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Abstract A computationally efficient method for the first order 
step-by-step limit analysis of space frames is presented. The 
incremental non-holonomic analysis is based on the generalized 
plastic node method. The non-linear yield surface is 
approximated by a multi-faceted surface, thus avoiding the 
iterative formulation at each load step. In order to prevent the 
occurrence of very small load steps a second internal and 
homothetic to the initial yield surface is implemented which 
creates a plastic zone for the activation of the plastic modes. 
This implementation reduces substantially the computational 
effort of the procedure without affecting the value of the final 
load. The solution of the linear equilibrium equation at each 
load step is obtained with the preconditioned conjugate gradient 
method. Special attention is paid to the fact that the overall 
stiffness matrix changes gradually with the successive formation 
of plastic nodes. The application of the conjugate gradient 
method is based on some recent developments on improved 
matrix handling techniques and efficient preconditioning 
strategies. A number of test problems have been performed 
which show the usefulness of the proposed approach and its 
superiority in respect to efficient direct methods of solution in 
both storage requirements and computing time. 

1 
Introduction 
The load carrying capacity of space frames has been the subject 
of extensive research over the last five to ten years. This is 
because the behaviour of these structures is significantly 
affected by the progressive development of plastic zones at 
critical section on account of material and geometric 
non-linearities. In contrast to the investigation of the limit state 
response of plane frames, where both mathematical 
programming and step by step approaches have been 
implemented, in three-dimensional building frames the 
incremental step by step approach has been mainly used. The 
use of incremental variational principles together with the finite 
element method has made it possible to develop finite element 
models and computational algorithms that can handle all types 
of nonlinearities to any desired degree of accuracy. Although 
the plastic hinge or concentrated plasticity approach provides 
only an approximate representation of the member behaviour, 
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as opposed to the plastic zone or distributed plasticity approach, 
it is considerably more cost effective. In this context a number 
of papers have recently appeared, based on the plastic hinge 
model for treating materially non-linear space frame problems 
and incorporating second order step-by-step analyses using an 
incremental iterative formulation (Ueda and Yao 1982; Orbison 
et al. 1982; Argyris et al. 1982; Hilmy and Abel 1985; Powell 
and Chen 1986; Bozzo and Gambarotta 1985; Kondoh and Atluri 
1987; Shi and Atluri 1988; Shi and Atluri 1989; Shi and Atluri 
1992; Tin-Loi and Wong 1989; Conci and Gattass 1990; 
Bermani and Kitpornchai 1990; Kiny et al. 1993; Ziemian et aL 
1993; Izzudin and Elnashai 1993). 

As opposed to the disadvantages of mathematical 
programming approaches which are based on rigid plastic 
analysis, purely incremental elasto-plastic analyses provide the 
complete load-deflection curve giving information on the 
structural behaviour prior to collapse and the deflections at 
collapse, while reversible loading paths and geometrical 
non-linearities can also be taken into account. The incremental 
elasto-plastic analyses based on mnlti-faceted yield surfaces and 
using elementary matrix structural analysis concepts provide 
a compact and practical approach for modelling the inelastic 
global structural behaviour of steel beam-column use of 
non-linear algorithms for the solution of the governing 
non-linear equations and may result to significant 
computational advantages. They can also provide very realistic 
results in a great variety of moment resisting frames as the over 
prediction of stiffness and strength becomes significant only 
for slender frames with intensive vertical loading (Argyris et al. 
1982; Morris 1990). Therefore, it is very helpful for the design 
engineer to use an efficient and cost-effective approach to 
treat large realistic 3-D building frames, which will give the 
opportunity to test a number of design options leading to a more 
optimal design. Subsequently the analysis may be supplemented 
by a more refined incremental-iterative procedure. 

In this work the incremental non-holonomic analysis is based 
on the generalised plastic node concept as described by Ueda 
et al. (1982) and Orbison et al. (1982). The non-linear yield 
surface is approximated by a multi-faceted surface, thus 
avoiding the iterative formulation at each load step which is 
necessary for the simultaneous fulfilment of yield and 
equilibrium conditions. Much emphasis is given to the solution 
procedure of the governing equilibrium equations as the load 
increases until the final collapse value is attained. The solution 
of the linear equilibrium equations at each load step is 
obtained using the preconditioned conjugate gradient method. 
The handling of the preconditioning matrix takes into account 
the fact that the overall stiffness matrix changes gradually with 
the successive formation of the plastic nodes. Thus, the 



preconditioning matrix need not be formed at every step but 
only when a substantial deterioration of the stiffness matrix is 
realised, due to the successive formation of the plastic nodes. 

