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Abstract A computationally efficient method is presented
for the buckling analysis of shells with random imperfec-
tions, based on a linearized buckling approximation of the
limit load of the shell. A Stochastic Finite Element Method
approach is used for the analysis of the “imperfect” shell
structure involving random geometric deviations from its per-
fect geometry, as well as spatial variability of the modulus
of elasticity and thickness of the shell, modeled as random
fields. A corresponding eigenproblem for the prediction of
the buckling load is solved at each MCS using a Rayleigh
quotient-based formulation of the Preconditioned Conjugate
Gradient method. It is shown that the use of the proposed
method reduces drastically the computational effort involved
in each MCS, making the implementation of such stochastic
analyses in real-world structures affordable.
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1 Introduction

Buckling behaviour of shells is generally dominated by their
initial geometric imperfections, which are usually produced
during the manufacturing procedure. Early studies on the
subject were mainly focused on the treatment of geome-
tric imperfections with the Donnell-type theory together with
Galerkin approximations of the solution which provided
asymptotically accurate estimations at the bifurcation points
[1–9]. In addition to initial geometric imperfections, other
sources of imperfections such as material and thickness varia-
bility, imperfect boundary conditions, loading misalignment,
etc. are proved to be of great importance as well [2–4,6–12].
In an effort to obtain reasonable predictions of the scatter of
the buckling loads with respect to corresponding experimen-
tal measurements, recent studies implemented the Finite Ele-
ment method in conjunction with a stochastic description of
the uncertainties involved (SFEM) in all kinds of previously
mentioned imperfections [13–18].

The main difficulty of the aforementioned type of SFEM
approaches has always been that they can provide reasonable
estimates of the scatter of the buckling loads only if the
full probabilistic characteristics (marginal pdfs and corre-
lation structures) of the involved stochastic fields are derived
on the basis of corresponding experimental surveys. In the
majority of engineering problems, however, there is a lack of
experimental measurements for a reliable description of the
statistical properties of the involved stochastic fields used for
modeling the uncertain parameters [19]. In order to handle
such problems, a computationally expensive sensitivity
analysis is usually required with respect to the assumed
parameters used for the description of the stochastic fields.
Such sensitivity analysis is the only reliable way to perform
the design of structures in the presence of uncertainties or
to assess the structural integrity of existing structures: by
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performing parametric investigations leading to the identi-
fication of “worst case” scenarios with respect to selected
response quantities. On these lines, a methodology for the
achievement of an optimum design has been recently propo-
sed in [20], where results of such sensitivity analysis were
used in a reliability-based sizing-shape optimization of shell-
type structures with random initial geometric material and
thickness imperfections, along with a technique for modeling
the geometric boundary imperfections when experimental
measurements are unavailable [16]. The main disadvantage
of both aforementioned approaches is the enormous com-
putational time involved in the repeated MCS required for
performing parametric investigations.

In the present study a computationally efficient method
is presented for the buckling analysis of shells with ran-
dom imperfections. The proposed methodology is based on
a linearized buckling approximation of the limit load of the
shell, which is formulated in the framework of a Monte Carlo
Simulation procedure. A SFEM approach is used for the ana-
lysis of the “imperfect” shell structure involving random geo-
metric deviations from its perfect geometry, as well as spatial
variability of the modulus of elasticity and thickness of the
shell. The involved uncertain parameters are modeled as sto-
chastic fields. A corresponding eigenproblem is solved at
each MCS using a Rayleigh quotient-based formulation of
the Preconditioned Conjugate Gradient (PCG) method. The
proposed methodology is particularly suitable in cases where
a computationally expensive sensitivity analysis is required
with respect to assumed parameters used for the description
of the stochastic fields. It is shown that the use of the proposed
method reduces drastically the computational effort involved
in each MCS, making the implementation of this type of sto-
chastic analyses in real-world structures affordable. Further-
more, it is shown that the proposed approach provides close
estimates of the buckling loads with respect to the “exact”
ones obtained via a more accurate incremental-iterative non-
linear analysis.

In order to numerically demonstrate the validity of the pro-
posed methodology, two types of shell structures are selec-
ted based on their buckling behaviour up to their limit point.
The first shell is a shallow hinged isotropic cylindrical panel
with a point load at the apex. This shell exhibits a limit
point buckling with relatively large pre-buckling deforma-
tions. The second shell is a thin-walled isotropic axially com-
pressed cylinder, which exhibits a bifurcation buckling mode
under small deformation. This type of shell is selected as an
example of an imperfection-sensitive structure in the sense
that small deviations from its perfect geometry may result in
a dramatic reduction of its buckling strength, while the first
type of shell was selected as representative of a less sensitive
to initial imperfections type of shells. It is shown that in both
cases the proposed approach achieves close estimates of the
first and second order moments of the buckling loads, as well

as of the shape of their distribution, with respect to the corres-
ponding “exact” results obtained via an incremental-iterative
nonlinear analysis.

2 Random geometric imperfections

Two different approaches are used for modeling the random
initial imperfect geometries of the two selected types of shell
structures. The reason for this distinction is that in the case
of the cylindrical panel (Fig. 1), no experimental data is avai-
lable for a statistical quantification of random initial geome-
tric imperfections, while in the case of the axially compressed
cylinder (Fig. 8), the imperfect geometry is derived based on
available experimental measurements.

