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Abstract

The optimum design of isotropic shell structures with random initial geometric, material and thickness imperfections is
investigated in this paper and a robust and efficient methodology is presented for treating such problems. For this purpose,
the concept of an initial ‘‘imperfect’’ structure is introduced involving not only geometric deviations of the shell structure
from its perfect geometry but also a spatial variability of the modulus of elasticity as well as of the thickness of the shell. An
efficient reliability-based design optimization (RBDO) formulation is proposed. The objective function is considered to be
the weight of the structure while both deterministic and probabilistic constraints are taken into account. The overall prob-
ability of failure is taken as the global probabilistic constraint for the optimization procedure. Numerical results are pre-
sented for a cylindrical panel, demonstrating the efficiency as well as the applicability of the proposed methodology in
obtaining rational optimum designs of imperfect shell-type structures.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A typical engineering task during the development of any structural system is, among others, to improve its
performance in terms of constructional cost and structural response. Improvements can be achieved either by
simply using design criteria based on existing codes and experience or on an automated way by using optimi-
zation methods that lead to a structural design which can be considered as the optimum one. Strictly speaking,
optimal design means that no better solution exists under certain constraints. In practical applications
however, finding the global optimum solution is a very difficult task, due to the uncertainty or scatter involved
in various structural parameters such as material properties, geometric imperfections, loading variations,
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uncertain boundary conditions, etc. For this reason it is generally recognized that a deterministic based for-
mulation of a structural optimization problem, which ignores the uncertainty involved in the various afore-
mentioned parameters, can not reach to an unbiased, feasible and realistic optimum design. Once a
deterministic optimum solution is implemented in a real physical system, its optimal performance may vanish
because of the parameters’ scatter, which is unavoidable and might also be unfavorable since the performance
of the ‘‘implemented’’ design may be far worse than the one expected.

In order to account for the randomness of the various structural parameters affecting the structural
response, probabilistic formulations of the optimization problem have been developed over the last decades
(Schueller, 2001; Hurtado and Barbat, 1997). Most of the aforementioned formulations are based on reliabil-
ity analysis methodologies and have stimulated the interest for the probabilistic optimum design of structures.
There are two distinguished design formulations that account for the probabilistic systems response: robust
design optimization (RDO) (Lagaros et al., 2005; Lee and Park, 2001; Messac and Ismail-Yahaya, 2002)
and reliability-based design optimization (RBDO) (Papadrakakis and Lagaros, 2002; Qu et al., 2003; Allen
and Maute, 2005). RDO methods primarily seek to minimize the influence of stochastic variations on the
mean and variance of critical response variables, such as critical displacements and/or stresses. On the other
hand, the main goal of RBDO methods is to design for safety with respect to extreme events. In a RBDO for-
mulation, probabilistic constraints are incorporated into the optimization procedure leading to unbiased esti-
mates of the structural performance and subsequently, to the determination of design points that are located
within a range of target failure probabilities.

During the last fifteen years there has been a growing interest on optimization algorithms that rely on anal-
ogies to natural processes such as evolutionary algorithms (EA). For complex and realistic structural optimi-
zation problems, EA methods appear to be the only reliable approach, since most mathematical programming
optimizers are prone to converge to a local optimum or may not converge at all (Papadrakakis et al., 1999;
Lagaros et al., 2002). Based on previous experience regarding the relative superiority of evolution strategies
(ES) over the mathematical programming (MP) methods and some of the EA methods in some problems
(Papadrakakis et al., 1999; Lagaros et al., 2002), the ES optimization algorithm was selected for the solution
of the optimization problem at hand.

In the present study a RBDO formulation using EA is implemented in a reliability-based sizing-shape opti-
mization of shell-type structures with random initial geometric material and thickness imperfections. It is well-
known that the response behavior of shell structures is generally influenced by their initial imperfections,
which occur during the manufacturing and construction stages. In addition, variability of initial imperfections
together with their pronounced influence on the load carrying capacity of shells has been proved to be respon-
sible for the large scatter observed in the experimental results (Deml and Wunderlich, 1997; Schenk and Schu-
eller, 2003; Li et al., 1997; Palassopoulos, 1997). Also other sources of imperfections such as the variability of
thickness, material properties, boundary conditions and misalignment of loading are also responsible for the
reduction as well as the scatter of the buckling load of shell structures (Schenk and Schueller, 2003; Li et al.,
1997; Papadopoulos and Papadrakakis, 2004, 2005). In the majority of studies, these influencing parameters
have not been treated as stochastic variables in a rational manner. Therefore, an accurate prediction of the
structural performance of shell-type structures requires a realistic modeling of all uncertainties involved in
conjunction with a robust finite element formulation that can efficiently and accurately handle the geometric
as well as physical nonlinearities of shell type structures (Li et al., 1997; Papadopoulos and Papadrakakis,
2005).