This paper is an extension of previous work by Papadrakakis 
and Karamanos (1991) where plane frame studies were 
presented. The novelty of the present work in relation to the 
previous one is, apart from the formulation of the problem in 
three dimensions, the computational handling of the yield 
criterion and the implementation of some recent developments 
in the equation solving procedure which further enhance the 
efficiency of the proposed technique. In order to prevent 
the occurrence of very small load steps, associated with 
multi-faceted yield surfaces and avoid spurious oscillations of 
a yield point around sharp corners, a yield zone concept is 
adopted by introducing a second internal yield surface, 
homothetic and close to the first one. This handling of the yield 
criterion substantially increases the size of the load steps 
without impairing the accuracy of the solution. The 
implementation of some recent developments of the conjugate 
gradient method particularly suitable for three dimensional 
applications in respect to improved matrix handling techniques 
and efficient preconditioning strategies, as proposed by 
Papadrakakis (1993) and Papadrakakis and Bitoulas (1991, 
1993) result in even more cost effective solution both in terms 
of computing time and storage requirements. The numerical 
results presented demonstrate that this approach provides 
a realistic treatment for the analysis of 3-D building frames of 
substantial size. 

2 
The plastic node method 

2.1 
The elasto-plastic stiffness matrix 
Under the assumption of concentrated plasticity all plastic 
deformations are confined to zero length plastic zones at the 
two ends of the member, leaving elastic the part of the member 
between the two plastic nodes. The materials are assumed to 
be elastic-perfectly plastic and the structural response is in the 
range of small displacements. According to this theory when 
the stress resultants satisfy a prescribed yielding function at 
the ends of the element, a plastic node will occur instantly at 
that location. After reaching the yield surface, and in the absence 
of strain hardening, the stress point moves on the yield surface 
provided that stress reversals have not occurred. This approach 
was introduced by Ueda and Yao (1982) and is referred to 
as the plastic node method. 

Assuming that for the 3-D beam element of Fig. 1 there is 
interaction between axial and biaxial bending effects, the 
plasticity conditions at the two element nodes may be stated 
as follows: 

F~ = F 1 (S1, $5, $6, o-y) for member end (1) 

F 2 = F 2 (S 7, Sl~, S12, ay) for member end2 (2) 

S 4 Sl S 7 S10 

S27 1"S3 S s 7  Ts9 
s57 f s6 s~7 Is~2 

Fig. 1. Element nodal forces 

where Sv S 7 are the axial and $5, $6, SI1 , S12 are the bending stress 
resultants respectively and r is the yield stress. If F; < 0 the 
behaviour is elastic, while Fj = 0 corresponds to the formation 
of a plastic hinge at the endj. The tangent elasto-plastic stiffness 
may be expressed as: 

Kep = K e -- KeO {OrKeO}-IOTK e (3) 

in which K p is the elasto-plastic element stiffness matrix, Kr is 
the elastic element stiffness matrix, and �9 is defined as follows: 

ooo  Eoooooo 

OF OF OF 7 :r 
0 = 0 2 =  0 0 0 0 0 0 ~-~7 0 0 0 0 - ~  ] 

(4) 

(5) 

o r  

0 = [01 02] r (6) 

if plastic nodes are formed at the ends 1,2 or 1 and 2, 
respectively. 

Stress reversals can be detected by monitoring the sign of 
the scalar d#j which defines the increment of the plastic nodal 
displacement in the associated plasticity conditions 

dup = d#jOj for j =  1,2 (7) 

in which the two-component vector dp is given by 

dp = (OTKe O) 1OrKedu (8) 

Thus, when the plastic hinge is under loading, d#; is positive; 
otherwise when unloading occurs d#j becomes negative. 

2.2 
Yield criteria 
For the purpose of the limit state analysis using the above 
mentioned formulation, a plastic interaction surface in terms 
of stress resultants has to be derived. The known yield 
conditions in terms of stress components must therefore be 
transformed to the space of the generalized forces. The existance 
of a large number of different limit state conditions are reflected 
in the variety of the interaction surfaces used. In general, the 
yield surface can be represented by a single equation or 
a multi-faceted surface. Closed form interactive expressions are 
however limited in the literature to special cases corresponding 
to the dominant behaviour of the structural components instead 
of coping with general cases which involve all six generalised 
cross-sectional forces. These closed form expressions, which 
appear in a single equation, are strongly dependent on the 
cross-sectional geometric properties. For the analysis of a 3-D 
space frame, a simplified limit state condition would only 
require the selection of the axial force and the two bending 
moments as sufficient parameters to describe the interaction 
surfaces. 

