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Artificial neural networks for cloud masking of Sentinel-2 ocean images 

with noise and sunglint  

Cloudy regions in optical satellite images prevent the extraction of valuable information 

by image processing techniques. Several threshold, multi-temporal and machine learning 

approaches have been developed for the separation of clouds in land and ocean 

applications, but this task still remains a challenge. Concerning deep water marine 

applications, the main difficulties are imposed in regions with high noise levels and 

sunglint. In this study, artificial neural networks (ANNs) with different configurations 

are evaluated for the detection of clouds in Sentinel-2 images depicting deep water 

regions with several noise levels. The ANNs are trained on a manual public dataset and 

on a manual dataset created for the needs of this study, which authors intend to make 

publicly available. Results are compared with the cloud masks produced by three state-

of-the-art algorithms: Fmask, MAJA, and Sen2Cor. It was shown that the ANNs trained 

on the second dataset perform very favourably, in contrast to the ANNs trained on the 

first dataset that fails to adequately represent the spectra of the noisy Sentinel-2 images. 

This study further reinforces the value of the “cirrus” band and indicates the bands that 

mitigate the influence of noisy spectra, by defining and examining an index that 

characterizes the importance of the bands according to the weights produced by the 

ANNs. Finally, the possibility of improving results by making predictions using the 

feature scaling parameters of the test set instead of those of the training set is also 

investigated in cases where the test set cannot be adequately represented by the training 

set. 

1. Introduction 

In optical satellite images, the presence of clouds is a crucial obstacle in land and ocean studies 

performed by image analysis tasks. Thus, the exclusion of clouds from the data is an important 

step which needs to be implemented prior to atmospheric correction. Two common assumptions 

that are employed in various cloud detection algorithms are that clouds are characterized by 

higher reflectance and lower brightness temperature than other types of surfaces (Platnick et al. 

2003; Shin, Pollard, and Muller 1996; Zhu, Wang, and Woodcock 2015; Zhu and Woodcock 

2012). Based on the aforesaid assumptions, most of current cloud detection methods extract the 

clouds from the imagery through ruled based classification which applies a set of thresholds 

(both static and dynamic) of reflectance and brightness temperature. Threshold based cloud  

detection is usually platform specific and strongly linked to the geographical area and date of 

data collection (Ackerman et al. 2008; Banks and Mélin 2015).  Most well-known threshold 

methods are ACCA (Automatic Cloud Cover Assessment) (Irish 2000) and Fmask (Function 

of mask) (Zhu, Wang, and Woodwock 2015, Zhu and Woodcock 2012) which have been 

designed for Landsat imagery (Foga et al. 2017). Multi-temporal methods have also been 

applied extensively by researchers and are based on the idea that abrupt changes in image time 

series are mainly caused by the presence of clouds since other types of surfaces follow smooth 

variations (Hagolle et al. 2010; Candra et al. 2016; Ahmad and Quegan 2014; Karvonen et al. 

2014; Lin et al. 2015; Mateo-Garcia et al. 2018). A well-known multi-temporal cloud masking 

algorithm is MAJA (Hagolle et al. 2017) designed for Sentinel-2 images. 

 Several VISNIR (Visible-Near Infrared) and SWIR (Shortwave Infrared) wavelengths 

have been selected by researchers for cloud detection applications since a variety of VISNIR 

and SWIR bands carries useful information. Channel 2 (0.725-1.10 μm) of AVHRR (Advanced 

Very High Resolution Radiometer) is considered to provide high contrast between clouds and 

water (Gallegos, Hawkins, and Cheng 2008). The reflectance ratio of R0.87/R0.66 μm is used 



 

 

in MODIS (Moderate Resolution Imaging Spectroradiometer) data along with 0.936 μm band 

for low cloud detection, while the SWIR band at 1,380 nm is used for the detection of high 

clouds (cirrus) (Ackerman et al. 1998). The visible threshold test of the MSG/SEVIRI 

(Meteosat Second Generation/Spinning Enhanced Visible and Infrared Imager) cloud mask is 

applied on the 0.8 μm band over the seas and on the 0.6 μm  band over coasts (Hocking, Francis 

and Saunders 2011). Reflectance in the blue was used in the multi-temporal research of Hagolle 

et al. (2010) in Formosat-2 and Landsat 5, 7 images, and in Proba-V cloud detection (Iannone 

et al. 2017). In Landsat 8, bands 3 (0.525-0.600 μm) and 4 (0.630-0.680 μm) were selected by 

Candra, Phinn, and Scarth (2016) for the distinction between cloud and non-cloud. Finally, 

Wang and Shi (2006) proposed a SWIR threshold at 1,240 nm, 1,640 nm and 2,130 nm for 

cloud masking in turbid waters instead of the 865/869 nm used in MODIS and SeaWifs (Sea-

Viewing Wide Field-of-View Sensor) respectively which is considered more suitable for open 

oceans.  

Conventional machine learning as well as deep learning techniques have also been 

introduced for cloud masking of imagery collected by a wide variety of platforms and have 

indicated successful results. Bai et al. (2016) trained an SVM-RBF (Support Vector Machine-

Radial Basis Function) classification model on fused multiple features of cloud and non-cloud 

regions of GaoFen-1 and GaoFen-2 images.  Baseski and Cenaras (2015) trained a linear kernel 

based SVM on images acquired from the commercial multispectral satellites: Geoeye, Ikonos 

and WorldView 2. Yuan and Hu (2015) employed the bag-of-words (BOW) model to construct 

compact features from dense local SIFT (Scale-Invariant Feature Transform) features extracted 

from RapidEye and Landsat imagery. Hughes and Hayes (2014) determined cloud and cloud 

shadow by training a total of 15 artificial neural network (ANN) configurations and explored 

the inclusion of spatial information through the tassel-cap transformation in Landsat 7 scenes. 

Strandgren at al. (2017) used the MSG/SEVIRI imager and detected cirrus clouds by utilizing 

a set of four ANNs trained on thermal observations and auxiliary data. Le Goff et al. (2017) 

compared a convolutional neural network architecture (CNN) with five ANNs applied to 

different spectral and spatial features extracted from Spot 6 images. Taravat et al. (2015) 

combined most significant band ratios and multi-layer perceptrons (MLPs) to differentiate 

clouds from background in Landsat ETM+ and MSG/SEVIRI data. Weng, Kong and, Xia 

(2016) used deep extreme learning machine to detect cloud cover fraction and distinguished 

thick from thin cloud in HJ-1A/B satellite images. Sholar (2017) trained pixel-level decision 

tree classifiers on the Hollstein et al. (2016) database and fed a deconvolutional network with 

the labelled results by use of the Alexnet-FCN model in Sentinel-2 images. Mateo-Garcia, 

Gomez-Chova and, Camps-Valls (2017) studied patch-to-pixel and patch-to-patch CNN 

architectures for cloud masking of Proba-V multispectral images. Li et al. (2018) integrated 

multi-scale convolutional features in a network based on fully convolutional network (FCN) 

and Segnet which was trained on Gaofen-1 images. Xie et al. (2017) designed a CNN with two 

branches trained on Quickbird RGB patches of different size and distinguished thick from thin 

clouds. Finally, Zhang et al. (2018) proposed an ensemble method combining a lightweight U-

Net with wavelet image compression for on-board cloud detection in small satellites.  

From the above it is easily implied that cloud detection methods use either spectral or 

spatial information, or their combination along with the inclusion of temporal information. In 

general, cloud detection methods usually suffer from thin cloud omission and bright non-cloud 

object commission. Sunglint and high noise levels constitute bright non-cloud objects. Sunglint 

is a transient anomaly that occurs when sunlight is reflected from the seawater surface directly 

into the down looking optical sensor (Gould, Arnone, and Sydor 2001; Lee et al. 2010). It is 

influenced by the position of the sun, viewing angle of the optical sensor, water refractive index, 

cloud cover, wind direction, and speed (Cox and Munk 1954; Moebly 1999; Zhang and Wang 

2010). High noise levels in satellite images can appear as random (“salt and pepper”) or periodic 



 

 

(vertical or oblique stripes) and can be optically recognized without difficulty. Directional 

reflectance effects caused by the configuration of the 12 detectors of the Multispectral 

Instrument (MSI) of Sentinel-2 imaging mission (ESA 2019) may also be considered as 

periodic noise with oblique wide stripes, whereas the Sentinel-2 cirrus band (1.375 μm and 

relatively low SNR(50)) additionally presents periodic noise with linear stripes. 