In particular the effect of material and thickness imperfections on the buckling load of isotropic shells is
investigated with respect to the optimum design of a cylindrical panel. For this purpose, the concept of an
initial ‘‘imperfect’’ structure is introduced involving not only geometric deviations of the shell structure from
its perfect geometry but also a spatial variability of the modulus of elasticity as well as of the thickness of the
shell. These combined ‘‘imperfections’’ are incorporated in an efficient and cost effective nonlinear stochastic
finite element formulation of the TRIC shell element (Argyris et al., 1997, 1998, 2002a; Argyris et al., 2002b)
using the local average method for the derivation of the stochastic stiffness matrix, while the variability of the
limit loads is obtained by means of a brute-force Monte Carlo simulation (MCS) procedure. All types of
imperfections are modeled as two-dimensional univariate homogeneous stochastic fields (2D-1V) using the
spectral representation method (Shinozuka and Deodatis, 1996).
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For the RDBO formulation, the objective function is assumed to be the weight of the structure while the
constraints are taken both deterministic (stress limitations) and probabilistic (the overall probability of failure
of the structure). The probabilistic constraint enforces the condition that the probability failure, of the system
is smaller than a certain value. It is assumed that structural failure occurs when buckling load of the shell is
reached. Then, the overall probability of failure is taken as the global probabilistic constraint. The numerical
results demonstrate the efficiency as well as the applicability of the proposed methodology in obtaining
rational optimum designs of shell-type structures in the presence of random geometric, material and thickness
imperfections.
2. Reliability-based structural optimization

In the present study, the reliability-based sizing-shape optimization of a cylindrical panel with random
geometric material and thickness imperfections is investigated. In the deterministic structural optimization
problems, the aim is to minimize the weight of the structure under certain deterministic behavioral con-
straints usually on stresses and displacements. In reliability-based structural optimal design, additional
probabilistic constraints are imposed in order to take into account various random parameters and to
ensure that the probability of failure of the structure is within acceptable limits. The probabilistic con-
straints enforce the condition that the probability failure of the system is smaller than a certain value
(i.e., 10�3). In this work the overall probability of failure of the structure is taken as the global probabilistic
constraint.

Through the constraints considered in the formulation of the optimization problem, it is ensured that the
performance of the shell meets the design requirements. The von Mises yield criterion is employed in order to
assess the value of an equivalent stress that will be compared with the yield stress ry. Therefore, the following
expression has to be satisfied for each triangular shell element:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 þ r2

2 � 3r1r2 þ 3s2

q
6 ry=cM0; ð1Þ
where r1, r2, s are the stresses in the middle surface of the triangle and cM0 is a safety factor equal to 1.10,
according to Eurocode 3 (1993).

An RBDO problem can be formulated in the following form
min F ðsÞ
subject to gjðsÞ 6 0; j ¼ 1; . . . ;m;

Prðhiðs; xÞ 6 0Þ 6 pa;i; i ¼ 1; . . . ; n;

where s 2 Rns ;

x � Nðlx; r
2
xÞ;

ð2Þ
F(s) is the objective function (i.e., the structural weight), s is the vector of geometric design variables, x is the
vector of random variables, gj(s) are the deterministic constraints and hi(s,x) are the constraints that their
probability of violation should be less than an allowable probability pa,i. In this work the overall probability
of failure of the structure is considered as the probabilistic constraint.

The proposed reliability-based sizing-shape optimization methodology proceeds with the following steps:

1. At the outset of the optimization procedure the geometry, the boundaries and the reference loads of the
structure under investigation are defined.

2. The optimization problem of Eq. (2) is defined selecting the constraint functions, deterministic and prob-
abilistic ones.

3. The optimization phase is carried out with evolution strategies where feasible designs are produced at each
optimization cycle. The feasibility of the designs is checked for each design vector with respect to both
deterministic and probabilistic constraints considered.

4. The satisfaction of the deterministic constraints is monitored through a linear finite element analysis of the
structure using the linear TRIC shell element.
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5. The satisfaction of the probability constraints is monitored via a reliability analysis of the ‘‘imperfect’’
structure. The probability of failure for each set of design variables is calculated using a brute-force
MCS in conjunction with a geometric and material nonlinear analysis in order to compute the correspond-
ing buckling loads of the shell.

6. If the convergence criteria for the optimization algorithm are satisfied then the optimum solution has been
found and the process is terminated, else the whole process is repeated.

3. Finite element formulation

The finite element simulation is performed with the triangular element TRIC, which is based on the natural
mode method. The TRIC shear-deformable facet shell element is a reliable and cost-effective element suitable
for linear and nonlinear analysis of thin and moderately thick isotropic as well as composite plate and shell
structures. For the sake of completeness, a brief description of the TRIC shell element is given in this section.
Extensive reports on the formulation of TRIC may be found in Argyris et al. (1997, 1998, 2002a).

The TRIC element has 18 degrees of freedom (6 per node) and hence 12 natural straining modes (Fig. 1).
Three natural axial strains and natural transverse shear strains are measured parallel to the edges of the tri-
angle. The stiffness is contributed by deformations only and not by the associated rigid body motions. The
natural stiffness matrix can be produced from the statement of variation of the strain energy with respect
to the natural coordinates.