2.1 Imperfect geometry of the cylindrical panel

The imperfect geometry of the cylindrical panel of Fig. 1
is modeled as a two-dimensional univariate (2D-1V) homo-
geneous Gaussian stochastic field. The assumption of both
homogeneity and normality, although not generally appli-
cable for the description of initial imperfections of shells, is
adopted in this study and elsewhere [13,15,21] for simplicity
and due to the fact that there is no experimental data available
for this type of cylindrical panels.

The radius of the structure is treated as random parameter
of the imperfect geometry and is modelled with a 2D-1V
homogeneous stochastic field fluctuating around its perfect
geometry:

r (x, y) = r0 + f1(x, y)h (1)

where r0 is the radius of the perfect geometry, f1(x, y) is
a zero mean Gaussian homogeneous stochastic field and h
is the height of the cylindrical panel. In the present paper
the amplitude of the imperfections, which is controlled by
the standard deviation of the stochastic field, is selected to
be a percentage of the height h of the cylindrical panel. The
coordinates x , y are the global Cartesian coordinates of the
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Fig. 1 Example 1: geometry and material data of the cylindrical panel
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unfolded panel. A two-sided power spectral density function
is used for the description of stochastic field f1(x, y) which
is assumed to correspond to an autocorrelation function of
exponential type and is given by

S f0 f0(κ1, κ2) = σ 2
f

4π
b1b2 exp

[
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4
(b2

1κ
2
1 + b2

2κ
2
2 )

]
(2)

where σ f denotes the standard deviation of the stochastic
field and b1, b2 denote the parameters that influence the shape
of the spectrum which are proportional to the correlation
distances of the stochastic field along the x1, x2 axes,
respectively.

Moreover, the shape of the imperfections is controlled by
the correlation lengths of the stochastic field f1(x, y). These
correlation lengths are usually derived from experimental
data and play a significant role on the buckling behaviour
of shells [13–15,17]. Since no experimental data is available
for this type of problems, a parametric study was performed
in [14] with respect to the correlation lengths of the stochastic
field in both x , y directions. The outcome of this parametric
study produced the “worst” imperfection mode of the shell
which leads to the estimation of the lower bound of the buck-
ling load of the shell.

2.2 Imperfect geometry of the axially compressed cylinder

Initial geometric imperfections of the axially compressed
cylinder of Fig. 8 are modeled as a two-dimensional non-
homogeneous stochastic field. The mean material and geo-
metric properties of the perfect cylinder are also shown in
Fig. 8. Following a procedure similar to the one used in [14],
the mean values as well as the evolutionary power spectra
of the aforementioned non-homogeneous fields are derived
from corresponding experimental measurements [22].

The imperfect geometry of the shell is represented by the
spatial variation of the radius of the structure as follows:

r (x, y) = R + a0(x, y) + f1(x, y) (3)

where R is the radius of the perfect cylinder, a0(x, y) is the
mean function of the imperfections with respect to the per-
fect geometry of the shell and f1(x, y) is a zero-mean non-
homogeneous Gaussian stochastic field.

The mean function a0(x, y) as well as the properties of
stochastic field f1(x, y) are derived from a statistical analy-
sis of experimentally measured imperfections on seven cop-
per electroplated cylindrical shells, named as A shells, taken
from a data bank of initial imperfections [22]. For the des-
cription of the non-homogeneous field f1(x, y) in Eq. (3),
an evolutionary form of the spectral representation method
is implemented [14,23,24]. The evolutionary power spec-
trum adopted in the present study is assumed to be uncoupled
with respect to the axial and circumferential directions of the

cylinder, since this is implied by the experimental measure-
ments [14,17]. Therefore, the evolutionary power spectrum
used for modeling the stochastic field f1(x, y) can be written
in the following form:

SE (κx , κy, x, y) = SE
x (κx , x)SE

y (κy, y) (4)

where SE
x (κx , x) and SE

y (κy, y) are two independent one-
dimensional power spectra for the axial and circumferential
direction, respectively. These power spectra were obtained
using a windows type sampling procedure. A detailed des-
cription of this procedure can be found in [14].

3 Stochastic stiffness matrix

The finite element analysis is performed using the TRIC tri-
angular shell element, which is based on the natural mode
method developed by Argyris. The TRIC shear-deformable
facet shell element is a reliable and cost-effective element
suitable for linear and nonlinear analysis of thin and mode-
rately thick isotropic as well as composite plate and shell
structures. The element has 18 degrees of freedom (6 per
node) and hence 12 natural straining modes. Three natural
axial strains and natural transverse shear strains are measured
parallel to the edges of the triangular element. The natural
stiffness matrix is derived from the statement of variation
of the strain energy with respect to the natural coordinates
[25,26].