Following these lines, the equation proposed by Orbison et al. 
(1982) was selected. This is given in a single equation by the 
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expression: 

2 4 3.67p2m2 6 2 4 2 1.15p 2 + m~ + m; + + 3p my + 4.65m~m} = 1 (9) 

where p, m~, my identify P/Pp MJM;~, PylMpy, respectively. Py 
is the squash load, while Mp~ and Mpy are the plastic moment 
of the strong and weak axis. This equation is only representative 
for light to medium weight American shapes and provides an 
excellent correlation with the surfaces derived for a W12 x 31 
section and with recommendation of codes (Conci and Gattass 
1990). 

Further on, supporting the simplicity of our approach in 
terms of the required mathematical formulation, two piece-wise 
linear multi-faceted surfaces which approximate the above 
equation were used as shown in Fig. 2. The approach is general, 
however, and any other surface can easily be implemented by 
simply changing the equations of the consisting hyperplanes. 

Although the single equation surface has potential 
advantages over the multi-faceted surface, as pointed out by 
Orbison et al. (1982 ), an iterative procedure is typically required 
to determine the load increment from an elastic state to incipient 
yielding. However, when planar facets are used, the gradient 
vector �9 contains constant terms only and is therefore 
independent of the current forces. Thus, K~p remains constant 
within the load increment and the elasto-plastic equilibrium 
states are obtained using a pure incremental procedure without 
iterations. This transformation of the non-linear problem into 
a linear one is necessary, at each load step in which satisfaction 
of both equilibrium and yield criteria is easily achieved, in order 
to implement the solution techniques described in the following 
section. 

2.3 
Computer implementation 
The total applied load vector is given by 

f = ,~q (10) 

where q is the basic load vector usually indicating the magnitude 
of the structure loads and the scalar 2 is the load factor. As 

P/Py 

(1'01/~,,/ ~ --~ MrUblti~foaC(e~;d2) 

,, ,Mz 

My 
Mpy 

Fig. 2. Yield surface and multi-faceted approximation 

Z increases, plastic nodes are formed until the structure 
collapses, after becoming a mechanism. The aim of the 
computational procedure is the evaluation of that ultimate load 
factor 2,. This is done through a pure incremental procedure 
since the Kep matrix is a constant tangential matrix within 
the load increment, which depends only on the co-ordinates 
of the normal vector �9 of the hyperplane at which the force 
point is found. When increasing the scalar 2 a force point, 
corresponding to an end-section of an element, either moves 
from the elastic region inside the yield surface to a point on the 
yield surface or, if this point has already reached the yield 
surface at a previous step, from the point on a hyperplane to 
the intersection of this hyperplane with the neighbouring one 
(Fig. 3). This indicates the activation of a new yield mode and 
since the yield surface is piece-wise linear, the behaviour of the 
structure between two subsequent yield mode activations is 
also linear. Violations of the yield condition and equilibrium 
do not occur, as with analyses involving non-linear yield 
surfaces. An important feature of the analysis is the automatic 
calculation of the maximum load increment which corresponds 
to the activation of a new yield mode. 

The usual problem occurring with multi-faceted surfaces 
when implemented to 3-D problems is that many steps are 
frequently required before the ultimate load is reached. This 
is not only because each plastic node formation requires a full 
analysis step, but also because a change of force point from one 
hyperplane to another would also require a full analysis step. 

1 ~ P l a s t i c  zone 

~--'__ ~ p e r p l a n e  
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1 t O ~ T--- - -  Homothetic 

I surface 
I 
I 

1 j ,  

Mz 
a MpZ 

My 
Mpy 

-_ C 

C" 

1 
I ,  

Mz 
Mpz 

Fig. 3a, b. Estimation of load increment CC' and representation of 
plastic zone for further activation of yield modes DD'. a Yield activation 
from elastic state b Yield activation from adjacent hyperplane 