The geometric stiffness is based on large deflections but small strains and consists of two parts. A simplified
geometric stiffness matrix generated by the rigid-body movements of the element and the natural geometric
stiffness matrix due to the coupling between the axial forces and the symmetric bending modes (stiffening
or softening effect). To construct the geometric stiffness we consider small rigid-body rotational increments
about the local Cartesian axes. These rigid-body rotational increments correspond to nodal Cartesian
moments along the same axes. Using the fact that the resultants of all forces produced by rigid-body motion
must vanish, we arrive at the expression for the local rigid-body rotational simplified geometric stiffness. The
term simplified refers to the fact that only the middle plane axial natural forces are included in the stiffness
matrix, which fully represents the prestress state within the material. Once the simplified geometric stiffness
is formed it may transformed to the global coordinate system. In addition to the geometric stiffness corre-
sponding to the rigid-body movements of the element, an approximate natural geometric stiffness arising from
Fig. 1. The multilayer triangular TRIC element; coordinate systems.
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the coupling between the axial forces and the symmetric bending mode (stiffening or softening effect) is also
considered.

The elastoplastic constitutive matrix is established by obtaining the relation between the natural strain and
stress increments for each layer r within a given load step:
drr
c ¼ jel

ct �
1

H þ st
Njel

ctsN

ðjel
ctsNÞðjel

ctsNÞt
� �r

dcr
t ; ð3Þ
where H is the hardening parameter and SN is obtained by the normality flow rule as
sN ¼
oF
orc
¼ oF

orca

oF
orcb

oF
orcc

� �t

; ð4Þ
and the expression in brackets corresponds to the elastoplastic material stiffness matrix jel�pl
ct valid for every

layer r.
½jel–pl
ct �

r ¼ jel
ct �

1

H þ st
Njel

ctsN

ðjel
ctsNÞðjel

ctsNÞt
� �r

. ð5Þ
The natural elastoplastic stiffness of the element is obtained by summing up the natural elastoplastic layer stiff-
nesses of the element. A full description of the linear elastic, geometric and elastoplastic stiffness matrix of the
TRIC shell element can be found in Argyris et al. (1997, 1998, 2002a), respectively.

4. Stochastic description of initial imperfect geometry

The problem of buckling of shells has received a great deal of interest in the last decades. The major prob-
lem has always been the great discrepancy between theoretically expected and experimentally observed buck-
ling loads and also the wide scatter in those measured limit loads. It was soon realized, that the buckling
behavior of shells is generally influenced by their initial geometric imperfections, which produced through
the manufacturing procedure. Additional researches showed that the initial geometric imperfections is not
the only reason of the discrepancy and the scatter, and that the effect of thickness variability, material imper-
fections and imperfect boundary conditions proved to be of great importance, too. Since the use of powerful
computers became easier than ever, the analysis of such structures has been carried out through applications
of the finite element method in conjunction with a stochastic description of the uncertainties involved in all
kinds of previously mentioned imperfections (Deml and Wunderlich, 1997; Li et al., 1997; Palassopoulos,
1997; Arbocz, 2001; Elishakoff, 2000; Elishakoff and Arbocz, 1982, 1985; Elishakoff et al., 1987; Arbocz
and Hol, 1991).

For the above mentioned stochastic finite element modeling, the imperfect geometry of shell-type structures
is usually represented as a two-dimensional univariate stochastic field. The statistical properties of this under-
lying field modeling the initial geometric imperfections can be based either on experimental measurements, or
on assumed in cases where no experimental results are available. Previous work on the subject (Schenk and
Schueller, 2003; Papadopoulos and Papadrakakis, 2004) has focused mainly on the buckling behavior of axi-
ally compressed cylinders for which a data bank of experimentally measured initial imperfections is available
(Arbocz and Abramovich, 1979). In this early work, the stochastic description of the geometric imperfections
was based on a statistical analysis of the experimentally measured imperfections. The results obtained clearly
demonstrated that the stochastic field of the initial geometric imperfections is non-homogeneous, while the
Gaussian distribution fits well the experimental data.

In the present paper initial geometric imperfections are modeled as a homogeneous two-dimensional
Gaussian stochastic field. While the Gaussian assumption for the probability density function fits well the
aforementioned experimental data, the assumption of homogeneity is not generally applicable for the descrip-
tion of initial imperfections of shells. However this assumption is adopted in this study and elsewhere (Schenk
and Schueller, 2003; Papadopoulos and Papadrakakis, 2004, 2005), for simplicity and due to the fact that there
are no experimental data available for this particular type of cylindrical panels. For this reason, a parametric
study was performed in previous investigations by Papadopoulos and Papadrakakis (2004, 2005), with respect
to the correlation lengths of the stochastic fields in both x and y directions. The outcome of the parametric
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study was the evaluation of the ‘‘worst’’ imperfection mode of the shell. As explained in detail in the Numer-
ical examples section, this ‘‘worst’’ imperfections’ pattern was adopted subsequently in the optimization
procedure.

For the description of the initial geometric imperfections, the radius of the structure is assumed to be a 2D-
1V homogeneous stochastic field with respect to the perfect geometry
rðx; yÞ ¼ r0 þ f1ðx; yÞ � h; ð6Þ

where r0 is the radius of the perfect geometry, f1(x,y) is a zero mean Gaussian homogeneous stochastic field
and h is the height of the cylindrical panel. In the present paper the amplitude of the imperfections, which is
controlled by the standard deviation of the stochastic field, is selected to be a percentage of the height h of the
cylindrical panel. The coordinates x and y are the global Cartesian coordinates of the unfolded panel.

