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 Abstract— The accessibility of very-high-resolution Remote 

Sensing (RS) near-infrared (NIR) imagery before 2010s is limited. 

In addition, public annotated image datasets often used as 

benchmarks contain only RGB information. Thus, RGB-to-NIR 

translation could greatly benefit the RS field.  Generative 

adversarial networks (GANs) and more recently vision 

transformers (ViT) have shown promising results in generating 

spectrally super-resolved data. However, the RGB-to-

hyperspectral studies scatter their attention to multiple bands, 

while the RGB-to-NIR studies have tackled only vegetation. In 

addition, prior research regarding NIR prediction on out-of-

domain data is extremely limited, and attention models have not 

been previously tested in the RGB-to-NIR translation. Beyond 

that, unsupervised domain adaptation (UDA) has been overlooked 

in the enhancement of cross-domain band generation. This study, 

at first evaluates a conditional GAN and two attention networks 

on predicting NIR on out-of-domain RGB data.  The properties of 

the out-of-domain data are those typically required in RS NIR 

prediction tasks (different regions/sensors/dates). In a following 

step, the study attempts to increase the source/target RGB 

radiometric similarity through CycleGAN-based UDA on 

unpaired bi-temporal data (lack of geographic correspondence in 

RGB source/target patches), and thus improve the initial NIR 

prediction. In the experiments, the vegetation, impervious and 

ground classes were assessed. It was shown that MST++ (ViT) 

produced the most satisfactory out-of-domain NIR predictions 

and that UDA through a CycleGAN version employing batch 

normalization managed to significantly enhance the NIR 

prediction when there was a substantial RGB radiometric domain 

gap. 

 

Index Terms— Prediction methods, Image generation, Infrared 

imaging, Neural network applications, Spectral domain analysis, 

Image resolution, Optical image processing 

 

I. INTRODUCTION 

MAGE-to-image translation (ITIT) is an image 

processing method whose basic idea is to learn the mapping 

functions between an input and an output image [1]. ITIT 

can be either performed for paired data (pixel co-respondence 

between input and output image) or unpaired data. Multiple 

Remote Sensing (RS) studies have investigated paired ITIT 

through deep learning (DL) and most often conditional 

generative adversarial networks (cGANs) to generate missing 

information. The applications are various and among others 
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include Synthetic Aperture Radar (SAR)↔optical [1]–[9], 

visible (VIS)→map [10]–[14], optical→elevation (digital 

terrain/surface model (DTM/DSM)) [15]–[18], thermal infrared 

(TIR)↔VIS [19]–[22],  VIS-VIS [23][24],  grayscale→RGB 

[25][26], spectral super-resolution (SSR) (RGB/multispectral 

(MS)→hyperspectral (HS))  [27]–[35] [36]–[38], and 

RGB→near-infrared (NIR) [39]–[43].  Concerning unpaired 

ITIT, so far, it has been used in Remote Sensing (RS) 

applications exclusively for unsupervised domain adaptation 

(UDA) purposes as an intermediate step to enhance the 

semantic segmentation output [44]–[52]. It is noted that the 

arrow symbol (“→”) in the text refers to the direction of ITIT. 

In the following Introduction Subsections, we present the 

related literature works (I.A-I.C), and then we describe our 

motivations and contributions (I-D). 

A. Paired ITIT– Broadly Related Work 

 The vast majority of the RS ITIT research has been focused 

on SAR↔optical paired deep ITIT because SAR data are 

unaffected by atmospheric conditions. Due to higher 

accessibility, most of the studies process medium-resolution 

(>=5 m) data [2]–[5]. However, recently a few studies have 

been conducted on very high-resolution (VHR) data [1], [6]–

[9]. In [1], aiming at enhancing change detection performance, 

NICE-GAN [53], an introspective network based on 

CycleGAN [54] with multi-scale formulation in the 

discriminator and residual attention, was used for 

SAR↔optical translation. With the same goal but in a non-

adversarial setting, the authors in [6] implemented an optical-

SAR domain adaptation-based change detection network where 

distribution discrepancies in Hilbert space were included. An 

ITIT adaptation-based change detection technique (based on 

NICE-GAN) was also proposed in [7] where the features of 

optical images were transferred to SAR.  In [8], the authors took 

advantage of both Pix2Pix (cGAN) [55] and CycleGAN, and 

performed SAR↔optical mapping by incorporating an 

additional network called the distortion-adaptive module in 

both directions.  Finally, in [9], a Parallel-GAN was proposed 

for SAR→optical translation consisting of a backbone ITIT 

subnetwork and an adjoint optical image reconstruction 

subnetwork. 

Interest has also been shown in the deep translation of VHR 
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VIS satellite images to maps because it could prove very 

beneficial when timely updates are required [10]–[14]. Several 

methods have been applied in a paired setting. In  [10],  a scale-

consistent cGAN was proposed to simultaneously generate 

multi-level tile maps from multi-scale RS images. In addition, 

in [12], adversarial deep transfer training schemes were 

combined with attention-based network designs to generate 

maps over various regions, and in [13], a level-aware fusion 

network for multilevel map generation was introduced. Due to 

the scarcity of paired data, unpaired samples have also been 

proven to be useful. In [11], the authors designed a semi-

supervised learning strategy based on training GANs on rich 

unpaired samples and then applied fine-tuning on limited paired 

samples. In addition, in [14], Semi-MapGen was proposed, a 

network based on semi-supervised GANs, which requires only 

a small set of accurate and complete matched data and plenty of 

unpaired data.  

Mapping optical data to elevation information in a paired 

fashion is another application that has been studied in the DL 

literature as an affordable alternative to approaches that require 

Light detection and ranging (Lidar), Interferometric SAR 

(InSAR) or stereo pairs [15]–[18]. The study described in [15] 

was among the first to apply a cGAN to translate VHR optical 

data to elevation. Adversarial learning was also proposed in 

[16] where Pix2Pix was implemented to map optical to 

elevation data for Sentinel-2 and unmanned aerial vehicle 

(UAV) imagery. In a non-adversarial setting, the authors of [17] 

applied an encoder-decoder model with skip connections [56] 

and residual blocks [57] for DSM generation. Several strategies 

were investigated and showed that the performance can vary 

according to the dataset morphology. Similarly, in [18], a U-

Net [56] with residual blocks was applied to create elevation 

information for airborne images.  

Other DL studies of paired data have investigated the 

TIR→VIS ITIT in data collected by geostationary 

meteorological satellites by use of the Pix2Pix model to enrich 

the collected information [19]–[21]. In [19], Pix2Pix was 

trained on daytime pairs of the 10.8 μm longwave radiance band 

and the 0.675 μm visible band of the meteoritical imager (MI) 

onboard the Communication, Ocean and Meteorological 

Satellite (COMS), to create the non-existent nighttime visible 

reflectance band.  In a later study for the above-mentioned 

satellite [20],  Pix2Pix was applied for virtual nighttime visible 

imagery generation using multiband infrared observations and 

a brightness temperature difference. In a similar concept, in 

[21], Pix2Pix was trained on thermal band differences of the 

Advanced Meteorological Imager (AMI) sensor, of the GK-2A 

Geostationary Korea Multi-Purpose Satellite, to provide virtual 

RGB bands during day and night. Besides the above-mentioned 

low-resolution meteorological applications, VIS→TIR VHR 

mapping by Pix2Pix has also been explored [22] as an 

intermediate step to achieve thermal geolocation in low 

illumination environments, motivated by the limited 

availability of satellite thermal data.  