Researchers have employed several methods to alleviate the high noise levels and 

sunglint for cloud masking applications. Concerning high noise levels, researchers usually use 

spatial information and post processing methods. Tian et al. (1999) used textural properties 

since they tend to be less sensitive to detector noise to train probability NNs and SOMs (Self-

Organized Maps) on GOES-8 (Geostationary Operational Environmental Satellite) images for 

cloud classification. On the same basis, Le Goff et al. (2017) also examined textural features to 

train CNNs on Spot 6 images, and Charantonis et al. (2009) experimented on using a spatial 

variation index to train SOMs on Landsat ETM+ images.   Hughes and Hayes (2014) removed 

spatial noise with TVR (Total Variation Regularization) before training ANNs and post 

processed the masks by applying the median filter. The median filter as a post processing step 

was also applied by Zhai et al. (2018) whose method was examined on multispectral and 

hyperspectral sensors and was based on the use of spectral indices, while opening and closing 

operators were applied by Fisher (2014) on the output of their morphological method.  

Concerning sunglint, researchers use spectral and spatial information, as well as geometric. Hu 

(2011) developed an algorithm to discriminate sunglint from clouds based on its red 

characteristics by use of (469, 555, 1,240) nm MODIS bands. Garaba et al (2012) masked 

measurements collected by unmanned/automated platforms and affected by sunglint  by setting 

thresholds in the 700-950 nm range on the premise that open seawater is assumed to absorb all 

light in the NIR. Based on the high variability of clouds, Nicolas et al. (2005) (Polder-2 

instrument) and Martins et al. (2002) (MODIS) proposed using a spatial variability threshold 

of reflectance at NIR, while Chen and Zhang (2015) (MODIS) produced better results by 

examining the spatial variability at SWIR.  Roslan et al. (2014) attempted to mediate sunglint 

effect by the use of image enhancement techniques on AVHRR images. Ricciardelli, Romano, 

and Cuomo (2008) used a combination of physical, statistical and temporal approaches on 

SEVIRI images and managed not to overestimate cloudy pixels due to the sunglint.  Ishida 

(2018) trained SVMs on MODIS images and attempted to treat sunglint areas by use of the 

reflectance ratio of R0.905/R0.935 μm and a feature that combined R(0.87 μm), solar angle and 

the satellite angle. Finally, Schroder et al. (2002) trained ANNs on textural features and 

gradient-filtered radiances on images collected by an airborne spectrographic imager.  They 

observed that sunglint areas can be twice as bright as clouds of low brightness and used a single 

absorption free wavelength (753 nm). They also decided not to include sun and viewing 

geometry as input parameters in order to avoid incorrect correlation between Sun zenith angle 

and cloudiness. It should be noted that several cloud mask products of satellites with low spatial 

resolution define sunglint affected areas geometrically. In more detail, the algorithm for the 

MODIS cloud masks defined the potential geometric sunglint region as being within 36 degrees 

of the specular direction and modified spectral tests on these areas (Platnick et al. 2003). The 

cloud masking algorithm used on GCOM-C (Global Change Observation Mission) satellite 

identified sunglint areas as those whose cone angle between the solar incident and the satellite 

direction is lower than 35 degrees (Nakajima et al. 2019). Finally, the cloud mask product of 

Himawari-8 satellite defined sunglint to be present in areas where the sun zenith angle is lower 

than 75 degrees (Imai and Yoshida 2016). They also took wind predictions into account. 

The main advantage of deep learning techniques in comparison with conventional 

machine learning is their independency of the need for the extraction of human engineered 

features which is a lengthy process. Another advantage concerns the fact that neural networks 

are reported as being less sensitive to noise in the training set (Bishop 1995; Yhann and 



 

 

Simpson 1995). This property is very important for cloud detection since the common practice 

when labelling pixels is visual observation which involves certain inaccuracy (Gallegos et al. 

2008; Hagolle et al. 2010; Yuan and Hu 2015; Zhu and Woodcock 2012; Hughes and Hayes 

2014; Lin et al. 2015; Zhu et al. 2015; Bai et al. 2016; Foga et al. 2017; Iannone et al. 2017; 

Sholar 2017; Xie et al. 2017; Mateo-Garcia et al. 2018).   However, when the complexity of the 

architecture of the network is high, combined with the laborious process of the selection of the 

optimal hyperparameters, deep learning techniques can also prove to be time-consuming. 

Artificial neural networks by using multiple layers of perceptrons are characterized by simpler 

architectures but have proven to be a fast and very efficient method in a wide variety of 

applications. Thus, this article focuses on the use of multi-layer perceptrons (MLPs) for 

separating cloudy areas from deep water areas in Sentinel-2 images with high noise levels, 

directional reflectance effects and sunglint, a task which is still a challenge.  The study makes 

use only of spectral information and proposes a simple and time-efficient method which 

produces satisfactory results. For its purpose: a)  MLPs with different configurations are trained 

on two different databases: the public dataset produced manually by Hollstein et al. (2016)  and 

a dataset based on the images used in this study, which will be also publicly provided, b) the 

possibility of improving results by making predictions using the feature scaling parameters of 

the test set instead of those of the training set is  investigated in cases where the test set cannot 

be adequately represented by the training set and c) an index that characterizes the importance 

of the bands according to the weights produced by the MLPs is defined and examined.  The 

results are compared with cloud masks produced by three state-of-the-art algorithms: Fmask, 

MAJA, and Sen2Cor (Richter, Louis and, Müller-Wilm 2012). 

2. Materials and methods 

2.1. Data description 

Three datasets were used for analysis in this study. The first dataset consists of spectra extracted 

from the database created by Hollstein et al. (2016), the second dataset contains 79 Sentinel-2 

satellite images analysed for the purpose of this study and the third dataset contains spectra 

extracted from the second dataset. In this paper the first dataset is named “Hollstein dataset”, 

the second dataset is named “S2 image dataset” and the third dataset is named “S2 spectra 

dataset”.  The Hollstein dataset and the S2 spectra dataset were used in the training and 

evaluation process, while the S2 image dataset was used in the visual inspection process. The 

datasets are described in detail below. 

2.1.1. Hollstein dataset 

The database created by Hollstein et al. (2016) is a manually created database with reflectance 

spectra collected around the globe from Sentinel-2 level 1C satellite images.  To our knowledge 

it is the only publicly available database of manually selected spectra from Sentinel-2 images 

and contains the classes: “clear”, “cloud”, “shadow”, “snow”, “cirrus” and “water”.  The spectra 

were selected by use of spectral tools which included false-colour composites, image 

enhancements and graphical visualisation of spectra.  It is also clarified that for the time being, 

publicly available manually created cloud masks for Sentinel-2 images do not exist. The 

location of the scenes where the spectra were collected is depicted in Figure 1.The data were 

collected in 2016 and 2017 with 20 m spatial resolution. The selected spectra are 5,647,725 and 

3,152,273 respectively and the database is stored in two separate .hd5 files. For this study, three 

classes were extracted from this database: “cloud” (spectra from opaque clouds), “cirrus” 



 

 

(spectra from cirrus and vapour trails) and “water” (spectra from lakes, rivers and seas). The 

number of spectra for each class is presented in Table 1.  It is noted that the “cloud” and “cirrus” 

class were joined in one class (cloud) in the experiments where this dataset was used, since 

separating opaque and cirrus clouds is out of the scope of this study.  

 

 

Figure 1. Location of scenes of the Hollstein et al. (2016) database 

  

 

 

 

 

Table 1. Spectra comprising the Hollstein dataset 

2.1.2. S2 image dataset 

The second dataset used in this study contains 79 Sentinel-2A/2B level 1C images. These 

images refer to two tiles of the same orbit collected by the Sentinel-2 MultiSpectral Instrument 

in 2016 (four images), 2017 (40 images) and 2018 (35 images). The viewing geometries of the 

Sentinel-2 detectors in these tiles range from 1o to 11o in zenith and from 21o to 316o in azimuth.  

The dates of collection covered all seasons of the year: 28 winter images (December, January, 

February), 24 spring images (March, April, May), 11 summer images (June, July, August) and 

16 fall images (September, October, November). The collection time varied between 10:30 and 

10:35 a.m. UTC.  Depicting several noise levels and a wide variety of the percentage of cloud 

cover were the important factors during the selection of the dates.  The noise analysed in this 

study refers to the random and periodic noise (mainly caused by directional reflectance effects) 

of the Sentinel-2 images. An example of the periodic noise caused by the detectors can be seen 

in Figure 9(a) and an example of the periodic noise of the cirrus band can be seen in Figure 

9(c). A crucial factor for the selection of the study area was the availability of MAJA masks. 