Moreover, the shape of the imperfections is controlled by the correlation lengths of the stochastic field
f1(x,y) in directions x and y, respectively. As mentioned previously, these correlation lengths are usually
derived from experimental data and play a significant role on the buckling behavior of shells (Schenk and
Schueller, 2003; Papadopoulos and Papadrakakis, 2005). Since no experimental data are available for this type
of problems, a parametric study was performed in Papadopoulos and Papadrakakis (2004, 2005), with respect
to the correlation lengths of the stochastic field in both x and y directions. The outcome of this parametric
study was the evaluation of the ‘‘worst’’ imperfection mode of the shell which leads to the estimation of
the lower bound of the buckling load of the shell. This information is most valuable for the safe design of
shells against buckling (Deml and Wunderlich, 1997; Palassopoulos, 1997).

5. Stochastic stiffness matrix

The modulus of elasticity as well as the thickness of the structure are also considered in the present study as
‘‘imperfections’’, due to their spatial variability. Therefore, these parameters are also described by two inde-
pendent 2D-1V homogeneous stochastic fields
Eðx; yÞ ¼ E0½1þ f2ðx; yÞ�; ð7Þ
tðx; yÞ ¼ t0½1þ f3ðx; yÞ�; ð8Þ
where E0 is the mean value of the elastic modulus, t0 is the mean thickness of the structure and f2(x,y), f3(x,y)
are two zero mean Gaussian homogeneous stochastic fields corresponding to the variability of the modulus of
elasticity and the thickness of the shell, respectively. In the present study, stochastic fields f2(x,y) and f3(x,y)
are assumed uncorrelated. However, since cross-correlation between the aforementioned fields has proven to
play an important role on the buckling behavior of shell-type structures leading often to a further reduction of
the bearing capacity, with respect to the uncorrelated case (Noh and Kwak, 2006; Noh, 2006; Stefanou and
Papadrakakis, 2004), the effect of the above mentioned correlation in the optimum design of shell structures
will be specifically addressed in follow-up research.

The stochastic stiffness matrix of the shell element is derived using the local average method. This method
has been used extensively by many researchers in conjunction with the stochastic finite element method
(SFEM). In a recent study by Argyris et al. (2002b), it was shown that for shell type structures, the local aver-
age method is not only superior to the weighted integral method in terms of simplicity and computational effi-
ciency and the accuracy of the results are very close to those of the weighted integral method. Given a
stochastic field f(x,y,z), the local average method provides discretized values of the field as follows:
fi ¼
1

V i

Z
V i

f ðx; y; zÞdV i; ð9Þ
where Vi is the domain over which the integration has to be performed. In the case of stochastic finite ele-
ments, the domain represents the length (truss and beam elements), the area (plain stress/strain, plate, shell
elements) or the volume (3D solid elements) of the ith element. It is obvious that, according to this method,
a single random variable per finite element is used to delineate the stochastic field since its random character-
istics are represented by the local spatial average over each element. In this context the stochastic element stiff-
ness matrix is expressed as
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kðeÞ ¼
�
1þ aðeÞ

�
kðeÞ0 ; ð10Þ
where
aðeÞ ¼ 1

V ðeÞ

Z
V ðeÞ

f ðeÞðx; y; zÞdV ðeÞ. ð11Þ
In the case where both the modulus of elasticity and the thickness are assumed to be simultaneously sto-
chastic, the random variable a(e) is given by
aðeÞ ¼ aðeÞ1 aðeÞ2 ; ð12Þ

where aðeÞ1 and aðeÞ2 are the local averages corresponding to the stochastic fields of the modulus of elasticity and
thickness, respectively.

6. Monte Carlo simulation

The generation of sample functions for stochastic fields f1(x,y), f2(x,y) and f3(x,y) corresponding to the
variations of the geometric, material and thickness imperfections, respectively, is performed using the spectral
representation method (Shinozuka and Deodatis, 1996). The simulation points of the stochastic fields are
located at the center of gravity of the TRIC shell elements. Therefore, the stochastic fields are simulated in
non-uniformly spaced points of the structure. For this reason, the series of cosines formula is chosen for
the simulation of the stochastic fields instead of the fast Fourier transform (FFT) which requires that the sto-
chastic field is simulated at uniformly spaced points. The two-sided power spectral density function used for
the description of the above mentioned fields is assumed to correspond to an autocorrelation function of expo-
nential type and is given by
Sf0f0
ðj1; j2Þ ¼

r2
f

4p
b1b2 exp � 1

4
b2

1j
2
1 þ b2

2j
2
2

� �� �
; ð13Þ
where rf denotes the standard deviation of the stochastic field and, b1 and b2 denote the parameters that influ-
ence the shape of the spectrum which are proportional to the correlation distances of the stochastic field along
the x1 and x2 axes, respectively. A large number NSAMP of sample functions are produced, leading to the gen-
eration of a set of stochastic stiffness matrices. For the reliability analysis required at each step of the optimi-
zation procedure, the associated structural problem is solved NSAMP times, while the probability of failure is
finally be calculated in terms of sample mean as follows:
pf ¼
1