Additionally, spurious oscillations of a point around sharp 
corners of the yield surface may occur due to the discontinuity 
of the derivative vector ~ (Orbison et al. 1982). For large-scale 
problems, these factors introduce significant numerical 
instabilities, to the point of sometimes rendering the approach 
incapable of reaching the true ultimate load. In order to avoid 
these implications, the use of a second internal yield surface 
of similar orientation (homothetic) and close to the first one is 
introduced by Bozzo and Gambarota (1983) for 2-D frames. The 
original yield surface together with it's homothetic create a zone 
with well defined dimensions where the activation of a yield 
mode starts as soon as the force point of an element-end crosses 
the internal surface (CC' and DD' paths of Fig. 3a). This force 
point is then restricted to the interior of this zone, unless 
unloading occurs (CC' and DD' paths of Fig. 3b). This 
implementation allows the activation of more than one yield 
mode within the same load step. In our application the distance 
between the two yield surfaces is defined by a tolerance criterion 
~, which controls the activation of a yield mode. In this way we 
avoid the dependence of the development of the plastic 
nodes on the accuracy with which the yield criterion is satisfied. 
Thus, instead of a force point oscillating around a sharp corner 
for a number of steps without any advancement on the loading 
path, simultaneous formation of more than one plastic nodes 
will change significantly the global stiffness characteristics 
forcing the oscillating point to move towards a new direction 
away from the corner of oscillation. This has repetitively been 
observed in our examples. The introduction of the homothetic 
surface in our implementation reduces substantially the 
computational time of the procedure without affecting the 
accuracy of the solution. The influence of the tolerance q on 
the accuracy and the efficiency of the solution is shown in 
Table 3 of the section Test Problems. 

The automatic calculation of the load increment 
corresponding to the initiation of a newyield mode is performed 
by computing the shortest distance (CC' in Fig. 3) required for 
the activation of a new hyperplane from an elastic state or for 
the migration of a force point to an adjacent hyperplane. 
For each member-end the corresponding distance is calculated 
as follows. The incremental force vector & for element 
i expressed in the yield surface space is given by 

Ai= [A, A2] t _pyMpyMpzPyMpyMpz j  (11) 

The parametric equations for member-end 1 of the line which 
is parallel to the vector A~ and passes from the cumulative force 
state of the current load step (point C in Fig. 3), are expressed by 

$I dS l 
x = + _~Dt  

$5 dS5 
3' = - -  + (12) 

= $ 6 + d S 6  D 
Z Mp~ Mp~ t 

Similar expressions may be derived for member-end 2 by using 
the corresponding element forces. The general equation of 

a plane of the multi-faceted yield surface is given by 

y.x + fly § yz § ~ = 0 (13) 

In order to calculate the distance, i.e. the scalar Dt~; by which 
the vector A; must be multiplied in order to reach the plane 
defined by Eq. (13), the intersection point of the line of Eq. (12) 
and the plane of Eq. (13) must be defined. Thus the required 
distance is determined by substituting x, y, z of Eq. (12) into 
Eq. (13) and solving for Dti;. Then the load increment for the 
next step is obtained from 

62 = min(Dtij) (14) 

The computational procedure may be described in the 
following stages: 

1. Initial formulation using the elastic matrices of the 
elements. Step number m = 1. 

2. Solve for the incremental basic displacements in step m: 
dun = K21q, where K~ is the overall stiffness matrix at step 
m. If diagonal terms resulting from the factorization of 
the stiffness matrix are negative or displacements are too 
large, then the structure has become a mechanism and 
the incremental procedure is terminated. 

3. Evaluate the incremental forces, dS i = [ dS~ dS s dS 6 dS 7 dSll 
d&2] r due to dum, for each element i. 

4. Find the shortest distance between the force point of the 
element-ends and the yield surface, or the point on 
a hyperplane and the intersection with the neighbouring 
one according to Eq. (14). 

5. Calculate 6i; = Dt~j -- ~2 for all elements. If6~; __< e, ( = 0.01) 
then endj  of element i will become plastic. 

6. Update load factor, displacements and element forces. 

2,~ = -~m-1 + ~52m (15) 

U m ~--- U r n _  1 Jr- (~2tnU m (16) 

S~ = Sin-1 + c~2~dS for each member  (17) 

7. Check for unloading according to Eq. (8). 
8. The overall stiffness matrix is altered by the new stiffness 

matrix of the element(s) taking into consideration the 
newly formed plastic conditions. Some additional changes 
are required if stress reversals occur. 

9. Set m = m + 1 and return to step 2. 

3 
Solution techniques 

3.1 
The preconditioned conjugate gradient method 
The incremental limit analysis of space frames, described in 
the previous section, requires a number of subsequent linear 
solutions in which the overall stiffness matrix is slightly 
modified from one solution to the other. The total number of 
solutions corresponds to the total number of load increments 
required for the structure to become a mechanism. The change 
of stiffness from one step to the other is only due to the 
contribution of the elasto-plastic stiffness matrices of the 
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elements with the newly formed plastic nodes. These special 
features of the problem make the preconditioned conjugate 
gradient method (PCG) very attractive for the solution of the 
linear problem at each load increment. The PCG is established as 
the more attractive iterative procedure for solving linear 
problems resulting from the finite element discretization. An 
important factor in the success of this method in solving 
large-scale finite element equations is the preconditioned 
technique used to improve the ellipticity of the coefficient 
matrix. This typically consists of replacing the original system 
Ku = fby  the equivalent system 