Data collected by geostationary meteorological satellites 

have also been used for cross-satellite deep paired VIS-VIS 

ITIT with the Pix2Pix network to generate missing bands [23] 

[24]. In [23], Pix2Pix was trained on blue band radiance images 

of the Advanced Himawari Imager (AHI) to generate a 

simulated green band (useful for monitoring water and 

vegetation) for the Geostationary Operational Environmental 

Satellite (GOES-16) Advanced Baseline Imager (ABI) sensor. 

In addition, in [24]  Pix2Pix was trained on blue band radiance 

images of the GK-2A/AMI sensor to generate simulated green 

and red bands (useful for monitoring atmospheric 

environments) for the Geostationary Environment Monitoring 

Spectrometer (GEMS) of the  GK-2B satellite. 

B. Paired ITIT– Closely Related Work 

1). SSR:  

Hyperspectral images carry valuable spectral information. 

However, the fact that until very recently satellites that provide 

global and public HS data were inexistent and the high cost of 

airborne sensors hinders the exploitation of HS information. 

Thus, hyperspectral image reconstruction from low-cost RGB 

cameras and MS sensors (spectral super-resolution (SSR)) has 

attracted recent attention. In the past, the problem was 

approached in a non-DL manner with linear unmixing [58], 

regression [59], and methods that exploit sparse representations 

and dictionary learning [60][61]. More recently, numerous DL 

studies have been published [27]–[35] [36]–[38]. All SSR 

literature methods so far, have evaluated their paired 

methodologies in the output as a whole without isolating 

particular bands (e.g. NIR).  

In  [27], a variant of the dense convolutional neural network 

(CNN) called “Tiramisu” [62] was trained on MS data collected 

from the Advanced Land Imager (ALI) on board the Earth 

Observing One (EO-1) satellite to predict the HS Hyperion 

bands. The qualitative evaluation showed that the predicted 

output was less noisy than the ground-truth data. In addition, 

the quantitative evaluation employed abundance estimation. In  

[28], CNN regression models were investigated to produce the 

Hyperion HS bands from the Landsat 7/8 MS bands. The 

authors showed that the CNN regression produced better 

performance compared to conventional regression methods. 

The model outputs were also evaluated by classification with 

support vector machines (SVM) over principal components 

(PCs). In [29], the authors proposed a cGAN with an additional 

spectral discriminator to map RGB to HS information in GF-5 

data. The quantitative spectral and spatial scores showed that 

the proposed network was more robust than alternative non-

adversarial approaches. In [30] an encoder-decoder model with 

attention to semantic similarity was implemented to spectrally 

super-resolve RGB to HS images in 1 m spatial resolution (SR). 

MS→HS SSR (Hyperion images) by employing semantic 

information was also proposed in [31] in the form of a change 

detection subnetwork. Finally, an encoder-decoder model was 

trained in [32] to spectrally super-resolve UAV and GF-5 MS 

images. Several input band combinations were explored and it 

was shown that the inclusion of the NIR band can enhance the 

performance of the final HS output. 

In other studies [33]–[35], SSR attempts have been made to 

enhance the exploitation of both spatial and spectral 

information in high/medium SR data. In [33], the authors 

proposed a progressive spatial-spectral joint network to 

reconstruct satellite and airborne HS data from MS. In addition, 
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in [34], a spatial-spectral residual attention was exploited for 

MS→HS mapping, and in [35], a spatial-spectral feature 

attention module was introduced in a GAN for both synthetic 

and real data scenarios.  

More recently, attention modules have been also exploited 

[36]–[38].  In [36], a hybrid transformer architecture was 

explored to achieve SSR on two aerial datasets through the 

integration of intra- and cross inter- row/column attention 

mechanisms. In [37], a reflectance/shading decomposition SSR 

framework that incorporated spatial and channel attention 

modules was tested on AVIRIS and GF5 data. Finally, in [38], 

the authors employed an integrated network of 3D CNN and U-

shaped Transformer in a coarse-to-fine scheme to utilize both 

local and global information in aerial imagery. 

 

2). RGB-to-NIR Translation:  

The RS studies published so far in RGB→NIR paired 

translation have focused exclusively on vegetation applications 

[39]–[43], [63]. The significance of the NIR band in providing 

rich information for the determination of vegetation parameters 

has since long been established [64]–[67].  In the last years, MS 

sensors onboard UAVs have been extensively used in precision 

agriculture. However, small producers have difficulty in 

affording the required equipment. Low-cost RGB cameras on 

board lightweight UAVs are a more affordable option [41]. 

Thus, RGB→NIR translation could prove very useful for 

vegetation monitoring.  

Before the broad application of DL, this problem had been 

approached by regression analysis on conventional cameras 

depicting crops [63], where a green-NIR correlation had been 

indicated. In recent years, several DL studies have been 

published for the RGB→NIR translation in vegetation areas 

and the vast majority have employed the Pix2Pix model [39]–

[43].  In [39], Pix2Pix was trained on UAV RGB crop data to 

generate the NIR band. The L1 loss was replaced with the 

Charbonnier penalty function and both in- (same crop type) and 

out-of-domain (different crop types) experiments were 

performed.  In [40], RGB→NIR translation was performed on 

Worldview-2 data by Pix2Pix with residual blocks in the 

generator. The authors focused on forest areas and evaluated the 

performance in a cross-domain setting (SPOT, Planet with 

finetuning). The Planet data translation showed lower 

evaluation scores due to higher heterogeneity compared to the 

training inputs. It was also stated that adversarial training 

increased the performance and that the inclusion of NIR in the 

classification task lowered the size of the needed annotations. 

One of the research motivations was the fact that public RGB 

databases do not contain the NIR band. However, ITIT could 

generate the missing information. In [41], Pix2Pix was trained 

on low-cost UAV RGB cameras to estimate the NIR band for 

agricultural purposes. The network outperformed a previously 

proposed endmember-based method [68]. The authors also 

investigated combinations of the original L1 loss with the 

structural similarity index (SSIM) and a perceptual loss to 

achieve slightly better results. In [42] Pix2Pix was employed 

for RGB→NIR field imagery translation (agricultural areas) 

with a DenseNet architecture [62] as the generator. Comparison 

with the original U-Net generator showed slight improvement. 

