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In this paper, the effect of material and thickness spatial variation on the buckling load of isotropic shells
with random initial geometric imperfections is investigated. To this purpose, a random spatial variability
of the elastic modulus as well as of the thickness of the shell is introduced in addition to the random ini-
tial geometric deviations of the shell structure from its perfect geometry. The main novelty of this paper
compared to previous works is that a non-Gaussian assumption is made for the distribution of the two
aforementioned uncertain parameters i.e. the modulus of elasticity and the shell thickness which are
described by two-dimensional uni-variate (2D-1V) homogeneous non-Gaussian stochastic fields. The ini-
tial geometric imperfections are described as a 2D-1V Gaussian non-homogeneous stochastic field with
properties derived from corresponding experimental measurements. Numerical examples are presented
focusing on the influence of the non-Gaussian assumption on the variability of the buckling load, which is
calculated by means of the Monte Carlo Simulation method. It is shown that the choice of the marginal
probability distribution for the description of the material and thickness variability is crucial since it
affects significantly the statistics of the buckling load of imperfection sensitive shell-type structures.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis and design of imperfection sensitive shells had
always an appeal to structural engineers and constitute the subject
of extensive research. The main issue when dealing with this prob-
lem is the big discrepancy between theory and experiment as well
as the large scatter in the measured buckling loads. Both determin-
istic and probabilistic approaches have been used to address the
aforementioned issues. It was soon realized that the problem could
only be addressed through modeling taking into account the ran-
domness of the imperfect geometries (Chryssanthopoulos and Pog-
gi, 1995; Deml and Wunderlich, 1997; Schenk and Schuëller,
2003). Additional research revealed that, other sources of imper-
fections such as the variability of thickness, material properties,
boundary conditions and misalignment of loading are also respon-
sible for the reduction and scatter of the buckling load of shell
structures (Palassopoulos, 1993; Morris, 1996; Elishakoff, 2000;
Elishakoff et al., 2001; Arbocz and Starnes, 2002; Tsouvalis et al.,
2003; Ikeda and Murota, 2008).

Even though the reasons of the discrepancy and the scatter of
the buckling loads were clearly understood and demonstrated
many years ago, it is only the last five to ten years that researchers
ll rights reserved.
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focused on the combined effect of additional sources of imperfec-
tions with the initial geometric ones. It is nowadays generally rec-
ognized that an accurate prediction of the buckling behavior of
shells requires a realistic description of all uncertainties involved
in the problem and that such task is realizable only in the frame-
work of a robust Stochastic Finite Element Method (SFEM) formu-
lation that can efficiently and accurately handle geometric as well
as physical nonlinearities of shell-type structures (Choi and Noh,
2000; Graham and Siragy, 2001; Argyris et al., 2002b; Papadopou-
los and Papadrakakis, 2004, 2005; Stefanou and Papadrakakis,
2004; Lagaros and Papadopoulos, 2006; Noh, 2006; Onkar et al.,
2006; Papadopoulos and Iglesis, 2007). The analysis of such struc-
tures has been carried out in a probabilistic context through the
application of the Finite Element method in conjunction with the
Monte Carlo Simulation, incorporating realistic descriptions of
the uncertainties involved in geometric (Bielewicz and Górski,
2002; Schenk and Schuëller, 2003), material and thickness imper-
fections (Papadopoulos and Papadrakakis, 2004, 2005), as well as
boundary conditions (Papadopoulos and Iglesis, 2007; Schenk
and Schuëller, 2007). All these uncertainties were modeled as sto-
chastic fields using either the Karhunen–Loève expansion or the
spectral representation method.