N1

XN1
j¼1

IðxjÞ ð14Þ
in which I(xj) is an indicator for successful and unsuccessful simulations defined as
IðxjÞ ¼
1 if GðxjÞP 0;

0 if GðxjÞ < 0:

�
ð15Þ
7. Evolutionary algorithms

The two most widely used optimization algorithms belonging to the class of evolutionary algorithms (EA)
that imitate nature by using biological methodologies are the genetic algorithms (GA) and evolution strate-
gies. In this work the ES method is used as the optimization tool for addressing the RBO problem, based
on previous experience regarding the relative superiority of ES over the MP and GA methods in some specific
problems (Papadrakakis et al., 1999; Lagaros et al., 2002). ES imitate biological evolution in nature and have
three characteristics that make them differ from the gradient based optimization algorithms: (i) in place of the
usual deterministic operators, they use randomized operators: recombination, mutation, selection; (ii) instead
of a single design point, they work simultaneously with a population of design points; (iii) they can handle
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continuous, discrete and mixed optimization problems (Schwefel, 1981). In the ES algorithm, each individual
is equipped with a set of parameters
a ¼ ½s; r; a� 2 Ic;

Ic ¼ Rns � Rnr
þ � ½�p; p�na

ð16Þ
where s is the vector of the design variables while vectors r and a are the distribution parameter vectors. Vec-
tor r 2 Rnr

þ corresponds to the standard deviations (1 6 nr 6 ns) of the normal distribution while vector
a 2 ½�p; p�na corresponds to the inclination angles (na = (nc � nr/2)(nr � 1)), defining linearly correlated muta-
tions of the continuous design variables s. Let P ðtÞp ¼ fa1; . . . ; alg denotes a parent population of individuals at
the tth generation. The genetic operators used in the ES method are denoted by the following mappings:
rec : ðIcÞl ! ðIcÞk recombination,

mut : ðIcÞk ! ðIcÞk mutation,

selk
l : ðIcÞk ! ðIcÞl selection, k 2 fk; lþ kg.

ð17Þ
A single iteration of the ES, which is a step from the parent population P ðtÞp to the next generation parent pop-
ulation P ðtþ1Þ

p is modeled by the mapping
optEA : ðIcÞl ! ðIcÞl. ð18Þ
7.1. Recombination

In any generation the l-membered parent population P ðtÞp produce an k-membered offspring population P ðtÞo .
For every offspring vector a temporary parent vector is first built by means of recombination. In our imple-
mentation the following recombination scheme has been used, rech : Rnh ! Rnh recombines the values of the
vector h, where h corresponds to either a design variable vector or a distribution parameter vector
rechðhÞ :¼ ha;1 or hb;1; . . . ; ha;nb or hb;nbð Þ; ð19Þ

ha,i and hb,i are the ith components of the vector ha and hb which are two parent vectors randomly chosen from
the population.

7.2. Mutation

The parameters r and a determine the variances and covariances of the ns-dimensional normal distribution,
which is used for exploring the continuous part of the design space. The amount of parameters attached to an
individual can vary, depending on the degree of freedom required by the objective function in question. The
setting that is used in the current study is: nr = ns, na = ns(ns � 1)/2, which corresponds to the correlated muta-
tion operator with a complete covariance matrix for each individual.

According to the generalized structure of the individuals of the populations in the proposed mixed-discrete
EA algorithm, the mutation operator mut : Ic! Ic is defined as follows:
mut ¼ ½mus � ðmur �muaÞ�. ð20Þ

The mutation operator is applied after the recombination operator to the intermediate individuals. The dis-
tribution parameters of the structure of an individual are mutated first. Mutation operator mur : Rnr

þ ! Rnr
þ

mutates the recombined values of the vector of standard deviation r:
murðrÞ :¼ r1 expðz1 þ z0Þ; . . . ; rnr expðznr þ z0Þð Þ; ð21Þ

where z0 � Nð0; s2

0Þ, zi � N(0,s2) "i 2 {1,2, . . . ,nr} and s0 ¼
� ffiffiffiffiffiffiffi

2ns

p ��1
, s ¼

� ffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffi
ns
pp ��i

.
Mutation operator mua : Rna ! Rna mutates the recombined values of the vector of inclination angles a:
muaðaÞ :¼ ða1 þ z1; . . . ; a1 þ znaÞ; ð22Þ

where zi � N(0,b2) "i 2 {1,2, . . . ,na} with b ffi 0.0873 (ffi5�).
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Mutation operator mus : Rn! Rn mutates the recombined values of the vector of continues design vari-
ables s, using the already mutated values of the r and a
musðsÞ :¼ s1 þ cor1ðr; aÞ; . . . ; sns þ cornsðr; aÞð Þ; ð23Þ

where cor is a random vector with normally distributed correlated components. The vector cor can be calcu-
lated according to cor = T Æ z where z ¼ ½z1; . . . ; znr �

T with zi � Nð0; r2
i Þ "i 2 {1, . . . ,nr} and
T ¼
Ynr�1

p¼1

Ynr

q¼pþ1

T pqð~ajÞ; ð24Þ
where j = 1/2(2nr � p)(p + 1) � 2nr + q (Rudolph, 2001). The rotation matrices Tpq(aj) are unit matrices ex-
pect of the diagonal terms where tpp = tqq = cos(aj) and tpq = �tqp = �sin(aj).