These masks are highly accepted by the Remote Sensing community and thus were considered 

significant for the evaluation process. It was decided to use the already available masks because 

running the binary code provided by the creators of the method requires high computational 

power.  Figure 3 depicts with red colour the scenes with available MAJA masks. In this Figure 

Class Coverage Number of spectra 

Cloud Opaque cloud 1,500,202 

Cirrus Cirrus and vapour 

trails 1,205,979 

Water Lakes, rivers, seas 1,435,003 

Total 4,141,184 



 

 

it can be observed that concerning ocean applications, these masks are at present scarce. 

Depicting a high percentage of water was also considered during the selection of the tiles of the 

study area. Sentinel-2 images contain 13 bands, three with 60 m spatial resolution, four with 10 

m spatial resolution and six with 20 m spatial resolution.  The wavelengths of the three spatial 

resolutions of the Sentinel-2 instruments are shown in Table 2.  Before analysis, these images 

were processed. The bands with spatial resolution 10 and 20 m were resampled to 60 m and 

then the images were cropped in order to remove the land and depict optically homogenous sea 

regions.  The x-size (columns) of the cropped images was 1,830 pixels and the y-size (rows) 

was 1,130 pixels. Figure 2 depicts the study area, the location of the Sentinel-2 tiles (white 

polygons (1,2)) and the cropped tiles (red polygons (3,4)).  

 

Spatial resolution (m) Band number 

S2A S2B 

Central wavelength (nm) Central wavelength (nm) 

10 2 496.6 492.1 

3 560.0 559 

4 664.5 665 

8 835.1 833 

20 5 703.9 703.8 

6 740.2 739.1 

7 782.5 779.7 

8A 864.8 864 

11 1613.7 1610.4 

12 2202.4 2185.7 

60 1 443.9 442.3 

9 945.0 943.2 

10 1373.5 1376.9 

Table 2. Wavelengths of the three spatial resolutions of the Sentinel-2 instruments  

  

2.1.3. S2 spectra dataset 

This dataset includes spectra manually and randomly extracted from images of the S2 image 

dataset. In more detail, it includes: 

 a) Reflectance water spectra which were manually extracted by visual observation from 

30 of the images of the S2 image dataset. These 30 images consisted of 8 winter images 

(December, January, February), 9 spring images (March, April, May), 5 summer images (June, 

July, August) and 4 fall images (September, October, November).  These spectra were extracted 

from water areas with high noise levels and sunglint. Figure 4 depicts some example scenes 

from which spectra were obtained through regions of interest (rois). The spectra with high noise 

levels were extracted from regions that noise was visually recognized without difficulty .i.e. 

without the application of enhancement techniques (e.g. histogram stretching). The spectra with  



 

 

 

Figure 2. The study area, the Sentinel 2 tiles (white polygons (1, 2)) and the cropped tiles (red polygons 

(3, 4)) 

 

Figure 3. Scenes with available MAJA masks (red colour) 

 

Figure 4. Sentinel-2 scenes with sunglint (a,b) and noise (c,d) 

sunglint presence were discriminated from optically thin clouds by use of the cirrus band (1.375 

μm) which is less affected by sunglint. The geometric pattern of sunglint was also taken into 

account. Public access will be provided to the database created by the manually extracted water 



 

 

spectra. Spectra of cloud and water without visually obvious presence of noise and sunglint 

were not manually extracted. To our opinion, these spectra would not be characterized by lower 

omission and commission errors than those produced by the third experiment mentioned above, 

due to the fact that commission and omission errors usually occur in areas where the observer 

cannot with certainty label the correct class of a pixel, because of high visual similarity (e.g. 

very thin clouds). In addition, in such a scenario the observer would choose “easier” cases in 

order to increase the confidence of labelling which would probably lead to a less effective 

training set. 

b) Cloud spectra and water spectra which were randomly extracted from 34 images of 

the S2 image set (different from the 30 images mentioned above). These 34 images consisted 

of 15 winter images, 10 spring images, 7 summer images and 6 fall images and the water areas 

were characterized by low noise and no sunglint presence. These spectra were selected from 

the cloud masks which were successfully derived from the implementation of the third 

experiment described in sections 2.3.2.1. and 3.1.3. The number of manually and randomly 

extracted spectra is presented in Table 3. From each of the 34 images 60,000 spectra were 

obtained for cloud and water respectively which accounts for 6% of each image spectra 

(120,000/(1,830×1,130)). This percentage of labelled areas corresponds to 4,080,000 spectra 

(120,000×34).  

 
Class Number of spectra 

Manually extracted water 2,133,324 

Randomly extracted cloud 2,040,000 

Randomly extracted water 2,040,000 

Table 3. Spectra comprising the S2 spectra dataset 

 

2.2. Theoretical background 

2.2.1. Multilayer Perceptron Neural Network 

ANNs consist of a number of neurons that exchange information in a similar manner as 

biological nerve cells transmit information via synapses in the human brain. An artificial neuron 

or perceptron (Rosenblatt 1958) forms the basis for designing artificial neural networks. A 

model of a perceptron is shown in Figure 5.  

A neuron k can be described by the following pair of equations (Equations 1, 2): 

𝑢𝑘 =  ∑ 𝑤𝑘,𝑖𝑥𝑖 

𝑁

𝑖=1

 (1), 
  

𝑦𝑘 = 𝜑(𝑢𝑘 +  𝑏𝑘) (2) 

Where x1,…,xN are the input signals, wk,1,..., wk,N are the synaptic weights of neuron k, bk is the 

bias, φ(.) is the activation function, and yk is the output signal of the neuron. The input signals 

in this study refer to the training spectra extracted from the Hollstein dataset and the S2 spectra 

dataset. 



 

 

 

Figure 5. Model of a perceptron 

 

 ANN architecture consists of three units: input layer, output layer and several hidden 

layers. The number of the nodes of the input layer is determined by its input parameters, and 

the number of the nodes of the output layer is determined by its desired output. Neurons in 

successive layers are connected by weights which represent the importance of the connections 

in the network.  MLP model is a feed-forward artificial neural network classifier.  Each neuron 

receives inputs from the neurons in the previous layer and through a non-linear activation 

function converts them to input for the neurons in the next layer. MLP utilizes back propagation 

for training the network. During the backward pass, the network’s actual output is compared 

with the target output through an objective function (cost function (C)) (Equation 3) that needs 

to be minimized. 

 

𝐶 = ∑(𝑦𝑖 − ∑ 𝑥𝑖,𝑗

𝑀

𝑗=0

𝑤𝑗)2

𝑁

𝑖=0

 (3) 

 

Where y0,…,yN are the true output values, x0,0,...,xN,M  are the values of the neurons in the 

previous layer, w0,…,wM  are the weights connecting the output layer with the previous layer, N 

is the sample size and M is the number of connections. The output values in this study refer to 

the class of the spectra. Output values over 0.5 were classified to the cloud class while output 

values below 0.5 were classified to the water class. 

 

The error estimates are computed for the output units and the weights that connect the 

output units with the previous hidden layer are adjusted to reduce these errors. The error 

adjustment is propagated to the connections of the units in the hidden layers and the connections 

originating from the input units. The backpropagation process is typically implemented by the 

stochastic gradient descent method (Rumelhart, Hinton, and Williams 1986) which produces 

the updated weights for learning rate:α by calculating the partial derivatives of the cost function 

with respect to each weight (Equation 4). 
 

𝑤𝑗 ←  𝑤𝑗 −  𝑎
∂𝐶

∂𝑤𝑗
 (4)    j ∈  [0,M] 

Where wj , C, M are defined in Equation 3 and   
∂𝐶

∂𝑤0
 ,…, 

∂𝐶

∂𝑤𝑀
   are partial derivatives. 

 

 In this study, Adaptive Moment Estimation (Adam) (Kingma and Ba 2014) was used 

for the implementation of the back propagation process which is an optimisation algorithm of 

the stochastic gradient descent. 



 

 

2.2.2. Adaptive Moment Estimation 

Adaptive Moment Estimation (Adam) is an optimisation algorithm of the stochastic gradient 

descent method for the calculation of the weights during the back propagation process.  The 

method stores an exponentially decaying average of past squared gradients υt (Equation 6) and 

an exponentially decaying average of past gradients mt (Equation 5). The gradients gt denote 

the vector of partial derivatives of the objective function (cost function) at timestep t.  mt and 

υt are estimates of the first moment (the mean) and the second moment (the uncentered 

variance) of the gradients respectively. The zero bias of mt and υt is counteracted by computing 

bias-corrected first and second moment estimates (𝒎̂𝑡, 𝝊̂𝑡) (Equations 7, 8). These are used to 

update the parameters (weights (θt)) (Equation 9).  