Finally, in [43], RGB→NIR translation was performed on 

Sentinel-2 data collected all year round. It was observed that the 

model was unaffected by corrupted pixels but did not show 

satisfactory generalization ability to Landsat-8 data. The failure 

in the out-of-domain performance could be attributed to 

differences in illumination, as well as atmospheric and sensor 

conditions.  

C. UDA 

Unpaired ITIT has recently widely been used in the form of 

UDA in VHR VIS RS when annotations are available in the 

source domain but not in the target domain [44]–[52]. The goal 

is to enhance cross-domain object detection (CDOD) or 

semantic segmentation (CDSS) tasks by decreasing domain 

shifts caused by the rich structure diversity, the variability in 

atmospheric/lighting conditions and viewing angles, as well as 

the different sensor characteristics.  

Adversarial approaches and particularly CycleGAN-based 

models, which employ a cycle-consistency loss, have often 

been proposed [44]–[48].   In [44], the segmentation models 

were optimized in two opposite directions by implementing 

bidirectional adversarial domain adaptation through 

CycleGAN, which takes advantage of the information from 

both domains. In [45], a CycleGAN-based model with residual 

connections was proposed followed by a semantic segmentation 

stage. An in-network resizer module was included to address 

the scale discrepancy.   In [46], a two-stage cross-domain self-

training object detection framework was investigated. The first 

stage introduced a CycleGAN-based strategy to mitigate the 

domain-shift and increase the quality of pseudo-labels. In [47], 

the two-stage CDSS task was approached by a dual space 

CycleGAN-based model where frequency information through 

discrete wavelet transform was integrated. Finally, in [48], 

CycleGAN-based UDA was explored to overcome the 

limitations of a coastal marine debris estimation model.  

In other studies, adversarial learning has been applied, 

without the cyclic-consistency loss, or alternative non-

adversarial learning strategies have been employed [49]–[52].  

In [49], CDSS was performed by a curriculum-style local-to-

global cross-domain adaptation framework. The adaptation 

process was conducted in an easy-to-hard way using an 

entropy-based score and adversarial learning. In [50], a two-

stage framework was applied, which performs fine-grained 

local and category-level alignment on top of global alignment. 

The framework used adversarial learning and knowledge 

distillation.  In [51],  the authors proposed a deep covariance 

alignment model to align category features. Finally, in [52], the 

authors implemented a lightweight UDA model relying on 

latent representation separation and mixing across domains 

which can be used in an one-shot setting. 

 

D. Motivations and Contributions 

Before 2010s the accessibility of VHR RS NIR imagery was 

limited since most of the airborne data collected until that time 

contained only RGB information, and satellite VHR data were 

not yet available to the public. In addition, public image 

datasets like Google Earth and several annotated datasets (e.g. 

[69][70][71]) which are often used as benchmarks contain only 
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RGB information. Thus, artificially generating the missing NIR 

band could greatly benefit RS applications when: a) requiring 

the use of RGB airborne data collected before 2010s (e.g. 

change detection) or publicly available in Google Earth; and b) 

exploring the performance of novel methods on public 

annotated RGB benchmark datasets after enriching them with 

the NIR band.  

As mentioned in the above literature review, the SSR-

published studies have evaluated their paired data 

methodologies in the output as a whole without isolating 

particular bands like the NIR. In addition, to the best of our 

knowledge, the RGB→NIR literature in total, has exclusively 

explored only the vegetation category. However, the NIR 

information has also among others proven useful for general 

scene recognition [72], mineral mapping [73], plastic litter 

detection [74][75], and nighttime image generation for the 

monitoring of environmental and socio-economic dynamics 

[76]. Thus, the generation of the NIR band would be significant 

to be explored in more detail and for more land cover 

categories. In addition, the evaluation of the methods on out-of-

domain data is crucial since in typical RS applications the NIR 

prediction is required on data collected on dates different than 

those of the training set or referring to different regions with 

similar spectral characteristics.  In both cases, atmospheric 

optical depth and sun/sensor viewing angle may differ, resulting 

in radiometric differences (radiometric domain gap).   

Concerning UDA, since it has been irrefutably recognized as 

capable of decreasing the domain discrepancies in the CDSS 

task, it should be at least logical to test it for the enhancement 

of cross-domain band generation (e.g. NIR).  The objective is 

to increase the radiometric similarity between the training set 

(source data) and the out-of-domain set (target data) through 

UDA, thereby improving the NIR prediction of the out-of-

domain set. A practical common scenario would be training a 

model with recent satellite RGB (input), NIR (output) data, and 

then applying UDA on airborne RGB past data as a pre-step 

before using the pretrained model to generate the unavailable 

past NIR.  Unlike the CDSS/CDOD tasks, where spectral 

similarity is not required when applying UDA (e.g. applying an 

SS model trained on green roofs (labeled source data) to detect 

red→green roofs (UDA) (unlabeled target data)), in the cross-

domain band generation spectral similarity between the source 

and target data when applying UDA is significant to predict a 

reliable missing band.  

Attempting to contribute to the previous VHR RGB→NIR 

prediction literature, this paper evaluates at first a conditional 

GAN (cGAN) and two attention networks trained on paired data 

(pixel correspondence between RGB and NIR) on predicting 

NIR on out-of-domain RGB data, and then attempts to improve 

the NIR prediction by employing a CycleGAN-based UDA on 

unpaired RGB bi-temporal data. The unpaired process follows 

a more general scenario where the source and target RGB 

patches used in the CycleGAN training do not geographically 

correspond.  In summary, the main contributions can be 

summarized as follows: 

    1) We explore the performance of a cGAN and two attention 

models on predicting NIR on out-of-domain VHR RGB data 

referring to different regions/sensors/dates than the training set. 

Prior research regarding NIR prediction on out-of-domain data 

is extremely limited. In addition, attention models have not 

been previously tested in the RGB→NIR translation. 

2) We explore the possibility of UDA through CycleGAN in 

improving the NIR prediction on out-of-domain imagery.  In 

three configurations, the effects of batch size and normalization 

techniques are examined. Through this study, UDA is 

employed for the first time in the enhancement of cross-domain 

band generation. 

3) We implement the models on three main thematic 

categories: a) impervious surfaces/urban fabric (manmade 

objects); b) vegetation (forest, crops); and c) ground. In earlier 

work, the impervious and ground categories have been 

completely out-of-focus. 

In the following sections, at first the data and methodology 

are described (section II) and then the results are presented and 

discussed (section III). Finally, the conclusions are summarized 

(section IV). 

 

II. DATA AND METHODOLOGY 

A. Datasets – Pre-processing 

For the implementation of the methodology, Geoeye-1 

(GE01) and Worldview-2/3 (WV-2/3) satellite VHR images 

were employed. The procured images were pan-sharpened by 

the vendor and contained four bands (RGB-NIR). The spatial 

resolution for GE01 and WV-2 images was 0.5 m, whereas for 

WV-3 was 0.3 m. They were collected from four European 

areas (Granada/Spain (G), Tønsberg/Norway (T), 

Rhodes/Greece (R), Venice/Italy (V)) in a bi-temporal fashion. 