In the present paper, the effect of combined geometric, bound-
ary, material and thickness variations on the buckling load of a thin
isotropic axially compressed imperfect cylinder is re-evaluated
with respect to previous works, taking into account additional
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sensitivities due to various non-Gaussian assumptions. To this pur-
pose, a non-Gaussian spatial variability of the elastic modulus as
well as of the thickness of the shell is introduced in addition to
the random initial (out-of-plane) geometric and boundary (in-
plane edge) imperfections. Following an approach similar to that
used in Papadopoulos and Papadrakakis (2005), out-of-plane initial
geometric imperfections are modeled as a 2D-1V non-homoge-
neous Gaussian stochastic field, with properties derived from cor-
responding experimental measurements (Arbocz and Abramovich,
1979). The uncertain boundary in-plane imperfections are taken
into account through modeling a stochastic non-uniform axial
loading, described by a 1D-1V homogeneous Gaussian stochastic
field and applied as incremental load in the nonlinear analysis.
As shown in detail in Papadopoulos and Iglesis (2007), the afore-
mentioned approach is essentially equivalent to modeling the
boundary imperfections in the sense that both of them result in a
non-uniform axial load pattern acting on the cylinders’ edges
introducing this way an in-plane edge imperfection pattern (Arbo-
cz, 2000; Schenk and Schuëller, 2007).

The modulus of elasticity and the shell thickness are described
by 2D-1V uncorrelated homogeneous non-Gaussian stochastic
fields using the spectral representation method in conjunction
with the translation field theory (Shinozuka and Deodatis, 1996;
Grigoriu, 1984, 1998). Translation-based approaches (Deodatis
and Micaletti, 2001; Lagaros et al., 2005) that make use of an ex-
tended empirical non-Gaussian to non-Gaussian mapping for the
generation of a non-Gaussian field, having the prescribed charac-
teristics (target marginal distribution and spectral density func-
tion), are also evaluated. The numerical example presented
herewith focuses on the relative influence of the non-Gaussian
assumption (a lognormal and three different beta distributions
are used) on the variability of the buckling load, which is calculated
by means of the Monte Carlo Simulation (MCS) method. For the
determination of the limit load of the shell, a stochastic formula-
tion of the geometrically nonlinear elastoplastic facet triangular
shell element TRIC based on the midpoint method, is implemented
(Argyris et al., 1998, 2002a). Results are presented for an axially
compressed thin-walled cylinder. These results are compared to
corresponding experimental measurements and it is shown that
the choice of the marginal probability distribution for the descrip-
tion of the material and thickness variability is crucial since it
affects significantly the statistics of the buckling load of imperfec-
tion sensitive shell-type structures.
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Fig. 1. Geometry and material data of the axially compressed cylinder.
2. Finite element formulation – the TRIC shell element

The finite element simulation is performed using the nonlin-
ear multilayer triangular shell element TRIC, which is based on
the natural mode method. The TRIC shear-deformable facet shell
element is a reliable and cost-effective element suitable for lin-
ear and nonlinear analysis of thin and moderately thick isotropic
as well as composite plate and shell structures. The element has
18 degrees of freedom (6 per node) and hence 12 natural strain-
ing modes. Three natural axial strains and natural transverse
shear strains are measured parallel to the edges of the triangle.
The natural stiffness matrix is derived from the statement of var-
iation of the strain energy with respect to the natural coordi-
nates. The geometric stiffness is based on large deflections but
small strains. In the case of material nonlinearity, the elastoplas-
tic constitutive matrix is established by obtaining the relation
between the natural strain and stress increments for each layer
within a given load step. The natural elastoplastic stiffness of
the element is obtained by summing up the natural elastoplastic
stiffnesses of the element layers. A detailed description of the
linear elastic, geometric and elastoplastic stiffness matrix of
the TRIC shell element can be found in Argyris et al. (2002b,
1998, 2002a), respectively.

3. Out-of-plane initial geometric imperfections

For the axially compressed cylinder of Fig. 1, out-of-plane initial
geometric imperfections are modeled as a 2D non-homogeneous
Gaussian stochastic field. The mean material and geometric prop-
erties of the perfect cylinder are shown in Fig. 1. Following a
procedure similar to that used in Papadopoulos and Papadrakakis
(2005), the mean values as well as the evolutionary power spectra
of the aforementioned non-homogeneous fields are derived from
corresponding experimental measurements.