 
𝒎𝑡 = 𝛽1 𝒎𝑡−1 + (1 − 𝛽1)𝒈𝑡 (5),   𝝊𝑡 = 𝛽2𝝊𝑡−1 + (1 − 𝛽2 )𝒈𝑡

𝟐 (6) 

 

𝒎̂𝑡 =  
𝒎𝑡

1 − 𝛽1
𝑡 (7),   𝝊̂𝑡 =

𝝊𝑡

1 − 𝛽2
𝑡 (8),   𝜽𝑡+1 =  𝜽𝑡 −

𝜂

√𝝊̂𝑡+∈
 𝒎̂𝑡 (9) 

 

Where β1 and β2 are exponential decay rates for the moment estimates and η is the learning rate. 

2.2.3. Feature scaling 

Feature scaling is a typical step of data pre-processing which is applied to independent variables 

or features in order to create a particular range of values. The implementation of this process 

impedes the dominance of the results by features of high magnitude and accelerates 

calculations. One of the methods widely used for feature scaling is standardisation (or Z-score 

normalisation) which is the process of rescaling the features so that they’ll have the properties 

of a Gaussian distribution with μ=0 (mean value) and σ=1 (standard deviation). This process 

was applied in this study for rescaling the features (spectra values) of the training and test sets. 

The rescaled values of the features (z) were calculated by equation 10. 

𝑧 =
𝑥 − 𝜇

𝜎
   (10) 

Where x are the initial values of the features. 

2.3. Method Description 

2.3.1. Description of the ANNs 

In this study a total of four artificial neural network configurations were trained on the Hollstein 

dataset and on the S2 spectra dataset, i.e. 8 trainings were implemented in total. The four 

configurations were differentiated by the use of different algorithms that prevent overfitting. 

The architecture of the ANNs consisted of one input layer, two hidden layers and one 

output layer. The input layer contained 13 neurons (the total number of Sentinel-2 bands), each 

of the two hidden layers contained 20 neurons and the output layer contained one neuron since 

the classification is binary (cloud/water). It was decided to use the spectral information from 

all the bands of Sentinel-2 images since the literature exploits the VIS, NIR and SWIR bands. 

In addition, the analysis of the importance of the different wavelengths for the ANN was also 



 

 

a purpose of this study. The architecture and the number of neurons in the hidden layers were 

selected based on preliminary experiments conducted on the Hollstein dataset. The Rectified 

Linear Unit (ReLU) (Agarap 2018) (Equation 11) was utilized as an activation function in the 

two hidden layers. Its main advantages are computational simplicity, its linear behaviour and 

its sparse representation capability since it can output true zero value. The sigmoid function 

(Nwakpa et al. 2018) was used as an activation function in the output layer (Equation 12).   The 

graphs of the ReLU and the sigmoid function are presented in Figure 6. It should be stated that 

this figure follows the nomenclature of the Sentinel-2 products, i.e. the last band corresponds 

to number “12” (Table 2). 

𝜑(𝑥) = max(0, 𝑥) (11), 
  

𝜑(𝑥) =  
1

1 + 𝑒−𝑥
 (12) 

Where x ≡ uk  as described in Equation 1. 

Adam optimisation (Equation 9) was selected for the back propagation process with the 

default values of the Keras library (Chollet 2015) (η= 0.001, β1=0.9, β2=0.999, =10-8). In the 

first configuration, the ANN was trained without applying any algorithm that prevents 

overfitting. In the second configuration, the dropout method (Srivastava et al. 2014) was 

applied, which ignores neurons at random during the training phase. This method was applied 

with 0.3 value in both hidden layers, i.e. 30% of the neurons are ignored in each hidden layer. 

In the third and fourth configuration, the L1 (Equation 13) and L2 regularisations (Equation 14) 

(Park, Ho and Chang 2018) which add a regularisation term in the cost function (Equation 3), 

were respectively implemented in both hidden layers. 

 

𝐶 = ∑(𝑦𝑖 −  ∑ 𝑥𝑖,𝑗

𝑀

𝑗=0

𝑤𝑗)2

𝑁

𝑖=0

+ 𝜆 ∑|𝑤𝑗|

𝑀

𝑗=0

 (13), 

  

𝐶 = ∑(𝑦𝑖

𝑁

𝑖=0

− ∑ 𝑥𝑖,𝑗

𝑀

𝑗=0

𝑤𝑗)2 + 𝜆 ∑ 𝑤𝑗
2

𝑀

𝑗=0

 (14) 

For the λ parameter, the value 0.001 was selected for the L1 regularisation and the value 0.005 

for the L2 regularisation. 

In all configurations, the ANNs were trained for 100 epochs, with batch size 1,024. The 

weights from all the epochs were stored and the weights that produced the higher accuracy in 

the training set were used for predictions on the test sets.  Training was implemented on the 

Graphical Processing Unit (GPU): Nvidia GeForce GTX 960M and it lasted approximately 20 

min for each of the 8 trainings. Figure 6 presents the proposed methodology. The ANNs were 

trained by using the Keras library and the Tensorflow (Abadi et al. 2016) backend and were 

implemented in Python code. Tensorflow is an open-source software library for numerical 

computation developed by Google researchers. It uses a flexible data flow architecture that is 

suitable for parallel processing applications (e.g. neural networks). Keras is an open-source 

neural-network library written in Python and capable of running on top of Tensorflow. Creating 

neural-network models on Keras is simpler since emphasis was put on achieving user-

friendliness. 



 

 

 

 

Figure 6. The proposed methodology 

 

2.3.2. Training the ANNs 

2.3.2.1. Training on the Hollstein dataset  

The Hollstein dataset was used in the training of all four configurations of the ANNs. The 

training set consisted of spectra extracted from the “water” class, the “cloud” class and the 

“cirrus” class. The number of labelled spectra for each class and their percentage which was 

calculated by use of the total number of spectra for each class of the Hollstein dataset (Table 

1), is presented in Table 4. The purpose of the choice of the number of training spectra for each 

class was the exploitation of a large number of the available labelled spectra, by simultaneously 

preserving a balance between the size of the classes (Ncloud + Ncirrus ≈ Nwater). Retaining an 

adequate number of spectra for the test set (different of those of the training set) was also 

important (≥ 20%). As already mentioned the “cloud” and “cirrus” class were joined in one 

class during the training.   

 

 

 

 

 

 

 
Table 4. Spectra comprising the Hollstein training set 

 

Class 
A:Spectra of  

Hollstein  

training set 

B:Spectra of  

Hollstein dataset 

A as a proportion 

 of total (%) 

Water 1,000,000 1,435,003 67% 

Cloud 500,000 1,500,202 33% 

Cirrus 500,000 1,205,979 41% 



 

 

Three different experiments were implemented on the same training set (Table 4) which was 

rescaled using the average and standard deviation of the training set.  The purpose of these 

experiments was to analyse the possibility of improving results by making predictions using 

the feature scaling parameters of the test set instead of those of the training set which is the 

usual practice. The motivation for this investigation was to maximize the exploitation of the 

Hollstein dataset since it contains large number of publicly available spectra. In the first and 

second experiment the spectra values of the test set were rescaled using the average value and 

standard deviation of the training set, while in the third experiment using the respective values 

of the test set. In addition, the experiments were differentiated by the test set used for the 

predictions. In the first experiment the test set included spectra from the Hollstein dataset, in 

the second experiment it included spectra from the S2 spectra dataset and the S2 image dataset, 

and in the third experiment it included the S2 image dataset. The experiments are described in 

detail below and are summarized in Table 5. It is noted that “z” in Table 5 symbolizes the input 

of the ANN. It is also noted that the term “Predictions” on the titles of the subsections below 

refers to the testing process of the ANNs after they are trained. During this stage spectra not 

included in the training process are given as an input to the ANN and the output is evaluated.  