The areas were heterogeneous since the morphology differed 

(G: dense high urban fabric/red-tiled roofs/steep mountains/few 

agricultural fields, T: sparse low buildings/grey-tiled roofs/flat 

terrain/high presence of agriculture and forest, R: dense urban 

fabric with terraces/few crops, V: very dense homogenous 

buildings/red-tiled roofs/limited vegetation). More info can be 

found in [77] where this dataset was used for the first time. In 

the text “1” refers to the earliest date and “2” to the latest (e.g. 

G1, T2).  

The pre-processing steps included: a) the creation of mosaics 

for WV-3 since the area of interest was depicted in  

 

TABLE I 

DATASET INFORMATION 

 
Area Collection 

 date 

Satellite Spatial 

Resolution (m) 

Size 

 (km2) 

Granada 

19/7/2013 GE01 0.5 

21 
2/7/2018 WV-3 0.3 

Tønsberg 

20/9/2013 WV-2 0.5 

25 
12/7/2019 GE01 0.5 

Rhodes 

23/4/2013 WV-2 0.5 

33 
5/6/2019 WV-3 0.3 

Venice 

4/5/2013 GE01 0.5 

17 
13/5/2018 WV-2 0.5 
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Fig. 1. Flowchart of the methodology. 

multiple tiles; b) resampling of the WV-3 images to 0.5 m SR 

(same as GE01, WV2); c) conversion of image values to 8-bit 

radiometric resolution (often encountered on airborne images 

before 2010s and public datasets); and d) normalization. 

TABLE I shows details about the images. Water areas were 

masked and not taken into account because they were out of the 

focus of this study. 

 

B. Method 

In this paper, after evaluating a cGAN (Pix2Pix), an adaptive 

weighted attention network (AWAN) [78], and a ViT (MST++) 

[79]  trained on paired data (each pixel in the RGB source data 

corresponds to a pixel in the target NIR data) on predicting NIR 

on out-of-domain data, a CycleGAN-based UDA was 

employed on unpaired data to improve the NIR prediction on 

out-of-domain imagery. Pix2Pix and CycleGAN were selected 

because they have been widely used in the ITIT literature, and 

AWAN and MST because they won the NTIRE Spectral 

Reconstruction Challenge in 2020 and 2022 respectively.  The 

models were implemented in Pytorch [80], in a machine with 

i7-8700K CPU and NVIDIA 1070 Ti GPU. A flowchart of the 

methodology is provided in Fig. 1.  

In more detail, after the data pre-processing, the paired ITIT 

was applied (Fig. 1/Paired ITIT (1)) where Pix2Pix, AWAN 

and MST++ were trained on RGB data to predict NIR. All 

models were trained on the G1 image alone. The performance 

of the G1-trained models was assessed on seven out-of-domain 

images (G2, R1, R2, T1, T2, V1, V2). This evaluation permits 

to give a performance estimation in scenarios where the 

unavailable NIR image corresponds to a region spectrally 

similar to a region with available NIR.  A possible application 

could be in the NIR enrichment of annotated benchmark public 
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RGB datasets. 

Following the paired ITIT, the unpaired ITIT was applied 

(UDA) by training three CycleGAN versions (IN1, IN14, 

BN14) on the RGB images of Granada and Venice. The effect 

of different normalization techniques (batch normalization 

(BN), instance normalization (IN)) and batch sizes (1, 14) was 

evaluated. The process is unpaired because the G1 RGB patches 

during the model training did not correspond geographically to 

the G2 RGB patches (random selection). The same goes for 

V1/V2. This approach covers a more challenging general 

scenario. 

The above pairs were selected because they were collected in 

the same month to avoid seasonal changes.  The UDA aimed at 

adapting G2 data to G1, and V2 data to V1, and thus increasing 

RGB radiometric similarity based: a) on the logical assumption 

that the G1-trained models (Fig. 1/Paired ITIT (1)) should 

perform better on G1 compared to G2, since G1 consisted the 

training set; and b) based on the fact that the G1-trained models 

performed better on V1 compared to V2 (section III). G2 and 

V2 are considered out-of-domain data compared to G1 because 

G2 is collected by a different sensor and on a different date, and 

V2 refers to a different region. Since CycleGAN uses a cyclic 

loss function, the reverse adaptation is also implemented during 

training but it is not of interest in this paper.  

The ultimate objective of UDA was to enhance the NIR 

prediction of G2 and V2 in the paired ITIT. Thus, after UDA, a 

second inference was performed on the G1-trained Pix2Pix, 

AWAN, and MST++ models (Fig 1. /Paired ITIT (2)) where the 

NIR G2 and V2 predictions were compared with the initial 

predictions (before UDA). It is noted that besides the 

CycleGAN-based UDA, histogram matching (HM) was also 

performed for comparison. 

 

1) Paired ITIT – Pix2Pix: 

 GANs are generative models that learn a mapping from 

random noise vector 𝑧 to output image 𝑦, 𝐺: 𝑧 → 𝑦 [81].  GANs 

consist of a generator 𝐺 and a discriminator 𝐷. In image 

generation applications, the goal of the generator is to produce 

synthetic (fake) images that challenge the ability of the 

discriminator to differentiate them from real images. The 

training is described by the objective function shown in (1) 

where 𝐺 aims at minimizing 𝐿GAN against an adversarial 𝐷 that 

aims at maximizing it. 

 

                            min𝐺max𝐷𝐿GAN(𝐺, 𝐷)                            (1) 

 

          𝐿GAN(𝐺, 𝐷) = 𝔼𝑦 [log 𝐷(𝑦)] + 

                              𝔼𝑧 [log (1 − 𝐷(𝐺(𝑧))]                        (2) 

 

Conditional GANs learn a mapping from  the observed image x 

and random noise vector 𝑧, to 𝑦, 𝐺: {𝑥, 𝑧} → 𝑦 [55]. In this case, 

the minmax two-player training is performed on (3). 

 

     𝐿cGAN(𝐺, 𝐷) = 𝔼𝑥,𝑦 [log 𝐷(𝑥, 𝑦)] + 

                              𝔼𝑥,𝑧 [log (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))]             (3) 

 

In our study, Pix2Pix which is a cGAN, was implemented 

according to the suggestions in [55] with a modification in the 

number of convolutional layers. It was trained in an alternating 

way according to (4) which includes the addition of the L1 loss 

(5) to (3) so that the generator except for antagonizing the 

discriminator is also tasked to produce outputs similar to the 

ground-truth (reconstruction loss). In (5) λ is a trade-off 

parameter between  𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) and  𝐿𝐿1(𝐺) and was set to 

100. 