The imperfect geometry of the shell is represented by the spa-
tial variation of the radius of the structure as follows:

rðx; yÞ ¼ Rþ a0ðx; yÞ þ g1ðx; yÞ ð1Þ

where r(x,y) is the varying initial radius at each point of the struc-
ture, R is the radius of the perfect cylinder, a0(x,y) is the mean func-
tion of the imperfections with respect to the perfect geometry of the
shell and g1(x,y) is a zero-mean non-homogeneous Gaussian sto-
chastic field.

The mean function a0(x,y) as well as the properties of stochastic
field g1(x,y) are derived from a statistical analysis of experimentally
measured imperfections on seven copper electroplated cylindrical
shells, named as A-shells, contained in a data bank of initial imper-
fections (Arbocz and Abramovich, 1979). The geometric and mate-
rial properties of the perfect configurations of these shells as well
as the corresponding experimental buckling loads are presented
in Table 1. More details on the statistical description of the
out-of plane initial geometric imperfections are provided in
Appendix A.

4. Stochastic stiffness matrix

The modulus of elasticity and the thickness of the shell are also
considered in the present study as ‘‘imperfections”, due to their
spatial variability. These parameters are described by two uncorre-
lated 2D-1V homogeneous non-Gaussian stochastic fields:

Eðx; yÞ ¼ E0½1þ f1ðx; yÞ� ð2Þ
tðx; yÞ ¼ t0½1þ f2ðx; yÞ� ð3Þ

where E0 is the mean value of the elastic modulus, t0 is the mean
thickness of the structure and f1(x,y), f2(x,y) are two zero-mean
non-Gaussian homogeneous stochastic fields corresponding to the



Table 1
Geometry, material properties and experimental buckling loads of A-shells.

Shell R (mm) t (mm) L (mm) E (N/mm2) P (N)

A-7 101.6 0.1140 203.20 104110 3036.4
A-8 101.6 0.1179 203.20 104800 3673.8
A-9 101.6 0.1153 203.20 101350 3724.8
A-10 101.6 0.1204 203.20 102730 3196.9
A-12 101.6 0.1204 209.55 104800 3853.0
A-13 101.6 0.1128 196.85 104110 3108.8
A-14 101.6 0.1110 196.85 108940 3442.9
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variability of the modulus of elasticity and the thickness of the shell,
respectively. The stochastic stiffness matrix of the shell element is
derived using the midpoint method i.e. one integration point at
the centroid of each finite element is used for the computation of
the stiffness matrix.

5. Simulation of non-Gaussian material and thickness
imperfections

As mentioned in the previous section, a non-Gaussian assump-
tion is made for the distribution of material and thickness imper-
fections. The problem of simulating non-Gaussian stochastic
processes and fields has recently received considerable attention
in the field of stochastic mechanics. This is due to the fact that sev-
eral quantities arising in practical engineering problems (e.g. mate-
rial and geometric properties of structural systems, soil properties,
wind loads, waves) are found to exhibit non-Gaussian probabilistic
characteristics.

Since all the joint multi-dimensional density functions are
needed to fully characterize a non-Gaussian stochastic field, a
number of studies have been focused on producing a more realistic
definition of a non-Gaussian sample function from a simple trans-
formation of some underlying Gaussian field with known second-
order statistics. Thus, if g(x) is a homogeneous zero-mean Gaussian
field with unit variance and spectral density function (SDF) Sgg(j)
(or equivalently autocorrelation function Rgg(n)), a homogeneous
non-Gaussian stochastic field f(x) with power spectrum ST

ff ðjÞ can
be defined as:

f ðxÞ ¼ F�1 �U½gðxÞ� ð4Þ

where U is the standard Gaussian cumulative distribution function
and F is the non-Gaussian marginal cumulative distribution func-
tion of f(x). The transform F�1 �U is a memory-less translation since
the value of f(x) at an arbitrary point x depends on the value of g(x)
at the same point only and the resulting non-Gaussian field is called
a translation field (Grigoriu, 1984, 1998).