 

Experiment Training set Test set 
Training set 

feature scaling 

Test set 

feature scaling 

1st Hollstein training set Hollstein test set 𝑧 =
𝑥 − 𝜇training

𝜎training
 𝑧 =

𝑥 − 𝜇training

𝜎training
 

2nd Hollstein training set 
S2 spectra test set 

𝑧 =
𝑥 − 𝜇training

𝜎training
 𝑧 =

𝑥 − 𝜇training

𝜎training
 

S2 image dataset 

3rd Hollstein training set S2 image dataset 𝑧 =
𝑥 − 𝜇training

𝜎training
 𝑧 =

𝑥 − 𝜇image

𝜎image
 

 

Table 5. Summary of ANN experiments (training on Hollstein dataset) 

 

First experiment: Predictions on the Hollstein dataset by using for the test set the feature 

scaling parameters of the training set 

In the first experiment, the test set included spectra from the “cloud” class, the “cirrus” class 

and the “water” class, which were extracted from the Hollstein dataset and were different from 

the training set.  The number of spectra for each class and their percentage calculated by use of 

the total number of spectra for each class used for the experiment, is presented in Table 6. The 

spectra values of the test set were rescaled by applying the average value and standard deviation 

of the training set. For this experiment, the results were evaluated for all four configurations by 

evaluation metrics. 

 

 

 

 

 

 

 
 

Table 6. Spectra comprising the Hollstein test set 

Class 
A:Spectra of 

 Hollstein test set 

B:Spectra of  

Hollstein training set 
A+B 

A as a proportion 

 of total (%) 

Water 300,000 1,000,000 1,300,000 23% 

Cloud 150,000 500,000 650,000 23% 

Cirrus 150,000 500,000 650,000 23% 



 

 

 

Second experiment: Predictions on the S2 spectra dataset and on the S2 image dataset by using 

for the test set the feature scaling parameters of the training set 

In the second experiment, the test set included spectra from the S2 spectra dataset which as 

already mentioned (section 2.1.3) included cloud and water spectra randomly extracted by the 

successfully derived masks of the third experiment and manually extracted water signatures. 

The number of manually and randomly extracted spectra and their percentage calculated by use 

of the total number of spectra for each class used for the experiment, is presented in Table 7. In 

the same table the number of spectra for the training set explained in section 2.3.2.2. is also 

presented for easier understanding. For the test set of the randomly extracted spectra, it was 

decided to use the total number of unused remaining spectra of the S2 spectra dataset after 

subtracting the spectra of the training set.  The spectra values of the test set were rescaled by 

applying the average value and standard deviation of the training set. For this experiment, the 

results were evaluated for all four configurations by evaluation metrics. In addition, the ANN 

trained with the first configuration was used to predict the class (cloud/water) of the reflectance 

signatures for the 79 images of the S2 image dataset. The cloud masks produced by these 

predictions were evaluated by visual observation. 

 

 

 

 

 

Table 7. Spectra comprising the S2 spectra test set 

 

Third experiment: Predictions on the S2 image dataset by using for the test set the feature 

scaling parameters of the test set 

In the third experiment, the test set consists the 79 images of the S2 image dataset. In this 

experiment, instead of rescaling the spectra values of the test set by applying the average value 

and standard deviation of the training set, the predictions on the test set were carried out by 

rescaling the values with the average value and standard deviation of the images. In more detail, 

when executing the predictions on the S2 image dataset, the (1,830x1,130) signatures of each 

image were rescaled according to the average value and standard deviation of this image, i.e. 

spectra of different images were differently rescaled. The cloud masks produced by these 

predictions were evaluated by visual observation. It is noted that these cloud masks were 

produced by the ANN trained with the first configuration. It should be also clarified that a test 

set consisting only of individual spectra (e.g. the test dataset used in the second experiment), 

cannot be used in this experiment since the key concept is feature scaling with the average value 

and standard deviation of the total number of spectra comprising a realistic cloud/water image. 

2.3.2.2. Training on the S2 spectra dataset 

Besides the Hollstein dataset, spectra from the S2 spectra dataset were also used in the training 

of all four configurations of the ANNs. This experiment is summarized Table 8. The training 

set consisted of randomly extracted cloud signatures, randomly extracted water signatures and 

manually extracted water spectra. The number of manually and randomly extracted spectra and 

their percentage calculated by use of the total number of spectra for each class of the S2 spectra 

Class 
A:S2 spectra 

test set 

B:S2 spectra 

 training set A+B 
A as a proportion 

 of total (%) 

Manually extracted water 300,000 500,000 800,000 38% 

Randomly extracted cloud 1,040,000 1,000,000 2,040,000 51% 

Randomly extracted water 1,040,000 500,000 1,540,000 68% 



 

 

dataset, is presented in Table 9.  It was decided that the number of training spectra for each 

class should be similar to the size of the Hollstein training set, since it managed to produce 

satisfactory results in the first experiment (section 3.1.1.). Moreover, it was considered 

appropriate to use equal size of manually extracted water (high noise levels and sunglint) and 

randomly extracted water (low noise levels/ no sunglint presence). From the remaining unused 

signatures of the S2 spectra dataset, the S2 spectra test set mentioned in the second experiment 

was created.  The spectra values of the test set were rescaled by applying the average value and 

standard deviation of the training set. The results were evaluated for all four configurations by 

evaluation metrics.  In addition, the ANN trained with the first configuration was used to predict 

the class of the reflectance signatures for the 79 images of the S2 image dataset. The cloud 

masks produced by these predictions were evaluated by visual and quantitative comparison 

with the results produced by the algorithms of Fmask, MAJA and Sen2Cor. 

 

Training set Test set 
Training set  

feature scaling 

Test set  

feature scaling 

S2 spectra training set 

S2 spectra test set 
𝑧 =

𝑥 − 𝜇training

𝜎training
 𝑧 =

𝑥 − 𝜇training

𝜎training
 

S2 image  dataset 

 

Table 8. Summary of ANN experiment (training on S2 spectra dataset) 
 

 

 

 

 

 
 

Table 9. Spectra comprising the S2 spectra training set 

 

3. Results 

3.1. Results produced by training on the Hollstein dataset 

3.1.1. Predictions on the Hollstein dataset by using on the test set the feature scaling 

parameters of the training set 

Accuracy (Equation 15), recall (producer’s accuracy) (Equation 16), precision (user’s accuracy) 

(Equation 17) and True Statistic Skill (TSS) (Equation 18) were calculated for the Hollstein 

training and test set. Recall corresponds to omission error (100%-omission error) while 

precision corresponds to commission error (100%-commission error).  TSS was chosen instead 

of Cohen’s kappa (the most popular measure for the evaluation of presence-absence 

predictions), since besides taking random agreement into account, it is also independent of 

prevalence (Allouche, Tsoar, and Kadmon 2006). It is calculated by use of sensitivity (recall) 

and specificity (True Negative Rate) (Equation 19) and measures interrater reliability 

(agreement of prediction model with ground truth). Table 10 presents the results of the 

predictions on the training set, while Table 11 presents the results of the predictions on the test 

set.  

Class 
A:S2 spectra 

 training set 

B:S2 spectra  

dataset 

A as a proportion 

 of total (%) 

Manually extracted water 500,000 2,133,324 23% 

Randomly extracted cloud 1,000,000 2,040,000 49% 

Randomly extracted water 500,000 2,040,000 25% 



 

 

accuracy =  
 TP + TN

TP + FN + FP + TN
 (15) 

 

recall =  
TP

TP + FN
    (16), 

  
precision =  

TP

TP + FP
     (17) 

 

TSS =  
TP ×  TN − FP × FN

(TP + FN) × (FP + TN)
= sensitivity + specificity − 1 (18) 

 

specificity =  
TN

TN + FP
 (19) 

Where TP: true positives, TN: true negatives, FP: false positives and FN: false negatives. 

 

Configuration TP FP FN TN Accuracy Precision Recall TSS 

1st  999,856 82 144 999,918 0.9999 0.9999 0.9999 0.9998 

2nd  997,556 365 2,444 999,635 0.9986 0.9996 0.9976 0.9972 

3rd  998,968 44 1,032 999,956 0.9995 1.0000 0.9990 0.9989 

4th  997,973 473 2,027 999,527 0.9988 0.9995 0.9980 0.9975 

Table 10. Evaluation metrics of the predictions on the Hollstein training set 
 

Configuration TP FP FN TN Accuracy Precision Recall TSS 

1st  299,963 19 37 299,981 0.9999 0.9999 0.9999 0.9998 

2nd  299,319 112 681 299,888 0.9987 0.9996 0.9977 0.9974 

3rd  299,737 14 263 299,986 0.9995 1.0000 0.9991 0.9991 

4th  299,427 148 573 299,852 0.9988 0.9995 0.9981 0.9976 

Table 11. Evaluation metrics of the predictions on the Hollstein test set 

It was observed that the evaluation metrics were very high for all four configurations, both for 

the training set and the test set.  