 

             min𝐺max𝐷𝐿cGAN(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺)                      (4) 

 

              𝐿𝐿1(𝐺) = 𝔼𝑥,𝑦,𝑧[‖𝑦 −𝐺(𝑥, 𝑧)‖1]                         (5) 

 

The generator followed a U-Net [56] architecture. It 

consisted of eight convolutional layers in the encoder part and 

eight transposed convolutional layers in the decoder part. The 

respective layers in the original Pix2Pix implementation were 

four. In our study the number was increased in an attempt to 

improve the prediction accuracy. Skip connections through 

concatenation were applied between the encoder and the 

decoder layers.    Dropout was used in three decoder layers with 

value 0.5 (randomly zeroes some of the input tensor) to provide 

stochasticity both in training and inference.  Concerning the 

discriminator, it consisted of five convolutional layers and was 

in a PatchGAN form [55]. BN followed the convolutional 

layers in both the generator and discriminator. Finally, the 

dimensions of the generator input patch were 256×256×3 

(RGB) and of the output patch were 256×256×1 (NIR 

prediction). 

The training details are shown in TABLE II. The learning 

rate was set to 2×10-4. The number of epochs was set to 50 for 

the G1-trained models. The inference time for a 17 km2 image 

was 11 s. The selection of the final weights was performed by 

an empirical process based on the lowest L1 loss values in 

combination with the observation of the performance of the 

predictions on image samples.  

 

2) Paired ITIT – AWAN: 

AWAN contains a backbone with multiple dual residual 

attention blocks (DRAB). Long and short skip connections 

form the dual residual learning. An adaptive weighted channel 

attention (AWCA) module and a patch-level second-order  

 

TABLE II 

TRAINING DETAILS 

Training details Pix2Pix AWAN MST++  

Epochs  50 50 50  

Batch size 32 32 10  

Patch size 256 64 128  

Training steps 1312 350 300  

Trainable params G 3,404,801 4,354,045 1,619,625  

Trainable params D 175,793 ___- -  

Training time (h) (G1/all) 3 3 3  

GPU memory usage (GB) 1.6  8  7  
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non-local (PSNL) module were investigated to capture channel 

correlations and long-range spatial context. 

In our study, the network was implemented according to the 

suggestions in [78]. The selected DRAB number was 8 and the 

selected output channel number for the DRAB was 100. The 

dimensions of the input RGB patch of the network were 

64×64×3 and of the output patch were 64×64×1.  It is noted that 

the original output bands for AWAN were 31 but, in our case, 

it is only the NIR band. To retain consistency with Pix2Pix, L1 

loss was used.  For fair comparison, it was decided to train for 

a similar amount of time as Pix2Pix, thus, the number of 

training steps was set accordingly. The training details are 

shown in TABLE II. The learning rate was set to 1×10-4. The 

inference time for a 17 km2 image was 144 s. 

 

3) Paired ITIT – MST++: 

MST++ (multi-stage spectral-wise transformer) employs 

spectral-wise multi-head self-attention (S-MSA) in its basic 

unit: spectral-wise attention block (SAB). Each spectral feature 

map is treated as in S-MSA as a token to calculate the spectral 

self-attention. SABs form a U-shaped single-stage spectral wise 

transformer (SST) to extract multi-resolution contextual 

information. MST++ is cascaded by several SSTs to enhance 

the reconstruction quality from coarse to fine.  

In our study, the network was implemented according to the 

suggestions in [79].  The dimensions of the input RGB patch of 

the network were 128×128×3 and of the output patch were 

128×128×1.  It is noted that the original output bands for 

AWAN were 31 but, in our case, it is only the NIR band. Thus, 

a convolutional layer was added after the output layer to 

produce 1 band instead of 31. To retain consistency with 

Pix2Pix, L1 loss was used. For fair comparison, it was decided 

to train for a similar amount of time as Pix2Pix, thus, the batch 

size and the number of training steps were set accordingly. The 

training details are shown in TABLE II. The learning rate was 

set to 1×10-4. The inference time for a 17 km2 image was 92 s. 

 

4) Unpaired ITIT (UDA) – CycleGAN: 

CycleGAN performs unpaired ITIT with adversarial training. 

Since the 𝐺: 𝑥 → 𝑦  mapping is under-constrained, an inverse 

mapping 𝐹: 𝑦 → 𝑥  is also employed and a Cycle-  

 
Fig. 2. Architecture of the implemented CycleGAN model. In the first version, nine residual blocks were used in the generator, 

while in the second and third, three. The yellow highlighted layers in the discriminator were removed in the second and third 

versions. 
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consistency loss is introduced to impose 𝐹(𝐺(𝑥)) ≈  𝑥 and 

𝐺(𝐹(𝑦)) ≈  𝑦  (6). 

 

𝐿cyc(𝐺, 𝐹) = 𝔼𝑥 [‖𝐹(𝐺(𝑥)) −𝑥‖1] + 

                                         𝔼𝑦 [‖𝐺(𝐹(𝑦)) −𝑦‖1]                   (6) 

 

Both mappings are simultaneously trained.  The objective  

function is a combination of the cycle-consistency loss and the 

adversarial losses. Two discriminators (𝐷𝑥  , 𝐷𝑦) are includedin 

CycleGAN, one for each mapping. 𝐷𝑥    aims at differentiating  

𝑥   from  𝐹(𝑦) ,  and 𝐷𝑦   aims at distinguishing 𝑦 from  𝐺(𝑥) . 

Except for the adversarial losses for the 𝐺: 𝑥 → 𝑦  and 𝐹: 𝑦 →
𝑥    mapping  and the corresponding discriminators (𝐷𝑦   , 𝐷𝑥 ) , 

as suggested in [54] an identity loss (7)  [82]  is additionally 

utilized to retain color fidelity between the input and the output.  

Thus, the full objective is expressed in 8. 

 

𝐿identity(𝐺, 𝐹) =  𝔼𝑦[‖𝐺(𝑦) −𝑦‖1] + 

                                              𝔼𝑥[‖𝐹(𝑥) −𝑥‖1]               (7)   

 

 

𝐿(𝐺, 𝐹, 𝐷𝑥 , 𝐷𝑦) = 𝐿GAN(𝐺, 𝐷𝑦) +  𝐿GAN(𝐹, 𝐷𝑥) +    

                            𝜆1𝐿cyc(𝐺, 𝐹)   +  𝜆2𝐿identity(𝐺, 𝐹)         (8)  

 

where 𝜆1:10 and 𝜆2:5 

 

In our study, CycleGAN was implemented according to the 

suggestions in  [54]. It is noted that three versions, which 

differed in the use of normalization layers and batch size, were 

explored. In the original paper IN was used in the generator and 

BN in the discriminator. In the first and second versions, IN was 

employed in the generator and the discriminator with batch 

sizes 1 and 14 (maximum capacity of the available computer 

memory) respectively. In the third version, BN was employed 

with batch size 14.  All three versions were trained on the 

G1/G2 (GIN1, GIN14, GBN14) and the V1/V2 (VIN1, VIN14, 

VBN14) RGB pair of images.  

The architecture of the three versions is shown in Fig. 2. 