7.3. Selection

There are two different types of selection schemes:

(l + k)-ES: Where the best l individuals are selected from a temporary population of (l + k) individuals to
form the parents of the next generation.
(l,k)-ES: Where the l individuals produce k offsprings (l 6 k) and the selection process defines a new pop-
ulation of l individuals from the set of k offsprings only.

Combining the recombination, mutation and selection operators the main loop for the case of (l,k)-ES is
formulated as follows:
optðlþkÞ-ESðP ðgÞÞ ¼ selkl
[k
i¼1

�
mutðrecðP ðgÞÞÞ

	 !
. ð25Þ
While for the case of the (l + k)-EA scheme the main loop is formulated as follows:
optðlþkÞ-ESðP ðgÞÞ ¼ sellþk
l

[k
i¼1

�
mutðrecðP ðgÞÞÞ

	
[ P ðgÞ

 !
. ð26Þ
The optimization procedure terminates when the following termination criterion is satisfied: the ratio lb/l has
reached a given value ed (=0.8 in the current study) where lb is the number of the parent vectors in the current
generation with the best objective function value.

7.4. The ES algorithm

In Fig. 2 a pseudo-code of the ES algorithm is depicted. At the beginning of the procedure in generation
t = 0 the initial parent population P ðtÞp , composed by l design vectors, is generated randomly (Step 3 of the
pseudo-code). Steps 5–12 correspond to the main part of the ES algorithm, where in every generation k off-
spring vectors are generated by means of recombination and mutation. Dl is a sub-population with two mem-
bers selected from the parent population of the current generation P ðtÞp (Step 6) which is used by the
recombination operator. Recombination and mutation operators, described in Steps 7–10, act on the both
design variable vectors sl and distribution parameter vectors rl and al (both distribution parameter vectors
denoted as yl in the pseudo-code). In Step 11, the objective and constraint functions are calculated in order
to assess the design vectors in terms of the objective function value and feasibility.
7.5. ES for structural optimization problems

Structural optimization problems have been treated traditionally with mathematical programming algo-
rithms, such as the sequential quadratic programming (SQP) method, which need gradient information. In



Fig. 2. Pseudo-code of the ES algorithm.
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structural optimization problems, where the objective function and the constraints are particularly highly non-
linear functions of the design variables, the computational effort spent in gradient calculations is usually large.
On the other hand EA optimization methods require more optimization steps.

In a number of studies by Papadrakakis et al. (1998, 1999) and Lagaros et al. (2002) it was found that EA
optimization methods in structural optimization are computationally efficient even if large number of optimi-
zation steps is required to reach the optimum. These optimization steps are computationally less expensive
than in the case of mathematical programming algorithms since they do not need gradient information. This
property of probabilistic search methods is of greater importance in the case of RBO problems since the cal-
culation of the derivatives of the reliability constraints is very time-consuming. Furthermore, probabilistic
methodologies are considered, due to their random search, as global optimization methods because they
are capable of finding the global optimum, whereas mathematical programming algorithms may be trapped
in local optima.

8. Numerical examples

The hinged isotropic cylindrical panel of Fig. 3 is considered in order to illustrate the efficiency of the pro-
posed reliability-based sizing-shape optimization methodology. The loading as well as the geometric and mate-
rial properties of the perfect shell is also shown in Fig. 3. The curve edge nodes of the panel are assumed to be
free in all directions while the nodes along the sides are hinged (fixed against translation). The material is con-
sidered to be elastic–perfectly plastic. The geometrically nonlinear elastic as well as elastoplastic response of
point A of the perfect cylinder with respect to the applied vertical load P, is shown in Fig. 4, where the cylin-
drical panel is discretized with a 21 · 21 mesh of 400 TRIG shell elements. A mesh convergence study for this
particular example is presented in a previous investigation (Argyris et al., 1998) where the computational
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efficiency of the TRIC element in nonlinear shell analysis was demonstrated. For the discretization of the sto-
chastic fields, the same mesh used for the finite element analysis is implemented since it is a fraction of the
correlation length parameters adopted in this example. Thus, it is considered dense enough for the accurate
representation of the fluctuations of the stochastic fields (Li and Der Kiureghian, 1992). The ultimate load
of the perfect configuration is found to be Pu = 2205 N for the elastic shell and Pu = 1240 N for the
elastoplastic.

8.1. Parametric investigation

A preliminary parametric investigation is presented with respect to the types and properties of the stochas-
tic fields modeling the initial imperfections in order to conclude at realistic imperfections’ scenarios that will be
adopted subsequently in the optimization procedure. Both 1D and 2D stochastic imperfections are considered
in order to investigate their effect on the buckling load of the panel. The thickness of the shell is considered to
be equal to the height h at the apex, i.e., t = 12.7 mm. For all cases, the standard deviation rf of the stochastic
field of the initial geometric imperfections is assumed to be rf = 0.02h, where h is the height at the apex of the
cylindrical panel. For the stochastic fields describing the random material and thickness imperfections, the
standard deviation was assumed rf = 0.2. Since no experimental data of initial imperfections is available
for this specific type of structure, a parametric study was performed in previous investigations by Papadopo-
ulos and Papadrakakis (2004, 2005), with respect to the correlation lengths of the stochastic fields in both x



Fig. 5. One sample function of 1D random initial geometric imperfections for rf = 0.10 and b1 = 50 mm.
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and y directions. The outcome of the parametric study was the evaluation of the ‘‘worst’’ imperfection mode of
the shell, which led to the estimation of the lower bound of the buckling load of the shell. This information is
most valuable for the safe design of shells against buckling.