R-1Ku = R - i f  (18) 

where K is the (n x n) stiffness matrix and the transformation 
or preconditioning matrix R is an approximation to K and it 
is non-singular. The PCG algorithm, based on the most efficient 
conjugate gradient version in respect to computational labour, 
storage requirements and accuracy is defined as follows for the 
untransformed variables: 

( r  (m), z(m) ) 

C~rn - -  (d (m)  Kd (~)) 

U (re+l) ~ U TM) + ~m d(m) 

r (re+l) = r (m) + O~mKd (m) 

if IIr(~+~)ll/l[fl[ ~ e then stop (19) 

Z(re+l) _~_ R -  i t (m+ 1) 

(1-(ra + 1) z(m+ 1)) 
tim-- (r(m), z(m)) 

d (re+l) : - -  Z(m+l) + tim d(m) 

with r (~ = Ku (~ - f, z (~ - R-lr(~ d (~ = z (~ 

At the heart of the PCG iterative procedure for solving Ku = f 
is the determination of the residual vector and the selection of 
the preconditioning matrix. The accuracy achieved and the 
computational labour of the method is largely determined by 
how these two parameters are selected. An extensive study 
performed by Papadrakakis and Bitoulas (1993) revealed that 
the computation of the residual vector from its defining formula 
r (~) = Ku ~) - f with an explicit or a first order differences 
matrix-vector multiplication Ku (m) offers no improvement in 
the accuracy of the computed results. In fact, it was found that, 
contrary to previous recommendations, the calculation of the 
residuals by the recursive expression of algorithm (19) produces 
a more stable and well-behaved iterative procedure. Based 
on this observation a mixed precision PCG implementation is 
proposed in which all computations are performed in single 
precision, except for double precision computation of the 
matrix vector multiplication in the recursive evaluation of the 
residual vector. This implementation is a robust and reliable 
solution procedure even for handling large and ill-conditioned 
problems, while it is also storage-effective. It was also proved 

to be more cost effective, for the same storage demands, than 
double precision calculations. 

3.2 
Preconditioning matrices 
A number of strategies can be used to increase the efficiency 
of linear iterative solvers based on the selection and 
implementation of the preconditioning matrix in conjunction 
with different ways of handling the matrix equations. The 
resulting hybrid direct-iterative procedure is more effective 
than the exclusive use of either a direct or a pure iterative 
approach (Papadrakakis 1993). 

The preconditioning matrix R has to be selected 
appropriately so that the eigenvalues of R-1K are spread over 
a much narrower range than those of K. Preconditioning and 
matrix handling strategies may be classified into three main 
categories: global, element-by-element and block and domain 
decomposition. The two latter implementations are particularly 
suitable on innovative computer architectures with parallel 
processing capabilities. The most widely used global 
preconditioners are derived either from the incomplete 
Cholesky factorization of the stiffness matrix (ICPR) or from 
the symmetric successive overrelaxation (SSOR) characteristic 
matrix. The reason for performing an incomplete factorization 
is to obtain a reasonable factorization of K without generating 
too many fill-ins. Such an approach leads to the factorization 
L L r = K -- E, where E is an error matrix which does not have to 
be formed. The SSOR implementation for R is suitable for 
problems where available computing storage is liable to be 
stretched to its limit, since no additional storage is required for 
the preconditioning matrix R. Ajiz and Iennings (1984) 
proposed a robust incomplete factorization-based 
preconditioner in which rejection of an off-diagonal term 
during factorization, takes place according to its magnitude 
relative to the diagonal terms corresponding to its row and 
column. If the off-diagonal term is rejected, the corresponding 
diagonal terms are modified in order to preserve the stability 
of the factorization process. The proposed computer 
implementation however, requires complicated addressings 
and high demands for auxiliary storage during the formation of 
the preconditioning matrix. In this study an improved 
computer implementation of this incomplete factorization type 
preconditioner is used. This version proposed by Bitoulas and 
Papadrakakis (1993) was found to be particularly effective in 
large-scale 3-D problems by reducing both the computing 
storage and the factorization time in respect to the original 
version. 