Three convolutional layers and nine residual blocks formed the 

first version generator encoder, and two Upsampling and three 

convolutional layers formed the generator decoder. The 

PatchGAN discriminator consisted of five convolutional layers. 

In the second and third versions, the difference compared to the 

first version architecture was the use of three residual blocks 

instead of nine in the generator, and the removal of a 

convolutional layer (shown in yellow highlight) in the 

discriminator to alleviate the computational load.  The learning 

rate for the first version was set constant to 2x10-4 for the first 

100 epochs and then linear decay to zero was implemented. For 

the second and third versions, the learning rate decay was 

implemented for the last ten epochs. Finally, the dimensions of 

the generator input and output patch were 

256×256×3 (RGB). It is noted that since CycleGAN aims at 

unpaired ITIT, realA and realB patches (Fig. 2) did not 

geographically match during training since they were selected 

randomly.  

The training details for the three versions are shown in 

TABLE III  

UDA TRAINING DETAILS 

Training details GIN1 GIN14 GBN14 VIN1 VIN14 VBN14 

Epochs 200 80 80 200 80 80 

Batch size 1 14 14 1 14 14 

Patch size 256 256 256 256 256 256 

Training steps 1312 1312 1312 1092 1092 1092 

Trainable params 
G 

715,65
1 

272,51
5 

272,51
5 

715,65
1 

272,51
5 

272,51
5 

Trainable params 

D 

175,08

9 
43,057 43,057 

175,08

9 
43,057 43,057 

Training time 8 26 24 7 21 20 

GPU memory 

 usage (GB) 
0.5 6 6 0.5 6 6 

 

TABLE III.  The inference time for a batch of 32 patches for 

the first version was 0.113 s and for the second and third was 

0.073 s.  The selection of the final weights was based on the 

lowest cycle-consistency loss along with observing image 

samples.  

 

III. RESULTS AND DISCUSSION 

A. Paired ITIT – First stage 

The results of the paired ITIT were evaluated quantitatively 

and qualitatively. For the quantitative evaluation, the root mean 

square error (RMSE) (14) and the structural similarity (SSIM) 

(15) [83] were calculated between the predicted NIR and the 

ground-truth with kernel size 7x7. It is noted that RMSE is 

sensitive to spectral information, while SSIM is sensitive to 

geometry. In this paper more importance is assigned to the 

accuracy of spectral representation. 

 

                             RMSE = √
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

𝑛
                                     (14)   

 

                              SSIM =  
(2𝜇𝑦𝜇𝑦̂+ 𝑐1)(2𝜎𝑦𝑦̂+𝑐2)

(𝜇𝑦
2+𝜇𝑦̂

2+𝑐1)(𝜎𝑦
2+𝜎𝑦̂

2+𝑐2)
               (15) 

 

where  𝑐1 = (𝑘1𝐿)3,  𝑐2 = (𝑘2𝐿)3,  𝐿: the dynamic range of the 

pixel values, 𝑘1=0.01, and 𝑘2=0.03. 

 

1) Quantitative evaluation – Evaluation scores:  

RMSE and SSIM were estimated for the predicted images 

produced by Pix2Pix, AWAN, and MST++. It is noted that in 

contrast to the suggestion in [55], for Pix2Pix, BN was retained 

in the inference and was not changed to IN because it performed 

better in preliminary experiments.  The scores were calculated 

for three separate categories: impervious (e.g. buildings, roads), 

vegetation (forest, crops) and ground. The three categories in 

the images were delineated by masks that were created in a 

graphics editor [84]. At first, vegetation was detected by the 

normalized difference vegetation index (NDVI) [85] and then 

the ground category was manually masked. The remaining area 

constituted the impervious category.  The evaluation scores are 

presented in TABLE IV. The bold font indicates the best scores. 

The mean score values are depicted for each image. Total mean  
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TABLE IIV 

NIR EVALUATION SCORES IN PAIRED ITIT – FIRST STAGE 

  impervious vegetation ground 
  Pix2Pix AWAN MST++ Pix2Pix AWAN MST++ Pix2Pix AWAN MST++ 

R
M

S
E

→
 

G2 0.069 0.049 0.044 0.125 0.099 0.092 0.060 0.051 0.045 

R1 0.094 0.079 0.069 0.144 0.076 0.102 0.096 0.078 0.072 
R2 0.129 0.128 0.106 0.141 0.126 0.097 0.096 0.107 0.082 

T1 0.180 0.160 0.168 0.187 0.162 0.139 0.190 0.195 0.201 

T2 0.185 0.170 0.170 0.220 0.222 0.187 0.115 0.136 0.099 

V1 0.089 0.081 0.070 0.131 0.135 0.122 
         No data 

V2 0.114 0.101 0.100 0.196 0.182 0.160 

total mean 0.123 0.110 0.104 0.164 0.143 0.128 0.111 0.113 0.100 

S
S

IM
→

 

G2 0.883 0.953 0.961 0.774 0.861 0.889 0.878 0.948 0.959 

R1 0.843 0.913 0.927 0.599 0.858 0.860 0.741 0.902 0.931 

R2 0.847 0.900 0.927 0.702 0.828 0.871 0.834 0.921 0.950 

T1 0.641 0.731 0.736 0.665 0.746 0.802 0.744 0.870 0.870 

T2 0.614 0.726 0.727 0.656 0.672 0.775 0.757 0.856 0.885 

V1 0.868 0.917 0.932 0.605 0.740 0.765 
No data 

V2 0.821 0.877 0.882 0.537 0.639 0.683 

total mean 0.788 0.860 0.870 0.648 0.763 0.807 0.791 0.899 0.919 

 

 
Fig. 3. Boxplots of the evaluation scores in paired ITIT (first stage).  (a) Impervious, (b) Vegetation 

 
Fig. 4. Boxplots of the evaluation scores in paired ITIT (first 

stage) for the ground category. 

is the average of the mean values for all out-of-domain images.  

As explained in section II.B, all models were trained on the 

G1 image alone and were evaluated on out-of-domain sets (G2, 

R1, R2, T1, T2, V1, V2). As already mentioned, the out-of-

domain evaluation permits the performance estimation when 

the unavailable NIR image (e.g. airborne photo before 2010s) 

corresponds to a spectrally similar area with available NIR.  

By observing TABLE IV, it can be observed that in all three 

categories MST++ showed the best overall performance in 

RMSE and SSIM followed by AWAN and Pix2Pix.  The 

vegetation category appeared to be the most difficult task (total 

mean RMSE: MST++:0.128, AWAN:0.143, Pix2Pix: 0.164).  

It is noted that in the impervious category all models showed 

the worst scores in T1, T2 because the urban fabric spectral 

characteristics were highly different compared to G1 (different 

structures/materials). Similarly, regarding vegetation, the least 

satisfactory performance for all models was also shown in 

Tønsberg. However, V2 also presented high RMSE and low 

SSIM. Finally, on the ground category, T1 showed the worst 

scores. 