The modulus of elasticity as well as the thickness of the
structure are also considered in the present study as “imper-
fections” due to their spatial variability. Therefore, these
parameters are also described by two independent 2D-1V
homogeneous stochastic fields

E (x, y) = E0 [1 + f2(x, y)] (5)

t (x, y) = t0 [1 + f3(x, y)] (6)

where E0 is the mean value of the elastic modulus, t0 is
the mean thickness of the structure and f2(x, y), f3(x, y)

are two zero mean Gaussian homogeneous stochastic fields
corresponding to the variability of the modulus of elasticity
and the thickness of the shell, respectively. The stochastic
stiffness matrix of the shell element is derived using the mid-
point method, i.e., a single random variable is assigned for the
modulus of elasticity and the thickness of the shell genera-
ted from Eqs. (5) and (6), respectively, using the coordinates
of the element’s centroid [27]. A large number NSAMP of
sample functions are produced leading to the generation of a
set of stochastic stiffness matrices incorporating the geome-
tric material and thickness spatially variability. For each set
of the aforementioned matrices the buckling load is estima-
ted using the proposed linearized buckling methodology and,
for comparison reasons, a full geometric nonlinear analysis
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using the arc-length path-following technique. The first and
second order moments as well as histograms of the computed
sample set of buckling loads are obtained from a statistical
analysis of the computed results.

4 Nonlinear analysis

The geometric stiffness of the TRIC shell element consists
of two parts: The rigid body contribution and the natural
mode contribution. A simplified geometric stiffness matrix
is generated by the rigid-body movements of the element
and a natural geometric stiffness matrix is computed due
to the coupling between the axial forces and the symmetric
bending modes. To construct the geometric stiffness, small
rigid-body rotational increments about the local Cartesian
axes are considered. These rigid-body rotational increments
correspond to nodal Cartesian moments along the same axes.
In addition to the geometric stiffness corresponding to the
rigid-body movements of the element, an approximate natu-
ral geometric stiffness, arising from the coupling between
the axial forces and the symmetric bending mode (stiffening
or softening effect), is also considered. A full description of
the linear elastic and geometric stiffness matrix of the TRIC
shell element can be found in [25,26].

The solution of the nonlinear system of equations at each
Monte Carlo Simulation can be performed using standard
incremental-iterative continuation schemes such as the New-
ton Raphson algorithm in conjunction with the arc-length
path-following technique. Such a procedure enables the pre-
diction of the full nonlinear pre and post buckling load-
displacement path [14,17]. Alternatively, the bucking load of
the structure can be efficiently approximated using the linea-
rized buckling method [28]. This method is based on the
assumption that the tangent stiffness matrix varies linearly
between two adjacent load increments leading to a partial
eigenvalue problem that has to be solved at each MCS.

4.1 Linearized buckling eigensystems

MCS-based linearized buckling analysis of structures with
stochastic properties requires the solution of successive
eigenproblems, since the stiffness matrices involved change
in every simulation and every load increment. In particular,
each simulation i (i = 1, . . ., nsim) requires the solution of
eigenproblems of the form:

t−�t Kiϕi = λ(t−�t Ki − t Ki )ϕi (7)

or equivalently,

t Kiϕi = γi
t−�t Kiϕi , γ = λ − 1

λ
(8)

where t Ki , t−�t Ki are the stiffness matrices associated with
the i-th simulation at analysis steps t and t −�t , respectively.
Then the buckling load can be obtained after solving the
corresponding partial eigenvalue problem, as follows:

Pu
i = t−�t Pi + λmin(

t P − t−�t P) (9)

where t Pi , t−�t Pi are the load increments at analysis steps t
and t − �t , respectively, associated with the i-th simulation
and λmin is the lowest eigenvalue of the system.

Now let K0 be the linear stiffness matrix of the perfect
structure. Then, equation (8) can be written as:
(
K0 + t�Ki

)
ϕi = γi

t−�t Kiϕi , (10)

which specifies a set of reanalysis-type or nearby eigenpro-
blems. Matrix t�Ki , which defines the difference between
the stiffness matrices K0 and tKi , is generally small compa-
red to K0.

Several solution procedures have been proposed for sol-
ving the series of the eigensystems of the form given in (8)
or (10). Analytic and semi-analytic solutions that have been
proposed are not generally applicable and are restricted by
assumptions regarding the probability density function of the
results [29,31]. In addition, Galerkin-based solutions in the
context of the polynomial chaos expansion method have been
successfully applied for treating the random eigenvalue pro-
blem, however, they are mainly formulated for spatial varia-
tions of the random system properties, while the problem
of random geometric imperfections is not addressed [30].
On the other hand, Monte Carlo simulation based numerical
solutions are generally applicable and have been applied in
similar problems together with subspace iteration schemes
in conjunction with the mode component mode synthesis
method, in order to reduce the enormous computational cost
involved in the MCS [31]. The aforementioned methods are
basically applied in dynamic systems where a large number
of eigenvectors have to be computed.

In our case however, only the smallest eigenvalue of the
linearized buckling eigensystem is required. For this reason,
an alternative eigensolution scheme based on the Precon-
ditioned Conjugate Gradient (PCG) method is applied in
this work for the computation of the smallest eigenvalue and
corresponding eigenvector of a stochastic eigensystem. This
eigensolution scheme can handle the type of eigenproblems
encountered in linearized buckling analysis in a computatio-
nally efficient way.