The main shortcoming of translation fields is that, although the
mapped sample functions of Eq. (4) will have the prescribed target
marginal probability distribution F, their SDF will not be identical
to ST

ff ðjÞ. Another important issue, pointed out by Grigoriu
(1998), is that the choice of the marginal distribution of f(x) im-
poses constraints to its correlation structure. In other words, F
and ST

ff ðjÞ (or RT
ff ðnÞÞ have to satisfy a specific compatibility condi-

tion derived directly from the definition of the autocorrelation
function of the translation field:

RT
ff ðnÞ ¼

Z 1

�1

Z 1

�1
F�1½Uðg1Þ�F�1½Uðg2Þ� � / g1; g2; RggðnÞ

� �
dg1dg2 ð5Þ

where /[g1,g2;Rgg(n)] denotes the joint density of {g1,g2} and
g1 = g(x), g2 = g(x + n). If these two quantities are proven to be
incompatible through Eq. (5) i.e. if RT

ff ðnÞ has certain values lying
outside a range of admissible values and/or the solution Rgg(n) is
not positive definite and therefore not admissible as an autocorre-
lation function, there is no translation field with the prescribed
characteristics. In this case, one has to resort to translation fields
that match the target marginal distribution and/or SDF approxi-
mately. At this point, it must be noted that translation fields have
a number of useful properties such as the analytical calculation of
crossing rates and extreme value distributions.

The two aforementioned problems arising in the context of
translation fields are treated in (Deodatis and Micaletti, 2001;
Lagaros et al., 2005) by using (i) an iterative procedure involving
the repeated updates of the SDF of the underlying Gaussian sto-
chastic field g(x) and, (ii) an extended empirical non-Gaussian to
non-Gaussian mapping leading to the generation of a non-Gauss-
ian field f(x) with the prescribed F and ST

ff ðjÞ:

f ðxÞ ¼ F�1 � F�½gðxÞ� ð6Þ

where F* is the empirical marginal probability distribution of g(x)
updated at each iteration.

The iterative updating procedure is defined in such a way that
when the final realization of g(x) is generated, according to the up-
dated Sgg(j) and then mapped to f(x) via Eq. (6), the resulting non-
Gaussian sample function will have the prescribed marginal prob-
ability distribution as well as SDF. Sample functions of g(x) are gen-
erated using the spectral representation method. The extended
empirical non-Gaussian to non-Gaussian mapping of Eq. (6) is used
in order to overcome the inherent limitations associated with the
translation field concept, namely the possible incompatibility be-
tween the marginal distribution and the correlation structure of
a translation field. Since experimental data can lead to a theoreti-
cally incompatible pair of F and ST

ff ðjÞ, it is obvious that an algo-
rithm covering a wider range of non-Gaussian fields is of great
practical interest.

In the present work, Eq. (4) is directly used for the generation of
non-Gaussian translation sample functions since there are no
experimental data imposing a specific pair of F � ST

ff ðjÞ and a trans-
lation field is preferable to use. The SDF Sgg(j) of the underlying
Gaussian field used in the numerical examples (Section 7) is as-
sumed to correspond to an autocorrelation function of square
exponential type and is given by:

Sggðj1;j2Þ ¼ r2
g

b1b2

4p
exp �1

4
ðb2

1j
2
1 þ b2

2j
2
2Þ

� �
ð7Þ

where rg denotes the standard deviation of the stochastic field and
b1, b2 denote the parameters that influence the shape of the spec-
trum which are proportional to the correlation lengths of the sto-
chastic field along the x and y axes, respectively. The SDF of the
translation field obtained from Eq. (4) is different from Sgg(j) as it
is shown in the section of numerical examples.