The ICPR algorithm can be described using a row-by-row 
formulation and referring to L r rather than L, as follows: 

for each row i = 1,2 . . . . .  N 
for each column j = i + 1 . . . . .  N 

i -1 
kij- kij-  ~. lflkj 

k=l 

i--[ J ~  i--I 

k=l k=i+l  k=l  

i--1 

E 
k=l 



check for rejection: ki ~] < O kiikj; (20) 

if yes: ~(j) 1/2 X- ~.ii = (kii/kjj) I kul 

C~i) ]/2 x- ; = ( k j / k . )  r ki ; I  

kq - 0  

next j  

I .  = (k , i )  Z'- 

for each co lumnj  = i + 1 . . . . .  N 

l. = kiT/lii 

next j 

next i 

In the above description l~j is the entry in the row and column 
j of L r. The choice for ~ = 0 corresponds to the complete 
factorization while in the case of tp = 1 corresponds to a form 
of diagonal scaling. 

The second type of preconditioning used in this study 
corresponds to the SSOR characteristic matrix and is defined as 

R = (D + (oC)D-l (D + coC r) (21) 

4 
Test problems 
Three test examples have been carried out in order to test the 
performance of the methods previously described. Two yield 
surfaces (a) and (b), shown in Fig. 5 in the plane my - m z, are 
used for the analysis of example 1, to investigate the sensitivity 
of the results on different approximations of the yield surface 
represented by Eq. (9). Yield surface (a) is used for the 
subsequent examples 2 and 3. A compact storage scheme is used 
for PCG-ICPR to store both stiffness and preconditioning 
matrices row-by-row. Non-zero terms are stored in a real vector, 
while the corresponding column members are stored in an 
integer vector of equal length. An additional integer vector with 
length equal to the number of equations is used to record the 
start of each row inside the compact scheme (Bitoulas and 
Papadrakakis 1991). Thus the total storage requirements for 
ICPR are N K + N R real (the size of K and R respectively) and 
N K + N~ + 2(n + 1) integer stores (for the addressing). The 
extra storage for the conjugate gradient method is 5n real 
positions. The direct solution procedure with the complete 
Cholesky factorization is handled either with two skyline storage 
routines for K and L (version a) or with a compact storage for 
K and a skyline storage for L (version b). In estimating the 
computer storage it is assumed that integers are stored as 
INTEGER *2 or INTEGER *4 according to their maximum 
possible values, and the floating point variables as REAL *4 or 
REAL *8 according to the accuracy of computation, single or 
double respectively. 
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where K = D + C + C r, D is diagonal and C is strictly lower 
triangular. When co = 0 the preconditioning matrix reduces to 
diagonal. The advantage of this type of preconditioner is that 
no extra storage is required for R, since it can be easily formed 
from K. 

3.3 
The complete Cholesky LDLrfactorization 
In this study the proposed solution technique is compared to 
a conventional direct method for the solution of the linear 
equations at each load step. One of the most efficient direct 
solution is considered to be the LDL r Cholesky factorization of 
the stiffness matrix stored in skyline form (Bathe and Wilson 
1976). Since for large-scale 3-D frames the solution phase 
at each load step represents a significant investment in 
computing effort, a simple modification in the factorized 
process is implemented resulting in significant savings in 
computing time. During the factorization phase the alterations 
to the factorized stiffness matrix are confined to the bottom 
right-hand corner starting from the first node with a change 
in the stiffness matrix due to the plastic node formation at the 
end of one or more elements connected to that node. 
Consequently the time-consuming factorization part need not 
be repeated but only the steps after the smallest degree of 
freedom which is affected by the change of stiffness matrix and 
onwards. In this implementation, however, the stiffness matrix 
is not replaced by the factorized matrix L as in ordinary linear 
problems, but has to be stored separately, incorporating 
the changes due to the plastic node formation, so that the 
factorization can be restored at the appropriate point at the next 
load step. This technique is referred to as a modified complete 
factorization. 

Example 1 The first test example is the six storey space frame 
analysed by Orbison et al. (1982) and Conci and Gattass (1990). 
The frame layout and the element sections are shown in Fig. 4. 
The yield strength of all elements is taken 250 MPa. The beams 
have L z = 7.32 m and the columns L 2 = 3.66 m. The loads, 
consisting of a 19160 Pa gravity load on all floor levels and 
a lateral load of 109 kN applied to each node in the front 
elevation in the negative z direction, were proportionally 
applied. The number  of equations is 180 and the half bandwidth 
is 41. In Fig. 5 the load-displacement curves are shown for the 
results obtained by the use of the two yield surfaces. The 
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Fig. 4. Example 1-Orbison's space frame 
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Fig. 5. Load-deflection curves of Example 1 and plan view of yield 
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complete Cholesky LDL r factorization and not any PCG version 
is used to solve the equations at each step since this example 
is very small to assess the efficiency of the solution procedures 
described in the previous section. 
Example 2 The second test example is the twenty storey space 
frame analysed previously by Orbison et al. (1982) and Bozzo 
and Gambarotta (1985), and is shown in Fig. 6 (plan (a)). The 
loads considered here are uniform vertical forces applied at 
joints and equivalent to uniform load of 100 psf and horizontal 
forces equivalent to uniform pressure of 20 psf on the larger 
surface. The load-displacement curve is shown in Fig. 7. The 
number of equations is 1200 and the half bandwidth is 65. 
Table 1 depicts the influence of the distance of the two yield 