3.1.2. Predictions on the S2 spectra dataset and on the S2 image dataset by using on the test 

set the feature scaling parameters of the training set 

 

Accuracy, recall, precision and TSS were calculated for the S2 spectra test set for all four 

configurations. From the evaluation metrics that are presented in Table 12, it was observed that 

a high number of water spectra was falsely classified as cloud (FN). The ANN trained with the 

first configuration was also used to predict the class of the reflectance signatures for the 79 

images of the S2 image dataset. The cloud masks produced by these predictions were visually 

evaluated and in the majority of the images a large commission error was observed as expected 

by the evaluation metrics of Table 12 (Figure 7(e,f)). In more detail, the values of precision 

show a minimum commission error of 24%, which corresponds to the number of water pixels 

being incorrectly classified as cloud pixels. The values of recall show that the omission error is 



 

 

low, i.e. almost all the cloud pixels were correctly classified. Finally, the low TSS values 

confirm further the low reliability of the model. 

 

Table 12. Evaluation metrics of the predictions on the S2 spectra test set 

 

 

Figure 7. (a,b): 4-3-2 (RGB) natural colour composite, (c,d): cloud mask produced by using on the test 

set the feature scaling parameters of the test set, (e,f): cloud mask produced by using on the test set the 

feature scaling parameters of the training set. The size of all figures is 109.8×67.8 km2. 

These results led to the conclusion that the S2 image dataset cannot be adequately represented 

by the Hollstein dataset. As it can be noticed in Figure 1, the majority of the spectra has been 

collected from inland and coastal areas, while spectra from deep water areas are scarce. As a 

result, it could be naturally concluded that water spectra with high noise levels and sunglint are 

Configuration TP FP FN TN Accuracy Precision Recall TSS 

1st  1,009,418 340,241 30,582 999,759 0.8442 0.7479 0.9706 0.7167 

2nd  1,000,333 295,228 39,667 1,044,772 0.8593 0.7721 0.9619 0.7415 

3rd  1,003,491 320,519 36,509 1,019,481 0.8500 0.7579 0.9649 0.7257 

4th  1,003,853 320,751 36,147 1,019,249 0.8500 0.7579 0.9652 0.7259 



 

 

scarce in the Hollstein dataset as well. 

 

 

Figure 8. (a,b): 4-3-2 (RGB) natural colour composite, (c,d): cloud mask produced by using on the test 

set the feature scaling parameters of the test set. The size of all figures is 109.8×67.8 km2. 

3.1.3. Predictions on the S2 image dataset by using for the test set the feature scaling 

parameters of the test set 

 

The predictions on the S2 image set of the ANN trained with the first configuration were 

evaluated by visual observation and it was observed that for 34 images, the produced cloud 

masks were satisfactory (Figure 7(c, d)), while the cloud masks produced on the rest 45 images 

were characterized by very high commission error (Figure 8(c, d)). The successful results for 

the 34 images led to the conclusion that the feature scaling process applied on these images (use 

of the parameters of the images instead of those of the training set) created spectra with 

statistical parameters similar to those of the Hollstein dataset.  As mentioned in section 2.1.3, 

spectra from these 34 cloud masks were randomly extracted and formed part of the S2 spectra 

dataset.  Furthermore, it was observed that the majority of the 45 images (42/45) had high levels 

of oblique periodic noise in band 10 (cirrus band/1.375 μm) (Figure 9(c,d)) in contrast with the 

majority of the 34 images (31/34) (Figure 10(c,d)) which either depicted very low levels of 

oblique periodic noise or none. The magnitude of band 10 (after the implementation of Fast 

Fourier Transformation) (Abu-Ein 2014) is presented in Figures 9(e,f), 10(e,f). It was also 

observed that the vast majority of the noisy images had much lower average reflectance values 

in band 10 (Figure 11). It is noted that the 30 images from which the manually extracted spectra 

of the S2 dataset were extracted, formed part of the 45 images mentioned above. 

 

 



 

 

  

Figure 9. (a,b): 4-3-2 (RGB) natural colour composite, (c,d): cirrus band (1.375 μm), (e,f): magnitude 

of cirrus band. The size of all figures is 109.8×67.8 km2. 

 

3.1.4. Observation of the weights of the first hidden layer  

The weights of the first hidden layer for the four configurations were observed for the ANNs 

trained on the Hollstein dataset since they represent the importance of the bands for the ANN. 

Table 13 was created by calculating the importance of the bands which was defined as the sum 

of the absolute values of the 20 weights (equal to number of neurons) corresponding to each of 

the 13 bands (Equation 20). This table shows for each configuration in descending order the 

importance of the bands.    

Im𝑗 =  ∑|𝑤𝑖,𝑗|

20

𝑖=1

 (20)    j ∈  [1,13] 

Where w1,1,…, w20,13 are the weights of the first hidden layer. 

 

 



 

 

Figure 10. (a,b): 4-3-2 (RGB) natural colour composite, (c,d): cirrus band (1.375 μm), (e,f): magnitude 

of cirrus band. The size of all figures is 109.8×67.8 km2. 

It was observed that band 11 (1.6 μm) which is primarily used for cloud separation in turbid 

waters was given high weights in all configurations. As far as the rest of the bands are 

concerned, the ranking of importance greatly varied since as described in the Introduction, for 

the detection of clouds,  a variety of VISNIR and SWIR bands has proven to be useful. 

3.2. Results produced by training on the S2 spectra dataset 

3.2.1. Predictions on the S2 spectra dataset and on the S2 image dataset by using on the test 

set the feature scaling parameters of the training set 

This section presents the results of the predictions of the ANNs trained on the S2 spectra dataset. 

Evaluation metrics were calculated for the S2 spectra training set and the S2 spectra test set. 

Table 14 presents the results of the predictions on the training set, while Table 15 presents the 

results of the predictions on the test set.  

 



 

 

 
 
Figure 11. Average reflectance values of band 10 (1.375 μm) for the 79 Sentinel-2 images. (blue): 34 

images with satisfactory predictions. (red): 45 images with high commission error 

 

 

1st 

configuration 

2nd 

configuration 

3rd 

configuration 

4th 

configuration 

Bands  Importance Bands  Importance Bands  Importance Bands  Importance 

11 25.4059 11 18.7082 10 0.8123 11 0.4035 

2 14.7908 2 8.8081 7 0.2332 12 0.1133 

8A 13.1052 1 7.4302 11 0.2242 8 0.0949 

1 8.4542 12 7.2015 8 0.1152 2 0.0867 

8 7.4449 4 6.3049 1 0.0613 10 0.0784 

10 7.0951 10 5.7476 6 0.0078 7 0.0691 

3 6.9086 8 5.5324 5 0.0034 9 0.0606 

12 5.08 8A 4.8357 2 0.0031 4 0.0595 

9 4.7732 5 4.7502 9 0.003 6 0.0325 

5 4.6562 3 4.7488 3 0.0028 5 0.0243 

6 4.5948 7 4.3152 4 0.0027 1 0.0147 

7 4.3817 9 4.1179 12 0.0023 8A 0.0095 

4 4.3519 6 3.926 8A 0 3 0.0094 

Table 13. Importance of the Sentinel 2 bands for the ANNs trained on the Hollstein dataset 

 

It was observed that the evaluation metrics were high in all four configurations, both for the 

training set and the test set. Moreover, the ANN of the first configuration demonstrated the 

maximum values of accuracy, recall, precision and TSS. The accuracy of this ANN on the test 

set was 92% and the TSS value was 0.86 which shows high model reliability. In addition, the 

recall value (~ 96%) shows that around 4% of cloud spectra were incorrectly classified to the 



 

 

water class (omission error), while the precision value (~88%) shows that 12% of water spectra 

were incorrectly classified to the cloud class (commission error).  

