while the corresponding coefficient of
variation of the buckling load is 23% larger.

Fig. 8 presents the histograms of the buckling loads for all afore-
mentioned designs. As it can be seen the mean value of the buck-
ling load and the coefficient of variation varies significantly. The
mean value varies from 56.01 N (D1) to 251.97 N (D4), while the
coefficient of variation from 32.4% (D1) to 25.2% (D4). Furthermore,
the highest buckling load encountered for the D1 is of the order of
150 N (with frequency of occurrence 1 of 1000) while the lowest is
of the order of 25 N (with frequency of occurrence 22 of 1000). On
the other hand, the highest buckling load encountered for the D4 is
of the order of 475 N (with frequency of occurrence 3 of 1000)
while the lowest is of the order of 100 N (with frequency of occur-
rence 2 of 1000). The fragility curves that correspond to the three
vulnerability limit states were computed for the four designs and
depicted in Fig. 9a-c. As can be seen from these figures, the
performance of the four designs D1-D4 vary significantly with ref-
erence to the three limit state. From Fig. 9a it can be seen that only
designs D3 and D4 satisfy the first vulnerability constraint
P(ua>4 mmyp-30n)<5% since for design D2 this probability is
equal to 18% while for design D1 it exceeds 70%. In addition, de-
signs D1 and D2 also violate the second vulnerability constraint
P(us > 6 mmyp - 40 n) < 3%, as it can be seen from Fig. 9b, since for
design D2 this probability is equal to 9% while for design D1 it ex-
ceeds 45%. Furthermore, design D4 shows the best performance in
terms of probability of exceedance of the buckling limit state. As it
can be seen from Fig. 9c the 50% probability of exceedance of the
buckling limit state is obtained for much different load levels. In
particular 55 N for D1, 99 N for D2, 177 N for D3, and 251 N for D4.

Fig. 10 presents the non-linear elastoplastic central load-dis-
placement curves of the perfect structures (no imperfections are
incorporated in the non-linear analysis) corresponding to the
aforementioned four selected designs while Fig. 11 presents a com-
parison of the elastic and the elastoplastic load-displacement
paths for the two extreme designs D1 and D4. From these figures,
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Fig. 10. Central load-displacement curves of the perfect shells corresponding to the
D1, D2, D3 and D4 selected designs.
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Fig. 11. Comparison of elastic and elastoplastic load-displacement paths for the
two extreme designs D1 and D4.

it can be seen that design D1, which corresponds to the optimum
with respect to the material volume for the RDO formulation,
exhibits purely elastic behaviour up to the limit load. This type
of shell appears to be more imperfection sensitive (COV =32%),
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Fig. 12. Deformation patterns at buckling at a cross-section passing through the
load point A of the shell (see Fig. 3), corresponding to the D1, D2, D3 and D4 selected
designs.

compared to the sensitivity of shell D4 (COV = 25%). On the other
hand, D4 shell-type exhibits a more pronounced geometrically
non-linear behaviour up to the limit point. Finally, Fig. 12 presents
the corresponding deformation patterns of the aforementioned se-
lected designs at buckling, at a cross-section passing through the
load point A of the shell (see Fig. 1).

6. Conclusions

A design procedure is proposed in the present work that ad-
dresses a vulnerability-based robust design optimization (VRDO)
of isotropic shell structures possessing uncertain initial geometric
as well as material and thickness properties that are modeled as
random fields. Two are the main findings of this study:

Incorporating the vulnerability constraints in the context of the
optimization problem resulted in significantly different designs
compared to the designs obtained with the conventional RDO
and RRDO formulations. Furthermore, in all cases examined, the
extreme designs composing the multi-objective fronts that fulfill
the criteria of the Pareto optimality also differ significantly.

Strength Pareto evolution strategies 2 algorithms are imple-
mented for the solution of the multi-objective optimization algo-
rithm. For the specific problem examined, the improved
efficiency of the SPES 2 over the NSES-II algorithm is demonstrated.
It seems that for the test cases considered the SPES 2 outperforms
the NSES-II since in 15 generations with a population size of 50
members for both parents and offsprings a better quality Pareto
front curve is obtained.
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