4.2 The EIGPCG solution method

The EIGPCG method is an efficient iterative procedure for
solving large-scale sparse eigensystems, when only limited
number of eigenvalues is required [32,33]. Given a genera-
lized eigenvalue problem of the form
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Ax = λBx, (11)

where A, B are n × n symmetric matrices, x is the eigenvec-
tor and λ is the eigenvalue, the EIGPCG algorithm aims at
minimizing the Rayleigh quotient (R-Q):

f (x) = xt Ax
xt Bx

. (12)

f (x) is stationery and equal to an eigenvalue when x is the
corresponding eigenvector. Thus, by minimizing the R-Q of
Eq. (12), the smallest eigenvalue is obtained along with the
corresponding eigenvector. R-Q minimization is performed
in this work with the EIGPCG algorithm, which is based on
the standard PCG procedure and proceeds as follows:

Initialization

x(0) = 1

f (0) = x(0)t
Ax(0)

x(0)t Bx(0)

g(0) = 2

x(0)t Bx(0)

(
Ax(0) − f (0)Bx(0)

)

z(0) = Ã−1g(0) (preconditioning step)

p(0) = z(0)

Iterations m = 1, 2, . . . , (until convergence)

Calculate the solution α(m−1) of trinomial equation u(m−1)

α(m−1)2 + v(m−1)α(m−1) + w(m−1) = 0 with:

u(m−1) =
(

p(m−1)t
Ap(m−1)

) (
x(m−1)t

Bp(m−1)
)

−
(

x(m−1)t
Ap(m−1)

) (
p(m−1)t

Bp(m−1)
)

v(m−1) =
(

p(m−1)t
Ap(m−1)

) (
x(m−1)t

Bx(m−1)
)

−
(

x(m−1)t
Ax(m−1)

) (
p(m−1)t

Bp(m−1)
)

w(m−1) =
(

x(m−1)t
Ap(m−1)

) (
x(m−1)t

Bx(m−1)
)

−
(

x(m−1)t
Ax(m−1)

) (
x(m−1)t

Bp(m−1)
)

x(m) = x(m−1) + α(m−1)p(m−1)

v f (m) = x(m)t
Ax(m)

x(m)t Bx(m)

IF
∣∣∣ f (m)− f (m−1)

f (m−1)

∣∣∣ ≤ ε STOP (convergence check)

g(m) = 2

x(m)t Bx(m)

(
Ax(m) − f (m)Bx(m)

)

z(m) = Ã−1g(m) (preconditioning step)

β(m) = g(m)t
z(m)

g(m−1)t z(m−1)

p(m) = z(m) + β(m)p(m−1)

In the above algorithm ε is a user defined tolerance control-
ling the solution accuracy obtained for the eigenvalue f ,
while Ã represents the preconditioning matrix.

Applying an appropriate preconditioning matrix to acce-
lerate convergence plays a crucial role in the success of any
PCG method, especially for ill-conditioned problems. The
preconditioning matrix Ã in the above algorithm is inten-
ded to be an approximation to A and has to be selected in a
way that the eigenvalues of Ã−1A are spread as uniformly
as possible over a much narrower spectrum than those of A.
Among several options available to precondition a conjugate
gradient procedure, incomplete Cholesky factorization has
been shown to be an effective and efficient preconditioning
technique that can drastically increase the convergence rate
at the expense of some additional storage requirements.

The iterative nature of the EIGPCG method allows the
adaptation of this solution scheme to the special features
of nearby eigenproblems encountered in linearized buckling
reanalyses. For each simulation i and analysis step t an eigen-
solution of a system of the form in Eq. (11) (with A = t Ki ,
B = t−�t Ki ) needs to be solved. EIGPCG can be custo-
mized to take into account the relatively small differences
between stiffness matrices t Ki for different i , thus avoiding
the solution of the systems in Eq. (8) as stand-alone eigen-
problem. The customized EIGPCG procedure for the solu-
tion of stochastic eigenvalue problems in the framework of a
linearized buckling analysis makes use of an efficient precon-
ditioning technique employed to accelerate its convergence
during the successive eigensolutions. The EIGPCG-K0 solu-
tion method described below, which is a specialized version
of the EIGPCG algorithm, utilizes a preconditioner in the
form of K0 combined with proper matrix handling schemes,
under the assumption that the matrix terms contained in t�Ki

are small compared to those in K0.

4.3 The EIGPCG-K0 solution method

Reanalysis type eigenproblems of the form given in Eq. (10)
can be effectively solved using the EIGPCG algorithm equip-
ped with a preconditioner following the rationale of incom-
plete Cholesky preconditionings [34,35]. The incomplete
factorization of the stiffness matrix K0 + t�Ki can be written
as:

t L̃t
i D̃

t
i L̃

t
i = K0 + t�Ki − t Ei , (13)

where t D̃i is a diagonal matrix, t L̃i is a lower triangular
matrix with unit elements on the leading diagonal and t Ei

is an error matrix which does not have to be formed. Matrix
t Ei is defined either by the magnitude of “small” elements
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in t L̃i which do not satisfy a specified magnitude criterion
and therefore are discarded or by a specified topology of t L̃i

which usually conforms with the sparsity features of K0. For
the typical reanalysis eigenproblem of Eq. (10) matrix t Ei

is taken as t�Ki and the preconditioning matrix becomes
the complete factorized initial stiffness matrix: Ã = K0.
If matrix t�Ki is sufficiently small compared to K0, we can
expect that Ã = K0 will act as a strong preconditioner for the
successive conjugate gradient eigensolutions. The EIGPCG
algorithm equipped with the preconditioner Ã = K0 throu-
ghout the entire linearized buckling analysis and simulation
process constitutes the EIGPCG-K0 method for the solution
of the nearby eigenproblems of Eq. (10).