Table 1. Example 2. Accuracy and efficiency of the method 
for different values of the tolerance parameter e, 

10-1 10 -2 1 0  - 4  1 0  - 9  

Steps 3 65 350 350 
Load factor 0.066 1.40 1.34 1.30 
Number of 600 103 95 85 
plastic nodes 
Total time(s) 7.9 99.4 502.6 504.1 
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surfaces, used to define the yield zone, on the accuracy and 

efficiency of  the solution. The tolerance cr i ter ion e, controls  the 

act ivation of  a yield m o d e  and may  be considered as being 

propor t iona l  to the bandwidth  of  the yield zone. Table 2 shows 

the per formance  of  the PCG iterative solut ion procedure  for 
steps 1 and 50 with the ICPR precondi t ioner  for var ious values 
of  the ~ paramete r  and with the SSOR precondi t ioner .  This 
Table depicts the n u m b e r  of  i terations,  the CPU time, the 
n u m b e r  of  e lements  re ta ined dur ing the incomplete  
factorizat ion of  the initial elastic stiffness and of  the 

elasto-plastic stiffness mat r ix  at load step 50. The t ime entries 
are in seconds as obta ined by the Silicon Graphics Indigo R4000 
workstat ion.  For the subsequent  applications the value of  

= 10 -5 was selected for the ICPR precondi t ioner .  
A compara t ive  study of  the methods  with the different values 

of  the characterist ic parameters  appears  in Table 3. The storage 
requi rements  and comput ing  t ime as well as the ul t imate load 
factor and the n u m b e r  of  load steps as depicted for the 
direct me thod  (DIR) of  complete  factorizat ion with and wi thout  
modif icat ion and for the PCG with ICPR (~ = 0 and ~ = 10 5) 
and SSOR (ff = 0, 09 = 1) precondi t ioners .  The ICPR with @ = 0 

corresponds  to an iterative i m p r o v e m e n t  p roposed  for the direct 
methods  by Papadrakakis  and Bitoulas (1993). The letter M after 
the abbreviated name  of the me thod  means  that the modif ied  
factorizat ion has been used. The abbreviat ion NUM controls 
the f requency of  updat ing  the precondi t ion ing  matrix.  It 
denotes the m a x i m u m  allowable ratio of  PCG iterat ions in the 
current  step over  the i terat ions in the previous step before the 

precondi t ion ing  matr ix  is updated. When  updat ing is 

pe r fo rmed  at each load step the abbreviat ion NUM is omitted.  

Finally, the mixed  precis ion implementa t ion  of  the PCG is 

denoted  with the word  'mixed ' .  The factorizat ion and 

subst i tut ion t ime is al located to direct  versions only. Two 
storage handlings of  the stiffness mat r ix  are contained for the 
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Elements of Elements of 
stiffness preconditioner 
matrix K R 

PCG iterations 

Load step 1 50 1 50 1 50 
DIR 73428 73428 - - - 

= 1 0  - 7  6480 7356 20078 20553 7 15 
= 10 -6 6480 7356 1 3 9 4 1  14223 13 21 
= 10 5 6480 7356 1 0 0 2 7  10135 15 30 
= 10 4 6480 7356 7062 7078 41 50 
= 10 -~ 6480 7356 4653 4714 38 84 
= 10 - ;  6480 7356 2999 3025 62 165 

SSOR 6480 7356 - - 84 208 

Time (s) 

1 
3.36 
3.34 
3.17 
2.90 
3.95 
3.45 
4.63 
4.78 

50 
3.36 
4.32 
4.15 
4.14 
4.88 
5.88 
8.36 

12.17 

Table 2. Example 2. Performance of ICPR 
for various ~ at loadstep 1 and 50. (s = 10 -1) 

Elements of Elements of 
stiffness preconditioner 
matrix K R 

PCG iterations 

Load step 1 50 1 50 1 50 
DIR 284376 284376 - - - 

= 10 -7 16462 17126 60082 60369 11 13 
= 10 -6 16462 17126  38063 38192 16 19 
= 10 5 16462 17126  26035 26121 22 28 
= 10 -4 16462 17126  17018  17035 33 40 
= 10 3 16462 17162  10102  10108 43 51 
= 10 -2 16462 1 7 1 2 6  9524 7528 51 61 