 

Configuration TP FP FN TN Accuracy Precision Recall TSS 

1st  960,126 66,741 39,874 933,259 0.9467 0.9350 0.9601 0.8934 

2nd  950,654 73,443 49,346 926,557 0.9386 0.9283 0.9507 0.8772 

3rd  937,267 68,792 62,733 931,208 0.9342 0.9316 0.9373 0.8685 

4th  934,203 84,061 65,797 915,939 0.9251 0.9174 0.9342 0.8501 

Table 14. Evaluation metrics of the predictions on the S2 spectra training set 

 

Configuration TP FP FN TN Accuracy Precision Recall TSS 

1st  998,557 139,311 41,443 1,200,689 0.9241 0.8776 0.9602 0.8562 

2nd  988,743 153,633 51,257 1,186,367 0.9139 0.8655 0.9507 0.8361 

3rd  974,455 144,078 65,545 1,195,922 0.9119 0.8712 0.9370 0.8295 

4th  971,340 175,500 68,660 1,164,500 0.8974 0.8470 0.9340 0.8030 

 

Table 15. Evaluation metrics of the predictions on the S2 spectra test set 
 

The ANN of the first configuration was also used to predict the class of the reflectance 

signatures for the 79 images of the S2 image dataset. The results (Figures 13(c,d), 14(c,d), 

15(c)) were at first evaluated by visual observation and were compared with the results 

produced by the algorithms of Fmask (Figures 13(e,f), 14(e,f), 15(d)), MAJA (Figures 13(g,h), 

14(g,h), 15(e)) and Sen2Cor (Figures 13(i,j), 14(i,j), 15(f)).  In addition quantitative evaluation 

was applied by the calculation of evaluation metrics which included a) accuracy, recall, 

precision and TSS scores for the total number of the spectra of the S2 spectra dataset (labelled 

pixels) for the ANN and the three state-of-the-art algorithms and b) the phi coefficient 

(measures the degree of association between 2 binary variables (Cramer, 1946)) (Equation 21) 

between the masks produced by the ANN and the respective masks produced by the above 

mentioned algorithms. It is noted that Figure 13 presents images with low noise levels and no 

sunglint presence while Figures 14, 15 present more difficult cases (high noise levels and 

sunglint presence). 

 

𝛷 =
𝐴𝐷 − 𝐵𝐶

√(𝐴 + 𝐵)(𝐶 + 𝐷)(𝐴 + 𝐶)(𝐵 + 𝐷)
    (21) 

 

Where A, D are the diagonal values of a 2x2 contingency table and B, C are the non-diagonal 

values. 

 

Concerning the visual evaluation, the results of the ANN in all of the 79 Sentinel-2 

images were considered to be very favourable compared to the above algorithms. ANN results 

were acceptable in all cases and unaffected by water areas with high noise levels and sunglint. 

In addition, the ANN proved to be robust since the results were homogenous and none of the 

79 cases presented outlier classification output, i.e. classifying areas with opaque clouds as 

water (often observed in Sen2Cor masks) or classifying whole or large part of strips as cloud. 

It should be noted though that a small omission error was usually observed. The masks 

produced by the Sen2Cor algorithm demonstrated in general the least satisfactory results since 

they presented an overall omission error which in several cases was high. Fmask cloud masks 

showed better results than those of Sen2Cor but were characterized by commission error which 



 

 

in a few cases of water areas with high presence of sunglint was high (Figure 14(e)). MAJA 

masks presented in our opinion best results than Sen2Cor and Fmask, although it should be 

stated that a small commission error was usually observed.  

The images depicted in Figures 13, 14, 15 represent the results for the different types of 

cases of the study. For the case depicted in Figure 13(a), the ANN mask (Figure 13(c)) 

represented sufficiently the cloud presence of the image, the Fmask mask (Figure 13(e)) 

demonstrated high commission error, the MAJA mask (Figure 13(g)) showed high similarity 

with the ANN mask and Sen2Cor (Figure 13(i)) presented very high omission error. For the 

case depicted in Figure 13(b), the ANN mask (Figure 13(d)) showed the most acceptable 

results, the MAJA mask  (Figure 13(h)) presented a commission error which was higher for the 

Fmask mask (Figure 13(f))  and Sen2Cor (Figure 13(j)) presented very high omission error.  

Regarding the cases with high noise levels and sunglint, for the case of Figure 14(a), the ANN 

mask (Figure 14(c)) was overall satisfactory since it was unaffected by sunglint and the oblique 

periodic noise but it omitted a few thin clouds, the Fmask mask (Figure 14(e)) incorrectly 

classified a large percentage of sunglint areas as clouds, the MAJA mask (Figure 14(g)) was 

similar with the ANN mask but omitted a higher cloud percentage and the Sen2Cor mask 

(Figure 14(i)) presented high omission error. For the case of Figure 14(b), the ANN mask 

(Figure 14(d)) was overall acceptable since it was unaffected by the random noise, but slightly 

underestimated the cloud presence, the Fmask mask (Figure 14(f)) presented a commission 

error which was higher for the MAJA mask (Figure 14(h)) and Sen2Cor (Figure 14(j)) 

presented an omission error. Finally, for the case of Figure 15, the ANN and MAJA masks 

(Figures 15(c,e)) were unaffected by sunglint, while Fmask (Figure 15(c)), incorrectly 

classified a large sunglint area as cloud. Sen2Cor (Figure 15(f)) also misclassified a few sunglint 

pixels to the cloud category. Besides the above observations, the ANN masks seem to be the 

ones that better represent the natural shape of the clouds, since MAJA masks present the 

appearance of globs, while Sen2Cor masks show linear structure.  

For the quantitative evaluation, evaluation metrics were at first calculated for the total 

number of the spectra of the S2 spectra dataset (Table 16).   

 

Method TP FP FN TN Accuracy Precision Recall TSS 

ANN 

(1st configuration) 
1,958,683 273,747 81,317 3,899,577 0.9429 0.8774 0.9601 0.8945 

Fmask 1,989,338 1,085,049 50,662 3,088,275 0.8172 0.6471 0.9752 0.7152 

MAJA 1,973,030 703,422 66,970 3,469,902 0.8760 0.7372 0.9672 0.7986 

Sen2Cor 1,383,951 456,874 656,049 3,716,450 0.8209 0.7518 0.6784 0.5689 

 
Table 16. Accuracy, precision, recall and TSS scores for the S2 spectra dataset (Comparison of 

algorithms) 

It was observed that the ANN showed the highest accuracy/TSS scores (~ 94%/0.89) followed 

by MAJA (~ 88%/0.80). The respective scores for Fmask (~ 82%/0.72) and Sen2Cor (~ 

82%/0.57) were lower with Sen2Cor showing the minimum TSS value. Concerning recall 

values, except for Sen2Cor which showed high omission error (32%), the other algorithms 

produced low omission errors (~ 3%). Finally, regarding precision values, the ANN showed the 

highest value (~88%) corresponding to the lowest commission error of 12%. Sen2Cor and 

MAJA produced similar values (~ 75%/74%) while Fmask showed the lowest score (65%).

  

The phi coefficient was also calculated. Values over 0.4 are considered to show strong positive 

correlation while values over 0.7 show very strong positive correlation. Figure 12 shows the 

phi coefficient values for the cloud masks of the S2 image dataset.  



 

 

 

 

Figure 12. Phi coefficient for the cloud masks of the S2 image dataset. Brown: phi coefficient between 

ANN and MAJA masks, Blue: phi coefficient between ANN and Fmask masks, Green: phi coefficient 

between ANN and Sen2cor masks 

 

It was observed that the mean value of the phi coefficient between the ANN masks and Fmask 

masks was 0.58 with a standard deviation of 0.19. Regarding the comparison with the MAJA 

masks, the mean value of the phi coefficient was 0.65 with a standard deviation of 0.19.  Finally, 

the mean value of the phi coefficient between the ANN masks and Sen2Cor masks was 0.44 

with a standard deviation of 0.27. Thus, MAJA masks are more positively correlated with the 

ANN masks followed by Fmask and Sen2Cor.  Table 17 shows the phi coefficient values 

between the ANN masks and the masks of the other algorithms for the masks depicted in 

Figures 13, 14, 15.  

                                                                           
Cloud mask Phi Fmask    Phi MAJA      Phi Sen2Cor 

Figure 13(a) +0.38 +0.65 -0.03 

Figure 13(b) +0.65 +0.73 -0.01 

Figure 14(a) +0.13 +0.71 +0.03 

Figure 14(b) +0.53 +0.44 +0.29 

Figure 15(a) +0.00 +0.71 +0.63 

 

Table 17.  The phi coefficient values for the masks of the images depicted in Figures 13, 14, 15 

 

It was observed that the ANN mask (Figure 13(c)) of Figure 13(a) showed strong positive 

correlation with the MAJA mask (Figure 13(g)), lower positive correlation with the Fmask 

mask (Figure 13(e)) and negative correlation with Sen2Cor mask (Figure 13(i)). In addition, 

the ANN mask (Figure 13(d)) of Figure 13(b) showed very strong positive correlation with the 

MAJA mask (Figure 13(h)), strong correlation with the Fmask mask (Figure 13(f)) and negative 

correlation with the Sen2Cor mask (Figure 13(j)). Concerning the images with high noise levels 

and sunglint, the ANN mask (Figure 14(c)) of Figure 14(a) showed strong positive correlation 

with the MAJA mask (Figure 14(g)) and very low positive correlation with the Fmask mask 

(Figure 14(e)) and the Sen2Cor mask (Figure 14(i)), while the ANN mask (Figure 14(d)) of  



 

 

 

 

Figure 13. (a,b): 4-3-2 (RGB) natural colour composite, (c,d): ANN cloud mask, (e,f): Fmask cloud 

mask, (g,h): MAJA cloud mask, (i,j): Sen2Cor cloud mask. The size of all figures is 109.8×67.8 km2. 