Using the procedure described in this section, a large number
NSAMP of non-Gaussian sample functions are produced, leading to
the generation of a set of stochastic stiffness matrices. The associ-
ated structural problem is solved NSAMP times and the response
variability can finally be calculated by obtaining the response sta-
tistics of the NSAMP simulations.
6. Non-uniformity of axial loading

A simple and realistic approach is used for the treatment of
edge imperfections by assuming that these are produced by a
non-uniform random axial load distribution that can be modeled
as a 1D homogeneous stochastic field assigning an equivalent con-
centrated force at each node of the discretized cylinder’s edge, as
follows:

PðxÞ ¼ P0½1þ g2ðxÞ� ð8Þ

where P0 is the fixed (mean) value of the vertical applied load incre-
ment and g2(x) is a zero-mean Gaussian homogeneous stochastic



Table 2
Range of definition and shape parameters of lognormal and beta distributions.

Lower bound Upper bound Shape parameters

Lognormal �1 +1 – –
Beta – Case 1 �0.5 0.5 p = 12 q = 12
U-beta – Case 2 �0.16 0.16 p = 0.8 q = 0.8
L-beta – Case 3 �0.13 0.26 p = 0.8 q = 1.6
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Fig. 3. Ensemble SDF of the lognormal translation field (1000 simulations) and
square exponential SDF of the underlying Gaussian field in one dimension for
r = 10%, b = 2000 mm.

Fig. 4. (a) Mean value and (b) coefficient of variation of the computed buckling
loads as a function of the marginal pdf used for the description of the material and
thickness imperfections.
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field modeled with a two-sided SDF corresponding to an autocorre-
lation function of square exponential type:

SggðjÞ ¼
r2

g

4p bg exp �1
4
ðb2

gj
2Þ

� �
ð9Þ

Thus, an edge deformation pattern is obtained at the beginning of
the incremental nonlinear analysis procedure, which is assumed
to correspond to the actual edge imperfections’ pattern. Some re-
marks on the validity of the procedure for modeling the uncertain
boundary conditions can be found in Appendix B.

7. Numerical examples

A numerical implementation of the above described methodol-
ogy is presented for the axially compressed cylinder of Fig. 1. The
boundary conditions are specified as follows: the base edge nodes
of the cylinder are fixed against all translations, fixed against rota-
tions around the Y axis and free against rotations around the X and
Z axis. The top edge nodes of the cylinder are fixed against X and Z
translations, fixed against rotations around the Y axis, free against
translations in the Y axis and free against rotations around axis X
and Z.

Mesh convergence studies were performed by Schenk and
Schuëller (2003), Papadopoulos and Papadrakakis (2005) in order
to determine an optimum FE mesh size satisfying the following
two requirements: (i) accurate prediction of the buckling load of
the cylinder and, (ii) accurate representation of the gradients of
the stochastic initial imperfection field. In these convergence stud-
ies, it has been observed that a coarse mesh of 51 � 101 produces a
very small (�1%) relative discretization error of the buckling loads
with respect to buckling loads calculated with more refined
meshes. In addition, this mesh size provides a sufficiently accurate
representation of the gradients of the imperfect shape of the cylin-
der since it is a fraction of the correlation lengths of the stochastic
fields used for both axial and circumferential directions (Li and Der
Kiureghian, 1992). For comparison purposes, all loads are normal-
ized with respect to the buckling load of the perfect cylinder calcu-
lated using the mesh of 51 � 101, which is found to be
PðperfectÞ

u = 5350 N.