With preconditioning matrix Ã = K0 remaining the same
during the successive eigenvalue reanalyses, the repeated
solutions required for the preconditioning step of the
EIGPCG algorithm can be treated as problems with multiple
right-hand sides:

Ãt z(m)
i =t g(m)

i , (14)

since the entries in the vector g are updated at each EIGPCG
iteration m of simulation i and load increment t . There-
fore, the linear stiffness matrix of the perfect structure K0 is
retained in factorized form (using a skyline storage scheme)
throughout all simulations and analysis steps. Hence, the
solution of the preconditioning step in Eq. (14), which has
to be performed at each EIGPCG iteration of all simulations
and analysis steps, can be effortlessly executed—once K0 is
factorized, by a forward substitution, a vector operation and a
backward substitution. In other words, the EIGPCG precon-
ditioning step is handled with a direct solution scheme, which
is capable of solving problems with multiple right-hand sides
very efficiently.

It is pointed out that EIGPCG-K0 retains in memory its
factorized preconditioner K0 throughout the whole analysis
and simulation process using single precision arithmetic for
floating point information. On the other hand, double pre-
cision storage is required for all floating point stiffness data
associated with stiffness matrices t Ki , which are stored using
a compact storage scheme (only the non-zero terms of each
matrix are retained in memory together with addresses indi-
cating the position of each stored term in the matrix).

5 Numerical examples

Example 1 The hinged isotropic cylindrical panel of Fig. 1,
with a considerable nonlinear behaviour before its limit point,
is selected in order to illustrate the efficiency of the proposed
linearized buckling methodology. The loading as well as the
geometric and material properties of the perfect shell are
also shown in Fig. 1. The curve edge nodes of the panel are
assumed to be free in all directions while the nodes along the
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Fig. 2 Example 1: central load-displacement curve of the perfect
cylindrical panel

sides are hinged (fixed against translation). The material is
considered to be elastic. The geometrically nonlinear elastic
response of point A of the perfect cylinder with respect to
the applied vertical load P is shown in Fig. 2, where the
cylindrical panel is discretized with a mesh of 21×21 nodes
and 400 TRIC shell elements. The same mesh is used for
the discretization of the stochastic fields since the resulting
element size is a fraction of the correlation lengths adopted in
this example. The ultimate load of the perfect configuration
is found to be Pu = 203.4 N.

5.1 Initial geometric imperfections

Two-dimensional (2D) stochastic imperfections are introdu-
ced to the model in order to investigate their effect on the
buckling load of the panel. The thickness of the shell is consi-
dered to be t = 4 mm. For all cases, the standard deviation σ f

of the stochastic field of the initial geometric imperfections is
assumed to be σ f = 0.02h, where h is the height at the apex
of the cylindrical panel. In order to predict “worst” imperfec-
tion modes which lead to the estimation of the lower buckling
loads of the shell, a parametric study has to be performed for
this problem with respect to the correlation lengths of the
stochastic fields in both x , y directions. It is assumed that
the correlation lengths in both x and y directions are equal,
b = b1 = b2, since there are no specific manufacturing
procedures or boundary conditions that would indicate a dif-
ferent assumption.

The aforementioned sensitivity analysis is carried out
using the proposed linearized buckling methodology and
a more accurate nonlinear incremental-iterative procedure
using the arc-length path-following method. Figure 3a pre-
sents the mean value of the buckling loads as a function of
the correlation length parameter, obtained using the propo-
sed linearized buckling approach as well as the “exact” path-
following technique. Figure 3b presents the corresponding
results for the Coefficient of Variation (Cov) of the buckling
loads. From these figures it can be observed that the results
obtained with the linearized buckling procedure are close to
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Fig. 3 Example 1: mean value
(a) and coefficient of variation
(b) of the ultimate load Pu of
the imperfect shell as a function
of the correlation length
parameter b
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Fig. 4 Example 1: 2D initial imperfection shape for correlation length
parameter b1 = b2 = 250

the corresponding results obtained with the the “exact” path-
following analysis. The largest relative error is found to be
3.5 (b = 1, 000) and 7% (b = 250) for the mean value and
Cov, respectively. Both approaches predict the same “worst”
imperfection mode which corresponds to a correlation length
parameter b = 250. In Fig. 4 one sample function of initial
geometric imperfections generated for the aforementioned
correlation parameter is presented.

5.2 Combination 1: initial geometric imperfections and
material imperfections

Two-dimensional random material imperfections are com-
bined and introduced simultaneously to the model of the
imperfect cylindrical panel. For the initial geometric imper-
fections the “worst” scenario of b = 250 mm, obtained from
the previous sensitivity analysis presented in Fig. 3, is used
for this combination. The standard deviation for the modu-
lus of elasticity is assumed to be 10% of its mean value.
Figure 5a shows the mean value of the buckling loads as a
function of the correlation length parameter for the modulus
of elasticity obtained using the proposed linearized buckling

approach as well as corresponding results obtained using the
“exact” path-following technique. Similar results are shown
in Fig. 5b for the Cov of the buckling loads. From these
figures it can be seen that the results obtained with the lineari-
zed buckling procedure are close to the corresponding results
obtained with the “exact” path-following analysis. The lar-
gest relative error is found to be 3.5 (b = 2,000) and 6.5%
(b = 500) for the mean value and the Cov, respectively, while
both approaches predict the same “worst” mode which cor-
responds to a correlation length parameter b = 2,000 for the
modulus of elasticity .