 



 

 

 

Figure 14. (a,b): 4-3-2 (RGB) natural colour composite, (c,d): ANN cloud mask, (e,f): Fmask cloud 

mask, (g,h): MAJA cloud mask, (i,j): Sen2Cor cloud mask. The size of all figures is 109.8×67.8 km2. 

 

 



 

 

 

 
Figure 15. (a): 4-3-2 (RGB) natural colour composite, (b): magnitude of cirrus band, (c): ANN cloud 

mask, (d): Fmask cloud mask, (e): MAJA cloud mask, (f): Sen2Cor cloud mask. The size of all figures 

is 109.8×67.8 km2. 

 

Figure 14(b) showed strong positive correlation for Fmask (Figure 14(f)) and MAJA (Figure 

14(h)) masks and lower for Sen2Cor mask. In addition, the ANN mask (Figure 15(c)) of Figure 

15(a) showed strong positive correlation with the MAJA mask (Figure 15(e)) followed by the 

Sen2Cor mask (Figure 15(f)), and no correlation with the Fmask mask (Figure 15(d)). 

From the above it is concluded that the quantitative evaluation is in accordance with the 

visual evaluation. In more detail, the ANN masks present the highest accuracy/TSS scores and 

are more correlated with the MAJA masks which present the second best highest accuracy.  In 

addition, the least satisfactory results are presented by Sen2Cor masks and Fmask presents the 

highest commission error. It should be also noted that an additional advantage of the ANN is 

that it is more time efficient than Fmask, MAJA and Sen2Cor since the mask can be created in 

seconds (inference time), while the other algorithms need at least 10 minutes (STEP 2016a, 

2016b; CESBIO 2018).  



 

 

 

3.2.2. Observation of the weights of the first hidden layer 

The weights of the first hidden layer for the four configurations were also observed for the 

ANNs trained on the S2 spectra dataset since as already mentioned they represent the 

importance of the bands for the ANN. Table 18 was created in the same way as Table 13 and 

likewise shows for each configuration in descending order the importance of the bands 

(Equation 20).  

 

1st 

configuration 

2nd 

configuration 

3rd 

configuration 

4th 

configuration 

Bands  Importance Bands  Importance Bands  Importance Bands  Importance 

1 14.5757 1 11.0918 10 1.4623 10 1.0388 

9 11.3767 10 10.9864 1 1.2076 11 0.7415 

11 10.2176 9 10.6795 11 0.54 1 0.7076 

10 8.9378 11 10.1314 12 0.4906 9 0.582 

12 8.7829 3 7.5562 9 0.1506 8A 0.4642 

3 6.9809 12 6.7347 8 0.0944 12 0.4026 

8A 6.9176 8 6.1217 3 0.0889 8 0.3834 

5 5.4747 8A 5.3496 8A 0.0817 7 0.345 

8 5.4138 4 4.1833 4 0.0747 2 0.3381 

7 4.6918 5 4.1448 7 0.0084 3 0.3071 

2 4.5922 2 4.0972 2 0.0077 6 0.305 

6 3.9374 7 3.4356 5 0.0074 5 0.3047 

4 3.718 6 1.7959 6 0.0066 4 0.2559 

Table 18. Importance of the Sentinel 2 bands for the ANNs trained on the S2 spectra dataset 

It was observed that during the training with this dataset, band 11(1.6 μm) is given high weights 

in all configurations, a behaviour which is similar to the one previously observed on the training 

on the Hollstein dataset. However, it was also observed that the cirrus band (1.375 μm) acquired 

high ranking, a behaviour that can be explained by the fact that this band is less affected by 

sunglint, since it corresponds to a strong absorption band of water vapour. High clouds have a 

high chance of being visible in this band in contrast to low clouds because incident and reflected 

light is highly absorbed. Bands 1 (coastal aerosol band/443 nm) and 9 (water vapour absorption 

band/940 nm) which are typically used for atmospheric correction purposes acquired high 

ranking as well. Compared to the ranking of the importance of the bands on the training on the 

Hollstein dataset, these changes directly indicate the bands that counteract the influence of the 

presence of spectra with high noise levels and sunglint in the training set.  

4. Conclusions and discussion 

In this study ANNs were trained with four different configurations on a dataset extracted by 

Hollstein et al. (2016) database and on a dataset that was created by extraction of spectra from 

79 Sentinel-2 level 1C images that were used for this study. The second dataset adequately 

represented different types of water, namely it included water with high noise levels and 

sunglint.  The four configurations were differentiated by the use of different algorithms that 

prevent overfitting but it was observed that these algorithms slightly affected the performance 

of the ANNs. Since the configuration of the MSI Sentinel-2 imaging mission leads to a broad 



 

 

range of viewing geometries, the developed ANN was tested for directional reflectance effects 

only by the use of spectral information. 

The ANNs trained on the Hollstein dataset were used in three experiments which were 

differentiated by the test set used for the predictions and by the feature scaling parameters of 

the test set. When the test set consisted of spectra from the Hollstein dataset, the evaluation 

metrics were over 0.99 in all configurations. However, the cloud masks of the Sentinel-2 images 

produced by using the ANN of the first configuration presented high commission errors when 

applying on the spectra of the images the feature scaling parameters of the training set. This 

behaviour lead to the conclusion that the dataset of the Sentinel-2 images used in this study 

cannot be adequately represented by the Hollstein dataset, since spectra from deep water areas 

or spectra with high noise levels and sunglint are scarce. Interesting results were produced when 

applying on the spectra of the images the feature scaling parameters that corresponded to the 

images instead of those of the training set, where acceptable results were produced for 34 

images, which showed that using the feature scaling parameters of the test set could be a factor 

that could alter the predictions of an ANN towards a positive direction. 

The overall accuracy of the ANN of the first configuration trained on the spectra dataset 

extracted from Sentinel-2 images with several levels of noise and sunglint was over 0.92 on the 

test set. In addition the TSS score was over 0.89. The predictions of this ANN were evaluated 

by visual observation and compared with the results produced by three state-of-the-art 

algorithms: Fmask, MAJA and Sen2Cor. Its predictions were considered to be very favourable 

compared to the above mentioned state-of-the-art algorithms. It produced robust results since 

none of the 79 cases presented outlier classification output and it proved to be unaffected by 

water areas with high noise levels and sunglint. In addition, its masks better represented the 

natural shape of the clouds.  Although a small omission error was overall observed, the results 

were acceptable in all cases. A quantitative evaluation was also performed which was in 

accordance with the visual and showed that the ANN produced the highest accuracy/TSS scores 

and presented the strongest correlation with the MAJA masks followed by Fmask and Sen2Cor. 

As a general conclusion this ANN showed the best performance not only concerning the quality 

of the masks, but also the time efficiency. 

The weights of the first hidden layer for the four configurations were observed since 

they represent the importance of the bands for the ANN and a simple importance measure was 

defined. It was observed that band 11 (1.6 μm) was given high weights in all configurations. In 

addition, when observing the weights of the ANNs trained on the dataset with high noise levels 

and sunglint extracted from the Sentinel-2 images, it was demonstrated that the cirrus band 

which is less affected by sunglint and two bands typically used for atmospheric correction (443 

and 940 nm) are the ones responsible for the mitigation of high noise levels and sunglint in the 

training set. Regarding the rest of the bands, the ranking of importance greatly varied, a 

behaviour which can be explained by the fact that a variety of VISNIR and SWIR bands carries 

useful information for cloud detection applications.  

 There is no perfect method to mask all clouds and retain water pixels, but this study 

proved that ANNs are a simple, fast and effective cloud masking algorithm that can avoid the 

influence of deep water areas with high noise levels and sunglint. The developed ANN 

successfully detects clouds on Sentinel-2 images which present serious directional reflectance 

effects.  It also showed that the database created by Hollstein et al. (2016) needs to be expanded 

with more spectra from deep water areas since successful ANN results are closely connected 

with training on a dataset that adequately represents the wide variability of cloud and water 

spectra. Finally, it was shown that there are cases where making predictions using the feature 

scaling parameters of the test set instead of those of the training set can improve the ANN 

results when the test set is not adequately represented by the training set. The possibility of 

generalising this finding in other applications will be further investigated in our future work. 
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