7.1. Effect of random geometric, boundary, material and thickness
imperfections considered as stand-alone cases

As a first step of the numerical investigation, each source of
imperfections is introduced separately in the axially compressed
cylinder in order to examine the relative effect of randomness in
the different quantities considered as stand-alone cases. Figs. 2(a)
and (b) depict the results for the mean value and the coefficient
of variation (Cov) of the computed buckling loads as a function of
the imperfection type, for two different correlation length parame-
ters b1 = b2 = 50 mm and b1 = b2 = 500 mm, respectively. It can be
seen that the largest Cov(�22%) of the buckling load Pu is obtained
Fig. 2. Mean value and coefficient of variation (Cov) of the normalized buckling load Pu in the case of uncertain Young modulus E, thickness t and non-uniform axial loading P
for correlation length parameters (a) b = 50 mm and (b) b = 500 mm.
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in the case of thickness variation (rg = 10%) and b = 500 mm. In this
case, a large magnification of uncertainty occurs, as the response
Cov value is about two times greater than that of the input Cov. It
thus seems that thickness imperfections are predominant but the
Fig. 5. Combined geometric, boundary, material and thickness imperfections: histogram
L-shaped beta description of the material and thickness imperfections.
other quantities have also a significant effect on the buckling load
variability: a Young modulus variation with rg = 10% leads to Cov(-
Pu) � 11% while the boundary imperfections with rg = 10% lead to
Cov(Pu) � 6.5%. Concerning the random out-of-plane geometric
of critical load factors (a) Gaussian, (b) lognormal, (c) beta, (d) U-shaped beta and (e)
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imperfections, the corresponding Cov was computed in Papadopo-
ulos and Papadrakakis (2005) at 7.5% with a mean value of the nor-
malized buckling load equal to 0.90. The above results have been
obtained using Gaussian stochastic fields for the description of all
the involved uncertain quantities. The corresponding calculations
using a non-Gaussian assumption for the elastic modulus and thick-
ness (with the same standard deviation rf = 10%) resulted in practi-
cally the same values for the mean and Cov of the computed
buckling loads with those presented in Fig. 2. The details of the var-
ious non-Gaussian distributions used are shown in Table 2. It is
worth noting that although the largest Cov values are obtained
for correlation length parameters b1 = b2 = 500 mm, the values
b1 = b2 = 50 mm are responsible for the minimum mean values of
the buckling load as shown in Fig. 2(a). For this reason, these values
are selected for the description of the stochastic fields modeling the
Young modulus and thickness in all subsequent applications since it
is more likely to lead to ‘‘worst case” scenarios with respect to low-
est buckling loads.

7.2. Combined geometric, boundary, material and thickness
imperfections

The material and thickness imperfections as well as the initial
out-of-plane geometric imperfections and imperfections of the
boundary conditions are now simultaneously introduced to the
model. Based on the results of previous work (Papadopoulos and
Iglesis, 2007), the correlation length parameter bg = 100 mm with
rg = 0.05 is selected for the description of the stochastic field
g2(x) used to model the load distribution on the upper edge of
the cylinder (boundary imperfections) while, as described in Sec-
tion 3, initial out-of-plane imperfections are modeled according
to Eq. (1) as a non-homogeneous 2D stochastic field with statistical
properties that are derived from corresponding experimental
measurements.

As mentioned previously, the novelty of the present work com-
pared to (Papadopoulos and Papadrakakis, 2004, 2005), is that a
non-Gaussian assumption is made for the distribution of the Young
modulus and shell thickness. A lognormal and three different cases
of beta distribution with zero mean and rf = 0.10 are assumed to
describe the variation of the two uncertain properties. The param-
eters of the aforementioned distributions are presented in Table 2.
Sample functions of the corresponding stochastic fields are gener-
ated using Eqs. (2)–(4). A 1D plot of the ensemble SDF of the log-
normal translation field (obtained from 1000 simulations) is
given in Fig. 3 together with the square exponential SDF of the
underlying Gaussian field. The differences between the two spectra
are almost negligible in this case. Monte Carlo Simulation (MCS)
with sample size NSAMP = 100 is used for the calculation of the
buckling load variability. As explained in the previous sub-section,
the correlation length parameters b1 = b2 = 50 mm are selected for
Fig. 6. Experimental results from se
the description of the modulus of elasticity and thickness in all
cases examined.