5.3 Combination 2: initial geometric, material
and thickness imperfections

Two-dimensional random thickness imperfections are now
combined and introduced simultaneously to the model of the
cylinder with initial geometric and material imperfections.
For the initial geometric imperfections the “worst” scena-
rio of b = 250, obtained from the initial sensitivity analysis
shown in Fig. 3, is also used for this combination, while the
value of b = 2,000 is adopted for the modulus of elasticity, as
was found from the sensitivity analysis of the previous Com-
bination 1. The standard deviation of the thickness is assu-
med to be 10% of its mean value. Figure 6a depicts the mean
value of the buckling loads as a function of the correlation
length parameter for the thickness obtained with the proposed
linearized buckling approach and the “exact” path-following
technique. Figure 6b depicts the corresponding results for
the Cov of the buckling loads. It can be observed that the
results obtained with the linearized buckling procedure are
close to the corresponding results obtained with the “exact”
path-following analysis. The largest relative error is found to
be 3.5 (b = 2,000) and 7% (b = 500) for the mean value
and the Cov, respectively, while both approaches predict the
same “worst” mode which corresponds to a correlation length
parameter for the thickness b = 2,000.
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Fig. 5 Example 1: mean value
(a) and coefficient of variation
(b) of the ultimate load Pu of the
imperfect shell, combined with
a 2D variation of the modulus of
elasticity, as a function of the
correlation length parameter b
for the modulus of elasticity
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Fig. 6 Example 1: mean value
(a) and coefficient of variation
(b) of the ultimate load Pu of
the imperfect shell, combined
with 2D variations of the
modulus of elasticity and
thickness, as a function of the
correlation length parameter b
for the thickness
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Fig. 7 Example 1: histograms
of critical load factors for all 2D
combined imperfections using
the proposed linearized buckling
approach and a path following
analysis
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Finally, histograms of the buckling loads are computed
using both the proposed linearized buckling methodology
as well as the standard incremental-iterative nonlinear ana-
lysis with the arc-length path-following technique. These
histograms are presented in Fig. 7 and correspond to the
previously established “worst” case scenario regarding all
involved uncertain parameters: b = 250 for the initial geo-
metric imperfections and b = 2,000 for the material and

thickness variability. It can observed that the proposed linea-
rized buckling approach leads to accurate predictions of the
mean value and Cov of the buckling loads as well as of the
shape of the buckling loads distribution and the correspon-
ding minimum and maximum buckling load values.

Example 2 The thin-walled isotropic axially compressed
cylinder of Fig. 8 with a limited nonlinear behaviour before
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t=0.11597mm 

Fig. 8 Example 2: geometry and material data of the axially compres-
sed cylinder

the manifestation of the limit point is selected as the second
example. The loading as well as the geometric and material
properties of the perfect cylinder are also shown in Fig. 8.
The base edge nodes of the cylinder are fixed against all
translations, fixed against rotations around the Y axis and
free against rotations around the X and Z axis. The top edge
nodes of the cylinder are fixed against X and Z translations,
fixed against rotations around the Y axis, free against trans-
lations in the Y axis and free against rotations around axis X
and Z.

For this problem, an extensive investigation was perfor-
med in [17], where imperfections were described as
two-dimensional non-homogenous stochastic fields with
statistical properties that were derived form a data bank of
measured imperfections [22]. Extensions to this investigation
that include, not only the initial imperfect geometry but also
the variability of the modulus of elasticity and the thickness
of the cylinder as well as the non-uniformity of the axially
applied load was presented in [14] and [16], respectively. In
these works extensive investigations were performed with
respect to the adequacy of the finite element model to accu-
rately predict the pre-buckling state of deformation as well
as critical load factors, through mesh convergence studies
as well as through comparisons of the numerically predicted
buckling loads with corresponding predictions of bifurcation
points using semi-analytic methods based on Koiter’s imper-
fection sensitivity theory [1].

More particular, mesh convergence studies of the imper-
fect cylinder were computed in [16] for a randomly selected
generation of geometric imperfections using Eq. (3). It was
shown that a relatively coarse mesh with TRIC shell elements
is adequate for the analysis of the imperfect cylinder with

respect to the mesh required for the analysis of the perfect
one. This is explained by the fact that the buckling modes of
the imperfect cylinder are mainly dominated by the imper-
fections’ pattern and not by some higher order modes of the
perfect cylinder, which require a more refined disretization
with TRIC shell elements in order to be captured by the finite
element analysis. Figure 9 presents the results of the afore-
mentioned convergence study. The predicted buckling loads
for the various mesh sizes correspond to the load level at
which the first negative eigenvalue of the tangent stiffness
matrix of the structure appears and are normalized with res-
pect to the theoretical buckling load of the perfect cylinder,
given by:

P(perfect)
u = Et2

R
√

3(1 − v2)
= 5,350 N (15)

