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Abstract 

This research aims to develop an optimization framework for the process of Selective Laser Sintering 

and Melting (SLS/SLM) by leveraging the extreme efficiency of data-driven models. SLS/SLM is a main 

representative of Additive Manufacturing processes, which are instrumental to the realization of 

Industry 4.0. Its principle of operation is based on using heat from a moving laser beam to selectively 

consolidate pre-deposited powder layers into successive slices of the final part. Model-based 

optimization is critical for the maturation of SLS/SLM, which is thus far driven by generally sub-optimal 

setups determined by trial-end-error on actual machines. After decades of research, it still poses 

extreme challenges mainly stemming from the large discrepancy of scales involved in the process. 

Emergent computational barriers are somewhat alleviated by the practice of multiscale modeling, which 

aims to gradually increase the scope of simulations by transferring knowledge between various levels of 

abstraction.  

SLS/SLM is a thermal process, and the temperature history of a given layer, which in part depends on 

the topology of the trajectory, greatly affects the characteristics of the final part. Discrete particle 

models struggle to process a single millimeter of laser track. Low resolution models which handle entire 

parts cannot maintain connection to the thermal history imposed by a specific scanning strategy. At 

both of these extremes, the critical effects of the laser trajectory are not taken into account. The 

intermediate scale of a single powder layer, macroscopically considered as a continuous medium, is 

generally regarded as the most suitable to focus on for optimization related research. The trend is to 

attempt to optimize for quantities which have strong correlation to the overall quality of the process, 

peak temperature along the laser path being a typical choice. 

Physics models have been successfully employed for predictive simulations at the lower end of the layer 

scale (~mm). An actual layer, however, typically requires much larger laser tracks (~102 m). At this scale, 

physics-based simulations are too costly or even unfeasible. In addition to that, optimization requires 

multiple simulations for achieving a given objective. Physics agnostic data-driven models exhibit the 

necessary computational efficiency both for achieving sizeable simulations and also facilitating 

optimization endeavors. Thus far they have been employed mostly for trivial scanning strategies and/or 

small geometries. Model-based optimization of process parameters along an arbitrary laser trajectory of 

significant length is an open problem. 



2 

Three modeling platforms of progressively increasing scope are developed in this thesis: The Parent 

Model, the Surrogate Model and the Power Model. The Parent Model is a macroscopic thermal FEA 

modeling platform optimized for efficiency in relatively short track simulations (~mm). It implements 

thermal shell elements, automatic domain creation with progressive mesh coarsening, and solution 

accelerating techniques. It also employs virtual materials to represent various stages of consolidation, 

from initial loose powder to fully dense material. Its purpose is to efficiently produce large sets of 

training data that will support the machine learning platforms developed next. 

The Surrogate Model is a data-driven modeling platform based on Artificial Neural Networks (ANNs), 

built to perform rapid simulations on very large arbitrary trajectories (>102 m). It implements the 

paradigm of a moving black-box model which follows the laser beam and predicts peak temperature and 

mean density evolution along the laser path. Dynamic regression along a path of arbitrary shape is 

facilitated by an original trajectory decomposition method which drastically reduces the infinite 

dimensionality of the topological input. This is achieved by extracting a descriptor which monitors the 

shape of the trajectory as well as its history within varying memory lengths. The initial machine learning 

paradigm has a sequential character and thus does not leverage the ability of the ANNs to process sets 

of input vectors in parallel. This bottleneck is compounded by the fact that temperature feedback 

proves necessary for increased performance. To remedy this issue, a recursive scheme is implemented 

which allows the Surrogate Model to process entire trajectories in parallel, by using an initial estimation 

of the temperature feedback vector, and subsequently refeeding and refining its own results. The final 

optimized Surrogate Model achieves simulation times of the order of real-time, which constitutes a 

major efficiency breakthrough.    

The Power Model extends the Surrogate Model by incorporating variable laser power in the input 

vector, thus exposing an independent variable for temperature regulation. The aim is to identify an 

optimized power profile that counteracts the thermal accumulation effects caused by the topology of 

the laser path. A one-step-ahead algorithm is initially conceptualized to serve as an efficiency 

benchmark. Then, an improved adaptive control law is implemented which can be applied to the entire 

power profile in parallel. It has a recursive character and can achieve a smooth temperature profile 

given a few iterations. The proposed framework successfully leverages the extreme efficiency of the 

developed data-driven model to provide an innovative solution for dynamic process optimization.  

The Parent Model, which represents the basis of the machine learning chain, was successfully validated 

against similar models and experiments from the literature, exhibiting less than 10% relative deviation, 

for the worst cases amongst all comparison scenarios. The surrogate models achieve mean relative 

errors in the order of 1% for single simulations and less than 2% for the final optimized temperature 

profile, compared to the Parent Model. Future access to experiments can directly verify and/or help to 

further increase the accuracy of the developed framework. Regardless, this research mainly aspires to 

provide a methodological roadmap for innovative application of machine learning to the largely 

unexplored area of SLS/SLM optimization. 