Figs. 4(a) and (b) present the mean value and the coefficient of
variation (Cov) of the computed buckling loads, respectively, for
each one of the examined marginal probability density functions
(pdf) as well as the corresponding experimental results. From these
figures, it can be observed that the choice of pdf plays a significant
role on first and second order properties of the buckling load distri-
bution. The largest Cov(=0.16) of the computed buckling loads cor-
responds to a Gaussian marginal pdf (mean Pu = 3100 N), while the
lowest Cov(=0.06) corresponds to an L-shaped beta distribution
(mean Pu = 3800 N). All other pdfs produce intermediate results
that seem to be in better agreement with the experiments. It is
worth noting that the Cov in all cases is smaller than that obtained
when considering a stochastic variation of the shell thickness only.

Figs. 5 and 6 present the histograms of the computed and exper-
imental buckling loads, respectively. From these figures, it can also
be observed that the choice of pdf significantly affects the shape as
well as the extreme values of the buckling load distribution. It can
be seen that the lognormal and beta non-Gaussian assumption
produce estimates of the scatter of the buckling load closer to
the experimental measurements in comparison to the histograms
obtained with the other pdf cases (Gaussian, U- and L-shaped
beta). This is also illustrated with the quantile–quantile plots of
Fig. 7. Although the number of experimental measurements is rel-
atively small to reach safe conclusions regarding the shape of the
distributions, it can be seen that the tri-modal shape of buckling
loads observed in the experiments is represented in the corre-
sponding numerical simulations. The minimum values of the low-
est buckling load are provided by the Gaussian and beta pdfs and
represent only the 28% and 35% of the buckling load of the perfect
shell, respectively.

8. Conclusions

The effect of non-Gaussian material and thickness variability on
the buckling load of isotropic cylindrical shells with random initial
geometric and boundary imperfections has been investigated. The
modulus of elasticity and the shell thickness were described by
uncorrelated homogeneous non-Gaussian translation fields. A de-
tailed analysis with respect to various non-Gaussian marginal pdfs
of the material and thickness imperfections has been conducted.
As a result of this analysis, it has been shown that the choice of the
marginal pdf of the two uncertain parameters is crucial since it af-
fects significantly the statistics of the buckling load. The largest
Cov(=0.16) of the computed buckling loads corresponded to a Gauss-
ian marginal pdf while the lowest Cov(=0.06) corresponded to an L-
shaped beta distribution. All other pdfs produced intermediate re-
sults that seemed to be in better agreement with the experiments.
It is worth noting that the Cov in all cases is smaller than that ob-
ven specimens in Koiter (1963).
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Fig. 7. Quantile–quantile plots of the experimental and computed buckling loads (a) Gaussian, (b) lognormal, (c) beta, (d) U-shaped beta and (e) L-shaped beta description of
the material and thickness imperfections.
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tained when considering a stochastic variation of the shell thickness
only. A large magnification of uncertainty has been observed in the
Gaussian case where the Cov of the ultimate load is 1.6 times higher
than the Cov of material and thickness imperfections. From the his-
tograms of the computed and experimental buckling loads, it has
also been observed that the choice of pdf significantly affects the
shape as well as the extreme values of the buckling load distribution.
The lognormal and beta non-Gaussian assumptions led to estimates
of the scatter of the buckling load closer to the experimental mea-
surements in comparison to the results obtained with the other
pdf cases (Gaussian, U- and L-shaped beta). Although the number
of experimental measurements is relatively small to reach safe
conclusions regarding the shape of the distributions, the tri-modal
shape of buckling loads observed in the experiments has been repro-
duced by the corresponding numerical simulations. Finally, the low-
est buckling load has been found to represent only the 28–60% of the
buckling load of the perfect shell for the various cases of marginal
pdfs considered.