From this figure it can be seen that a relatively coarse mesh of
51×101 nodes, produces a very small (∼1%) relative discre-
tization error of the buckling loads with respect to buckling
loads calculated with more refined meshes. For the refined
mesh of a 51 × 401, the normalized buckling load was com-
puted at λcr = 0.857 resulting in a relative, with respect to
the “exact” semi-analytic solution, error of the order of 1.5%
[16]. Thus, the mesh of 51 × 101 nodes is adopted here for
the subsequent sensitivity studies. In addition, this mesh pro-
vides a sufficiently accurate representation of the gradients
of the imperfect shape of the cylinder, since its element size
is a fraction of the correlation lengths of the stochastic fields
used for both axial and circumferential directions. This can
be seen in Fig. 10 where a sample realization of initial geo-
metric imperfections generated by Eq. (3) is presented for
this particular mesh size.
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Fig. 9 Example 2: convergence behaviour for a randomly selected
MCS simulation of the imperfect cylinder loaded with a non-uniform
axial load
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Fig. 10 Example 2: sample realization of non-homogeneous
out-of-plane geometric imperfections using evolutionary power
spectra and a mesh of 51 × 101 nodes

5.4 Combination 1: initial geometric and material
imperfections

Two-dimensional random material imperfections are
combined and introduced simultaneously to the model of
the imperfect cylinder. For the initial geometric imperfec-
tions no sensitivity analysis is required since, as previously
mentioned, the evolutionary power spectra of the correspon-
ding stochastic fields are based on a statistical analysis of
experimental results [14,22]. The standard deviation of the
modulus of elasticity is assumed to be 10% of its mean value.
Figure 11a presents the mean value of the buckling loads as a
function of the correlation length parameter for the modulus
of elasticity obtained using the proposed linearized buckling
approach as well as the “exact” path-following technique.
Figure 11b presents analogous results for the Cov of the
buckling loads. From these figures it can be seen that, as in
the previous example, the results obtained with the lineari-
zed buckling procedure are close to the corresponding results
obtained with the “exact” path-following analysis leading to
the same conclusion that small correlation lengths (b = 50)
are responsible for the lowest mean value of the buckling
loads, while large correlation lengths (b = 500) result in

higher values of the Cov. The largest relative error is found
to be 5.5 (b = 50) and 15% (b = 100) for the mean value
and the Cov, respectively.

5.5 Combination 2: initial geometric, material
and thickness imperfections

Two-dimensional random thickness imperfections are now
combined and introduced simultaneously to the model of the
cylinder with initial geometric and material imperfections.
The standard deviation of the thickness is assumed to be 10%
of its mean value. Figure 12a presents the mean value of the
buckling loads as a function of the correlation length para-
meter for the thickness obtained with the proposed linearized
buckling approach and the “exact” path-following technique,
while Fig. 12b presents similar results for the Cov. As in the
previous Combination, both approaches confirm the conclu-
sion that a correlation length of b = 50 is responsible for the
lowest mean value of the buckling loads, while a correlation
lengths of b = 500 results in higher values of the Cov. The
largest relative error is found to be 5.5 (b = 500) and 15%
(b = 50) for the mean value and the Cov, respectively.

Finally, histograms of the buckling loads are presented in
Fig. 13 for both the proposed linearized buckling methodo-
logy as well as the standard incremental-iterative nonlinear
analysis. These histograms are computed for the previously
established “worst” case scenario of the lowest mean value
b = 50 for the material and thickness variability. It can be
observed that for this type of shell structures, the proposed
linearized buckling methodology also leads to accurate pre-
dictions of the mean value and Cov of the buckling loads as
well as of the shape of the buckling loads distribution and
the corresponding minimum and maximum buckling load
values.

5.6 Accuracy of the buckling load prediction

Whether a linearized buckling approach or a nonlinear
incremental-iterative analysis is used, it is well known that
the accuracy of the prediction of the buckling load is problem

Fig. 11 Example 2: mean value
(a) and coefficient of variation
(b) of the ultimate load Pu of
the imperfect cylinder,
combined with a 2D variation of
the modulus of elasticity, as a
function of the correlation
length parameter b for the
modulus of elasticity
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Fig. 12 Example 2: mean value
(a) and coefficient of variation
(a) of the ultimate load Pu of the
imperfect cylinder, combined
with 2D variations of the
modulus of elasticity and
thickness, as a function of the
correlation length parameter b
for the thickness
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Fig. 13 Example 2: histograms
of critical load factors for all 2D
combined imperfections using
the proposed linearized buckling
approach and a path-following
analysis
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dependent and is affected mainly by the selection of the
corresponding load increments. The accuracy of the linea-
rized buckling prediction strongly depends on the positions
of the corresponding tangent stiffness matrices of Eq. (8)
along the load displacement curves. The closer these stiff-
ness matrices are to the limit point the better prediction of
the linearized buckling load is achieved. Thus, the accu-
racy of the linearized buckling prediction is more sensitive
in shell-type structures which exhibit a limit point buck-
ling with large pre-buckling deformation response. In such
cases, a two-step analysis procedure is preferable in order
to predict the buckling load with an acceptable accuracy.
This two-step analysis procedure performs two load incre-
ments instead of one in connection to Eq. (8) with t = 2.
In such cases it appears that the larger the first load incre-
ment is taken, the more accurate load predictions are obtai-
ned. This is not the case in imperfection-sensitive types of
shells, like the axially compressed cylinder of Fig. 8, in
which the structural behaviour prior to buckling is almost
linear. In such cases the tangent stiffness is almost inde-
pendent of the level of the first load increment, thus a one-step

linearized buckling analysis (t = 1 in Eq. (8)) can be imple-
mented.