 

2) Quantitative evaluation - Boxplots: 

Except for quantitatively assessing the paired ITIT by the 

mean score values, boxplots were also created (Figs. 3, 4).  In 

the boxplots, the first (Q1), second (Q2), and third (Q3) 

quartiles are depicted. The conclusions produced by observing 

TABLE IV are consistent with the conclusions drawn by the 
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boxplots. It is observed that MST++ showed overall the best 

performance followed by AWAN and Pix2Pix. 

 

3) Quantitative evaluation – Spectral Plots: 

To reinforce the visual perception of the results, spectral plots 

are depicted in Fig. 5.  It is noted that since the NIR values 

correspond to only one band, the spectral curves are diminished 

to points. Thus, spectral plots were created as follows: At first, 

the mean values in the ranges: [0.2-0.21], [0.3-0.31], [0.4-0.41], 

[0.5-0.51], [0.6-0.61], [0.7-0.71] and [0.8-0.81] were calculated 

for the ground-truth NIR values in each of the three land cover 

categories. Then, the mean values for the same ranges were 

calculated for the predictions. As a final step, since predicted 

and ground-truth values were too close to be discernible in the 

plot, it was decided to subtract the ground-truth NIR values. 

Thus, in Fig. 5, y=0 corresponds to the ground-truth NIR 

values. The closest values to y=0 correspond to mean values 

closer to the ground-truth.  

It was observed that in the impervious category, MST++ 

showed the closest predictions to the ground-truth for most of 

the images followed by AWAN and Pix2Pix. The same 

conclusion can be drawn for the vegetation category. 

Concerning the ground class, there is less agreement with 

TABLE IV compared to the impervious and vegetation 

categories. 

The fact that the spectral plots are not always in agreement 

with the scores in TABLE IV illustrates how different metrics 

can provide different perspectives on image similarity which 

can lead to variable conclusions, a known issue in the research 

community [86].  In this study, RMSE and SSIM employ a  

 
Fig. 5. NIR spectral plots in paired ITIT (first stage). (a) Impervious, (b) Vegetation, (c) Ground 
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Fig. 6.  Samples of pseudo-color composites of the NIR predictions in the paired ITIT (first stage). Red color is assigned to the 

NIR band, green color to the RED band, and blue color to the GREEN band. (a1-a7) Natural RGB composite, (b1-b7) Ground-

truth, (c1-c7) Pix2Pix, (d1-d7) AWAN, (e1-e7) MST++.  

detailed spectral comparison through a 7x7 window, thus are 

more trustworthy metrics than the spectral plots. 

 

4). Qualitative evaluation:  

The qualitative evaluation was conducted by visual 

interpretation and it is complementary to the quantitative 

(TABLE IV). Samples of pseudo-color composites of the NIR 

predictions are displayed in Fig. 6. It is noted that it was decided 

to include pseudo-color composites in the paper instead of the 

greyscale NIR band to facilitate the visual interpretation. Red 

color is assigned to the NIR band, green color to the RED band, 

and blue color to the GREEN band.  Fig. 6 shows output 

samples for each of the seven images (G2, R1, R2, T1, T2, V1, 

V2) for the three trained models (Pix2Pix, AWAN, MST++). A 

sample of G1 (training image) is shown  in Fig. 7. 
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Fig. 7 Sample of G1 training image. (a) Natural RGB 

composite, (b) Pseudo-color composite containing NIR (Red 

color: NIR band, green color: RED band, blue color: GREEN 

band) 

Concerning the depiction of the impervious category in Fig. 

6, the performance difference among the models can be visually 

perceived in: a) where Pix2Pix is outperformed in the spectral 

representation of buildings by MST++ and AWAN; b) R1, with 

MST++ and AWAN predictions showing better spectral 

similarity to the ground-truth compared to Pix2Pix; and c) V1 

where MST++ outperforms the other two models. It is noted 

that predictions with RMSE ⪅ 0.08 do not visually differ from 

the ground-truth.  

Regarding the depiction of the vegetation category in Fig. 6, 

the performance differences among the models are visually 

perceivable in several images: a) G2, where MST++ and 

AWAN show more satisfactory predicted values compared to 

Pix2Pix (e.g. top left); a) R1, with AWAN showing the best 

prediction, followed by MST++; b) R2, where MST++ and 

AWAN outperform Pix2Pix; c) T2, illustrating MST++ with 

higher NIR values, which are closer to the original; and d) V1, 

displaying MST++ as more spectrally similar to the ground-

truth. It's noted that predictions with RMSE ⪅1 are visually 

very close to the ground-truth. 

Finally, in the ground category, the performance difference 

among the models can be visually perceived in Fig. 6 in: a) R1 

with Pix2Pix showing lower color resemblance compared to the 

other two models; b) R2 with MST++ depicting higher spectral 

similarity to the ground-truth; and b) T2 where MST++ (low 

left edge) predicts more accurately the original values 

B. Paired ITIT – after UDA 

As explained in section II.B, in this study, UDA (unpaired 

ITIT) was also implemented to improve the NIR prediction of 

G2 and V2 (produced by Pix2Pix, AWAN and MST++) 

regarding the paired ITIT of the first stage.  The UDA aimed at 

adapting G2 data to G1, and V2 data to V1, and thus increasing 

radiometric similarity based: a) on the logical assumption that 

the G1-trained models (Fig. 1/Paired ITIT (1)) should perform 

better on G1 compared to G2, since G1 consisted the training 

set; and b) based on the fact that the G1-trained models 

performed better on V1 compared to V2 (TABLE IV). 

 In more detail, the three G2 and V2 domain-adapted RGB 

outputs produced by CycleGAN (IN1, IN14, BN14), acted as 

input to the G1-trained Pix2Pix, AWAN, and MST++ models 

(Fig 1. /Paired ITIT (2)) and inference was implemented. The 

results of the inference (NIR predictions with domain-adapted 

RGB inputs) were compared with the initial predictions (before

TABLE V 

NIR EVALUATION SCORES IN PAIRED ITIT AFTER UDA 

 RMSE↓ SSIM↑ 

 G2 V2 G2 V2 

 impervious vegetation ground impervious vegetation ground impervious vegetation ground impervious vegetation ground 

 Pix2Pix 

Before UDA 0.069 0.125 0.060 0.114 0.196 

N
o

 d
at

a 
 

0.883 0.774 0.878 0.821 0.537 

N
o

 d
at

a IN1 0.147 0.222 0.107 0.164 0.194 0.472 0.336 0.361 0.513 0.357 

IN14 0.122 0.207 0.098 0.139 0.169 0.598 0.442 0.502 0.662 0.460 

BN14 0.089 0.142 0.063 0.101 0.130 0.744 0.607 0.715 0.793 0.586 

HM 0.070 0.152 0.063 0.114 0.156 0.881 0.749 0.879 0.838 0.615 

 AWAN 

Before UDA 0.049 0.099 0.051 0.101 0.182 

 