Acknowledgements

This work has been partially supported by the research project
‘‘Konstantinos Karatheodori” of the National Technical University
of Athens. This support is gratefully acknowledged.



V. Papadopoulos et al. / International Journal of Solids and Structures 46 (2009) 2800–2808 2807
Appendix A

A.1. Statistical description of out-of plane initial geometric
imperfections

A typical pattern of measured out-of-plane geometric imperfec-
tions w(x,y) is plotted in Fig. 8 for the A7 shell specimen of the data
bank. It is evident that the corresponding 2D stochastic field is
non-homogeneous with substantially varying first and second or-
der properties. The mean function a0(x,y) is calculated via ensem-
ble averaging at each point of the unfolded cylinder. A plot of
a0(x,y) is presented in Fig. 9. The evolutionary power spectrum
used for modeling the stochastic field g1(x,y) of Eq. (1) is written
in the following form:

SEðjx;jy; x; yÞ ¼ SE
xðjx; xÞSE

yðjy; yÞ ðA1Þ

where SE
xðjx; xÞ and SE

yðjy; yÞ are two independent 1D power spectra
for the axial and circumferential direction, respectively. These
Fig. 8. Measured initial unfolded shape of shell A7.

Fig. 9. Ensemble average of initial imperfections.
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power spectra are obtained using a windows sampling procedure.
The separate evolutionary 1D spectra are evaluated over each sam-
ple and averaged over the ensemble. The length of the sample used
for the calculation of the spectrum at each grid point of the struc-
ture is selected to be 0.01L and 0.01pR for the axial and the circum-
ferential direction, respectively. The evolutionary power spectra
along the directions of the cylinder are plotted in Fig. 10. From this
figure, it can be observed that the standard deviation varies sub-
stantially along the two directions of the cylinder, while the corre-
lation length remains almost constant and equal to b1 � 0.6L for the
axial and b2 � 0.06(2pR) for the circumferential direction. In addi-
tion, the evolutionary power spectrum seems to be uniformly mod-
ulated since, as depicted in Fig. 10, the frequency content remains
the same, while from the statistical analysis of the measured imper-
fections it occurs that the assumption of normality is in accordance
with the experimental data.

A.2. Validity of the procedure for modeling the uncertain boundary
conditions

The procedure for modeling the uncertainty on the boundary
conditions via the non-uniformity of the axial loading, assuming
that the two phenomena are essentially equivalent, can be sup-
ported by the following: a flatness survey of one of the loading
end rings used in a test setup of a stiffened axially compressed
anisotropic cylinder was presented in Arbocz (2000). The results
of this survey are depicted in Fig. 11, where a plot of the trace of
the corresponding imperfections at the cylinder’s edges is shown.
It is clear that the edge is non-uniformly loaded, due to the in-
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Fig. 11. Measured flatness of the end ring in Arbocz (2000).
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plane geometric imperfections which do not allow a complete and
solid contact between the cylinder and the loading member. As a
result, the vertical load is applied as a series of point forces, non-
uniformly distributed along the deformed edges of the cylinder.
Thus, using the proposed approach, the following effects are taken
into account in the modeling: (i) non-uniformity of the end loads
acting on both edges of the cylinder, (ii) contribution of the edge
imperfections to the overall pre-buckling deformations, (iii) rota-
tion of the end loading plates, usually observed in the experiments,
which is indirectly represented with the overall bending moment
introduced by the non-uniformity of the vertical loads and, (iv)
vertical misalignment of the end loads which is directly related
to the upper and lower out-of-plane edge imperfections. A detailed
description of the aforementioned approach and further justifica-
tion of its validity can be found in Papadopoulos and Iglesis (2007).
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