As described in Li and Der Kiureghian (1992), for the 1D stochastic imperfections the ‘‘worst’’ imperfection
pattern corresponds to a correlation length parameter b1 = 50 mm for all random imperfection parameters
(geometric, material and thickness). In that work, a Monte Carlo simulation procedure was performed in
order to obtain the variability of the critical load factor of the panel for this correlation length parameter using
a sample NSAMP = 100. Fig. 5 presents one sample function of the initial geometric imperfections generated
for the above mentioned correlation length parameter b1 while Fig. 6 presents the histograms of the buckling
loads for the same value of the parameter b1, with and without physical nonlinearities. In the case where both
geometric and physical nonlinearities are included, the mean value of the buckling load and the coefficient of
variation are found to be 1168 N and 16%, respectively, while the lowest buckling load is computed at 700 N.



Fig. 7. One sample function of 2D random initial geometric imperfections for rf = 0.20 and b1 = b2 = 250 mm.
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In the case in which only geometric nonlinearities are included, the mean value of the buckling load and the
coefficient of variation was found to be 1230 N and 45%, respectively (Papadopoulos and Papadrakakis,
2004). The lowest buckling load for this case was computed at 500 N. It can be seen from Fig. 6 that a reduc-
tion of less than half of the coefficient of variation is computed in the elastoplastic model compared to the
elastic one for the combined imperfections case, while the mean value of the buckling loads remains almost
the same.

In the case of the 2D stochastic imperfections it is assumed that the correlation lengths in both x and y

directions are equal, b1 = b2, since there are no specific manufacturing procedures or boundary conditions that
would indicate a different assumption. The ‘‘worst’’ imperfection mode for this case corresponds to a corre-
lation length parameter b1 = b2 = 250 mm for the initial geometric imperfections, while the corresponding to
the random material and thickness imperfections values were found to be b1 = b2 = 50 mm (Papadopoulos
and Papadrakakis, 2004, 2005). In Fig. 7 one sample function of initial geometric imperfections generated
for the aforementioned correlation parameter is presented, while Fig. 8 presents the histograms of the buckling
loads for this ‘‘worst’’ imperfections’ pattern, with and without physical nonlinearities. In the case where both
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geometric and physical nonlinearities are included, the mean value of the buckling load is found to be 1218 N
with a coefficient of variation (cov) 40%. The lowest buckling load is estimated at 500 N for this case. In the
case in which only geometric nonlinearities are included, the mean value of the buckling load was found to be
2170 N and the coefficient of variation (cov) 45% (Papadopoulos and Papadrakakis, 2004). In this case the
lowest buckling load was also estimated at 500 N. For this case, a reduction of about 50% of the mean value
of the buckling loads is computed in the elastoplastic panel with respect to the elastic one, while the coefficient
of variation remains the almost the same.

8.2. Optimization results

Following the results of the preliminary previously described preliminary investigation, RBDO is per-
formed for the above mentioned imperfections’ scenario. Two design variables of the shell structure are
considered and the weight of the structure is the objective to be minimized. In the formulation of the RBDO
problem, the probabilistic constraint is imposed on the probability of structural failure and is set to pa = 0.001.
For each set of design parameters generated by the evolutionary algorithm, the probability of failure caused
by uncertainties related to material properties, geometry and loads of the structures is estimated using a brute-
force MCS with NSAMP = 1000. For this calculation, the concentrated load acting at point A of the shell (see
Fig. 3) is described as a random variable assumed to follow a log–normal probability density function with
mean value equal to 1000 N and standard deviation equal to 100 N.

Two kinds of design variables are examined for the test example considered, shape and sizing ones. The
shape design variable refers to the selection of the optimum curvature of the shell, which is defined by the
angle h, while the sizing design variable refers to the selection of the shell thickness. A deterministic (DBO)
and a probabilistic (RBDO) based formulations of the optimum design of a shell structure are considered
in this study. The DBO formulation is implemented considering linear and elastoplastic behavior. The
DBO formulation with elastic behavior can be stated as follows:
min weightðh; tÞ

subject to
0� 6 h 6 10�

5 mm 6 t 6 25 mm



bounds of the design variables

rvon Mises 6 ry=1:10; ry ¼ 4:2 N/mm
2
:

ð27Þ
The DBO formulation with elastoplastic behavior can be stated as follows
min weightðh; tÞ

subject to
0� 6 h 6 10�

5 mm 6 t 6 25 mm



bounds of the design variables

P buckl P 1000 N:

ð28Þ
The difference between the two DBO formulations is the constraints imposed either on the maximum von
Mises stress or on the buckling load in the case of the elastoplastic behavior. Four distinctive formulations
of the RBDO problem are examined, considering either elastic or elastoplastic behavior while 1D and 2D
combined random imperfections are taken into account. The RBDO formulations with elastic behavior can
be defined as
min weightðh; tÞ

subject to
0� 6 h 6 10�

5 mm 6 t 6 25 mm



bounds of the design variables

rvon Mises 6 ry=1:10 deterministric constraint,

pf 6 0:1% probabilistic constraint,

ð29Þ
with 1D and 2D combined random imperfections, while the RBDO formulation with elastoplastic behavior
can be stated as follows:



Table 1
Formulation of the optimization problem – a comparative study

Optimization problem formulation Design (angle h, thickness t) Volume (cm3) Generations Time (h) pf
a (%)

DBO linear 2.3�, 9.3 mm 4801 24 0.07 8.3
DBO elastoplastic 2.8�, 10.2 mm 5267 23 0.50 3.9
RBDO elastic 1D imperfection 6�, 12 mm 6205 15 210.0 0.3
RBDO elastoplastic 1D imperfection 4.9�, 14.5 mm 7493 19 261.7 0.1
RBDO elastic 2D imperfection 5.3�, 11.2 mm 5789 14 183.4 0.5
RBDO elastoplastic 2D imperfection 5.1�, 14.5 mm 7494 16 216.8 0.1

a Calculated considering elastoplastic behavior with 2D imperfections.
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min weightðh; tÞ

subject to
0� 6 h 6 10�

5 mm 6 t 6 25 mm



bounds of the design variables,

pf 6 0:1% probabilistic constraint,

ð30Þ
considering 1D and 2D combined random imperfections. In all formulations of the optimization problem the
ES algorithm was employed, while the number of parent and offspring vectors is taken equal to 5 (i.e., the
(5 + 5)-ES optimization scheme is adopted). Table 1 presents the results of the optimization procedure for
all DBO and RBDO formulations considered.

As it can be observed from Table 1, the optimum weight achieved based on the DBO formulation consid-
ering elastoplastic behavior is 10% more than the deterministic one with linear behavior. On the other hand, in
the case of the RBDO formulation of the optimization problem, the optimum weight achieved considering
elastoplastic behavior is increased by 21% and 30% for 1D and 2D imperfections; respectively, compared
to the elastic behavior. The detailed formulation of the optimization problem considering elastoplastic behav-
ior and 2D imperfections is by 56% and 42% heavier that the optimum design achieved with the DBO formu-
lation considering elastic and elastoplastic behavior, respectively.

In Table 1 can also be seen the computing time required for the three different formulations of the optimi-
zation problem. The RDBO formulation is orders of magnitude more time consuming that the DBO formu-
lations. The importance, though, of considering an RBDO formulation instead of a DBO one can be seen
from the probability of failure that corresponds to the optimum designs achieved with the three different for-
mulations. All probabilities of failure reported in Table 1 have been computed considering elastoplastic behav-
ior and 2D imperfections for all six optimum design cases examined. As can be seen the probability of failure
corresponding to the optimum computed by the deterministic optimization procedure, with linear formulation
or with elastoplastic behavior, is one order of magnitude larger than the allowable limit value, equal to 10�3,
considered in this work. On the other hand there is difference, both in terms of optimum weight and proba-
bility of failure, between the optimum designs achieved when considering the RDBO formulation with either
elastic or elastoplastic behavior.

9. Conclusions

In most cases optimum design of structures is based on deterministic parameters and is focused on
the satisfaction of the associated deterministic constraints. So far, many articles have been devoted to this
research field and efficient methods have been presented. Since there are many random factors that
affect the behavior, the manufacturing and the life of a structure the deterministic optimum is not indeed
the ‘‘real’’ optimum. In order to find the ‘‘real’’ optimum the designer has to take into account all nec-
essary random parameters and via the reliability analysis of the structure to determine its optimum design
taking into account a given probability of failure. Only after forming and solving this RBDO problem,
even with additional cost in weight and computing time, a ‘‘global’’ optimum structural design can be
found.

Along these lines, an efficient RBDO procedure is proposed for the sizing-shape optimization of shell-type
structures with random initial geometric material and thickness imperfections. In particular, the effect of



N.D. Lagaros, V. Papadopoulos / International Journal of Solids and Structures 43 (2006) 6948–6964 6963
material and thickness imperfections on the buckling load of isotropic shells is investigated with respect to the
optimum design of a cylindrical panel. For this purpose, the concept of an initial ‘‘imperfect’’ structure is
introduced involving not only geometric deviations of the shell structure from its perfect geometry but also
a spatial variability of the modulus of elasticity as well as of the thickness of the shell. For the RDBO formu-
lation, the objective function is assumed to be the weight of the structure while the constraints are taken both
deterministic (stress and displacement limitations) and probabilistic (the overall probability failure of the
structure). It is assumed that structural failure occurs when buckling load of the shell is reached. Then, the
overall probability of failure is taken as the global probabilistic constraint. Numerical results are presented
for a cylindrical panel, demonstrating the efficiency as well as the applicability of the proposed methodology
in obtaining rational optimum designs of shell-type structures in the presence of random geometric, material
and thickness imperfections.
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