SSOR 16462 17126 - - 85 126 

Time (s) 

1 
24.10 
11.69 
11.05 
10.62 
9.83 
9.42 
9.15 

11.64 

50 
24.10 
11.97 
11.56 
11.15 
10.40 
10.08 
9.70 

14.35 

Table 3. Example 2. Efficiency of the 
methods for different Values of the 
characteristic parameters 
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direct method. Case (a) corresponds to a skyline storage for 
both K and L, while case (b) corresponds to compact storage 
handling of K as used for the PCG implementations. The slack 
termination criterion for the linear solution is denoted by the 
value of e. 

Example 3 As a final example, an extension in plan of example 
2 is chosen in order to increase the size of the problem to a more 
realistic structure and accentuate the capabilities and 
limitations of the solution techniques proposed. The plan view 
of the structure is shown in Fig. 6 (plan (b)). The load- 
displacement curve obtained is shown in Fig. 8. Table 4 depicts 
the performance of PCG for steps 1 and 50 and for various values 
of the drop-off parameter ~. The value of ~ = 10 -2 is selected 
for the subsequent applications. The example was tested for 
selective cases obtained from example 2 and the results are 
shown in Table 5. In this example the incremental procedure is 
terminated after the 100th load increment for all cases. 

5 
Conclusions 
The computational method presented in this work is very 
efficient for the first order step-by-step limit analysis of space 
frames. The use of the plastic node approach in conjunction with 
a multi-faceted approximation of the yield surface permits 
a linearized solution at each load step without iterations. With 
the implementation of a plastic zone defined by the yield surface 
and a second surface, homothetic and close to the first one, the 
efficiency of the step-by-step incremental analysis is 
substantially improved. Small load steps or spurious oscillations 
of points around the corners of the yield surface are avoided, 
while simultaneous formation of more than one plastic 
nodes at each load step is accomplished. The fact that the overall 
stiffness matrix changes gradually, with the successive 
formation of plastic nodes, enables us to implement the 
preconditioned conjugate gradient method for the linear 
solution at each load step with a complete or an incomplete 
Cholesky factorization of the stiffness matrix as preconditioner 
and to improve the efficiency of the method in both computing 
storage and time. Additionally, the use of a mixed precision 
arithmetic formulation for the preconditioned conjugate 
gradient method may further reduce the computer storage 
without impairing the computing time or the accuracy of the 
solution. Thus, the proposed methodology is an efficient 
approach for treating large realistic 3-D building frames and 
provides a helpful tool for the design engineer who may achieve 
a more optimal design by economically testing a number of 
design options. 

More specifically, the combination of a compact storage 
scheme for the stiffness matrix with the modified factorization 
procedure, in which alterations to the factorized matrix are 
confined to the bottom right hand corner, appear to have 
a significant influence on the performance of the direct method. 
The storage requirements are reduced almost by half, while the 
computing time is less than 60% for the third example. The use 
of the complete factorized matrix as preconditioner for an 
iterative improvement of the direct method produces a 60% 
reduction in computing time, in respect to the modified direct 
method, while its mixed precision implementation results in 
a 50% reduction in computer storage and to a further reduction 
in computing time for the large example considered in this 



METHOD DIR DIR-M ICPR ICPR-M ICPR-M 
4~=o ~ =o ~=o 
8 = 10 -1 e : 10 2 e = 10 -2 
NUM=2 NUM=3 NUM=3 

mixed 

ICPR-M 
= 10 _2 

e = 10 -1 

ICPR-M 
t )=10  2 

mixed 

STORAGE 4607 a 4607 ~ 
(Mbytes) 2500 b 2500 b 2555 2555 1370 375 289 
TIME (s) 
Factorization 743 400 . . . . .  
Substitutions 32 35 . . . .  
Preconditioning - - 276 98 97 80 94 
CG iterations - 87 111 78 216 217 
Plastic node 98 98 95 95 99 90 97 
Total 873 533 458 304 274 386 408 

Steps 100 100 100 100 100 100 100 
Load factor 2.3 2.3 2.1 2.1 2.1 2.1 2.1 
Number of 167 167 210 210 198 205 205 
plastic nodes 

Table 5. Example 3. Efficiency of the 
methods for different values of the 
characteristic parameters 
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study. Finally, the ICPR implementa t ion  with ~ # 0 produces 
competit ive t imes in  respect to the direct method  with iterative 
improvemen t  while requir ing only 1/5 to 1/10 of the 
corresponding computer  storage requirements  of the direct 
method.  
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