On the other hand, for nonlinear incremental-iterative ana-
lysis, higher accuracy is achieved on the computation of the
buckling load with small load increments. Since the selection
of very small increments results in an increase in the com-
putational effort, the selection of an appropriate load incre-
ment is usually a trade-off between accuracy and efficiency.
However, as the small load increments are required only in
the neighborhood of the buckling load, a relatively large first
load increment can be used in order to avoid unnecessary
load increments away from the limit point. The first load
increment must be lower than the lowest buckling load of
the MCS. Such a selection is not obvious, since this lowest
buckling load is unknown a-priori. In the present study, this
first load increment is selected to be a fraction of the buckling
load of the perfect structure.

The aforementioned considerations can be visualized in
Figs. 14 and 15 where the fluctuations of the computed buck-
ling loads at five randomly selected Monte Carlo simulation
runs are presented for the cylindrical panel and the axially
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Fig. 14 Example 1: buckling load predictions for five MCS runs using
the non-linear incremental-iterative procedure and the linearized buck-
ling approach

compressed cylinder, respectively. Figure 14 presents the
sensitivity of the buckling load predictions for the first test
example, using the linearized buckling approach and the
incremental-iterative nonlinear analysis with various load
increments. From this figure it can be observed that the use
of a two-step linearized buckling analysis leads to a consi-
derable improvement of the prediction of the buckling loads
with respect to the one-step analysis. The accuracy of this
procedure is higher compared to the incremental-iterative
nonlinear analysis with an average of four increments and
is almost the same with the incremental-iterative nonlinear
analysis with an average of 6 nonlinear increments up to the
limit point. In addition, the buckling load predictions of the
linearized buckling procedure are very close to the “exact”
values obtained with the nonlinear analysis with an average
of 10 load increments .

Figure 15 presents similar results for the axially com-
pressed cylinder. From this example it can be observed that
the use of a one-step linearized buckling analysis leads to
very good predictions of the buckling loads. The accuracy of
this procedure is much higher compared to the incremental-
iterative nonlinear analysis with an average of five
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Fig. 15 Example 2: buckling load predictions for five MCS runs using
the non-linear incremental-iterative procedure and the linearized buck-
ling approach

increments up to the limit point and is almost the same
with the incremental-iterative nonlinear analysis with an ave-
rage of 10 load increments. Furthermore, the buckling load
predictions with the linearized buckling procedure are very
close to the nonlinear analysis with an average of 16 non-
linear increments which can be considered as “exact”. For
the aforementioned nonlinear analysis, the first load step
is selected to be 60% of the buckling load of the perfect
structure.

5.7 Performance of EIGPCG-K0

The computational performance of the EIGPCG-K0 solver
is presented in Table 1 for the axially compressed cylinder.
A sensitivity analysis procedure for this example requires
the performance of eight MCS and therefore 800 nonlinear
analyses in total. From this Table it can be seen that the
computed time required for the aforementioned sensitivity
analysis using the proposed linearized buckling methodo-
logy is approximately 40 CPU seconds, while if this analysis
was performed using an “exact” nonlinear analysis with the
modified Newton Raphson (mNR) scheme together with the

Table 1 Example 2:
Performance of EIGPCG-K0 for
eight MCS resulting in 800
nonlinear analyses

Method mNR-arc length Linearized buckling EIGPCG-K0

Number of non-linear increments 16.000 1,600

Number of non-linear iterations 35.000 –

Number of CG iterations – 5,000

Factorization time (s) 970

Preconditioning time (s) – 1

Substitutions time (s) 30 –

CG iterations time (s) – 39

Total time (s) 1,000 40
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arc-length path-following technique and an average of 10
nonlinear increments per analysis, would require 1,000 CPU
seconds to be performed. Therefore, a drastic reduction of
almost two orders of magnitude is achieved, which makes
the implementation of such sensitivity analyses in real-world
structures tractable. All computing times presented in Table 1
were obtained in a Core 2 Duo Pentium (2,660 MHz).

6 Conclusions

In the present paper an accurate and computationally efficient
method is presented for the buckling analysis of shells with
random imperfections. The proposed methodology is based
on a linearized buckling approximation of the limit load of
the shell in the context of a brute-force Monte Carlo Simula-
tion (MCS) used for the overall estimation of the scatter of the
buckling loads. The corresponding eigenproblem is solved at
each MCS using a variant of the Preconditioned Conjugate
Gradient method based on the Rayleigh quotient. The propo-
sed methodology is particularly suitable for cases where lack
of experimental data does not allow for a rational and reliable
description of the statistical properties of the random fields
required for modeling the uncertain parameters. In such cases
a computationally expensive sensitivity analysis with respect
to assumed parameters, necessary for the description of the
stochastic fields, is required, leading to parametric investiga-
tions as well as to the identification of “worst case” scenarios
with respect to selected response quantities. The numerical
results presented demonstrate the advantages of the propo-
sed approach by drastically reducing the computational effort
involved in the repeated MCS required for the parametric
investigations, compared to the “exact” incremental-iterative
nonlinear analysis. This is achieved without sacrificing the
accuracy of the buckling load prediction, thus allowing the
application of stochastic sensitivity analyses in real-world
structures.
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