N
o

 d
at

a 

0.953 0.861 0.948 0.877 0.639 

N
o

 d
at

a IN1 0.146 0.226 0.106 0.182 0.200 0.475 0.334 0.373 0.502 0.366 

IN14 0.117 0.204 0.096 0.151 0.173 0.617 0.462 0.529 0.664 0.491 

BN14 0.081 0.176 0.059 0.115 0.145 0.785 0.632 0.770 0.814 0.628 

HM 0.048 0.123 0.052 0.134 0.179 0.955 0.846 0.947 0.848 0.636 

 MST++ 

Before UDA 0.044 0.092 0.045 0.100 0.160 

N
o

 d
at

a 

0.961 0.889 0.959 0.882 0.683 

N
o

 d
at

a IN1 0.144 0.209 0.101 0.167 0.188 0.484 0.357 0.379 0.521 0.386 

IN14 0.115 0.186 0.094 0.137 0.157 0.625 0.492 0.539 0.683 0.517 

BN14 0.078 0.142 0.060 0.098 0.123 0.795 0.684 0.776 0.833 0.671 

HM 0.045 0.106 0.051 0.124 0.151 0.961 0.880 0.955 0.874 0.709 
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Fig. 8. Boxplots of the evaluation scores in paired ITIT after UDA for the G2 region.  (a) Impervious, (b) Vegetation, c) Ground 

 
Fig. 9 Boxplots of the evaluation scores in paired ITIT after 

UDA for the V2 region.  (a) Impervious, (b) Vegetation 

UDA) through RMSE and SSIM scores (kernel size:7x7), as 

well as qualitatively. The effect of different normalization 

techniques (BN, IN) and batch sizes (1, 14) was evaluated. It is 

noted that besides the CycleGAN-based UDA, HM was also 

performed for comparison.  

As already mentioned in section II.B, the Granada and 

Venice pairs were chosen to minimize seasonal variation, as 

they were gathered during the same month. G2 and V2 are 

deemed out-of-domain data in comparison to G1. G2 was 

gathered using a different sensor and at a different time, while 

V2 represents a different region. 

 

1) Quantitative evaluation – Evaluation scores:  

The RMSE and SSIM scores are presented in TABLE V. It 

is observed that the NIR predictions of all three models 

(Pix2Pix, AWAN, MST++) on the outputs of the BN14 

CycleGAN version, were significantly enhanced in terms of 

RMSE compared to the ones before UDA for the vegetation 

category in the V2 region. In more detail, the RMSE improved 

in a) Pix2Pix from 0.196 to 0.130; b) AWAN from 0.182 to 

0.145; and c) MST++ from 0.160 to 0.123.  The respective V1 

vegetation RMSE values (TABLE IV) were 0.131, 0.135, and 

0.122. Thus, in Pix2Pix and MST++ the maximum possible 

NIR prediction enhancement in terms of RMSE was achieved.  

A smaller RMSE improvement also occurred on the outputs of 

the IN14 CycleGAN version and HM. Consequently, BN 

versions of CycleGAN appear the most promising for the 

enhancement of high RMSE scores. It is noted that significant 

SSIM change was not observed. 

It is also remarked that notable RMSE improvements were 

not observed in G2 and the impervious V2 category. We believe 

that the reason is the fact that the initial RMSE scores (before 

UDA) in G2 were significantly lower than the one of V2 

vegetation due to higher radiometric difference in the respective 

RGB domains, i.e. the G2 RGB radiometry was similar to G1 

RGB, while the V2 RGB vegetation radiometry was highly 

dissimilar to V1 RGB. 

 
Fig. 10. NIR spectral plots in paired ITIT after UDA for the G2 region. (a) Impervious, (b) Vegetation, (c) Ground 
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Fig. 11. NIR spectral plots in paired ITIT after UDA for the V2 

region. (a) Impervious, (b) Vegetation 

2) Quantitative evaluation - Boxplots: 

Boxplots were also created for the quantitative assessment 

(Figs. 8, 9). The observation of the boxplots leads to the same 

conclusions as the observation of TABLE V. In more detail,  

the BN14 version of CycleGAN greatly improved the RMSE in 

all NIR prediction models (Pix2Pix, AWAN, MST++) 

compared to the ones before UDA for the vegetation category 

in V2. The outputs of the IN14 version and HM showed a 

smaller improvement. Significant advancements are not seen in 

G2 and the impervious V2 category. 

 

3) Quantitative evaluation – Spectral plots: 

To enhance the visual interpretation of the results, spectral 

plots are depicted in Figs. 9, 10.  The approach used to create 

the curves is already explained in section III.A.3.   

The spectral plots referring to G2 (Fig. 10) are in agreement 

with TABLE V, i.e. substantial improvements did not occur for 

any of the three land cover classes. As already mentioned, the 

reason for this could be the much lower initial RMSE scores 

(before UDA) compared to those of the V2 vegetation due to 

higher radiometric similarity in the respective RGB domains. 

Regarding the spectral plots referring to V2 (Fig. 11), for the 

vegetation category, the superiority of the BN14 CycleGAN 

version is once again highlighted for the three NIR prediction 

models (Pix2Pix, AWAN, MST++) as it showed the closest 

predictions to the ground-truth. 

 
 

Fig. 12. Samples of pseudo-color composites of the NIR predictions in paired ITIT after UDA. (a1-a6) Before UDA, (b1-b6) IN1, 

(c1-c6) IN14, (d1-d6) BN14, (e1-e6) HM. 
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It is noted that in the impervious category of V2, the spectral 

plots corresponding to the BN14 CycleGAN version of Pix2Pix 

and MST++, also show the closest predictions to the ground-

truth. However, since this conclusion is not rigidly  supported 

in TABLE V, it is not considered trustworthy. As already 

mentioned in section III.A.3, the RMSE score implements a 

more detailed spectral comparison, thus, in this paper it carries 

more weight. 

 

4). Qualitative evaluation:  

The qualitative evaluation was conducted by visual 

interpretation additionally to the quantitative (TABLE V). 

Samples of pseudo-color composites of the NIR predictions are 

displayed in Fig. 12. This figure shows the outputs of the three 

NIR prediction models (Pix2Pix, AWAN, MST++) when 

feeding the domain adapted RGB CycleGAN outputs (IN1, 

IN14, BN14) as well as the HM adapted images. The ground-

truth and the NIR predictions before UDA are also shown. 

In Fig. 12 it can be visually perceived that the BN14 version 

of CycleGAN managed to produce the best enhancement in the 

spectral similarity of the vehetattion NIR prediction to the 

ground-truth in Pix2Pix, AWAN and MST++. The IN14 

version of CycleGAN and HM produced smaller 

enhancements. Significant improvement is not seen in G2 and 

the impervious V2 category. 

 

IV. CONCLUSION 

In this study, a conditional GAN (Pix2Pix) and two attention 

networks (AWAN, MST++) were initially assessed on 

predicting NIR on out-of-domain RGB bi-temporal data. The 

properties of the out-of-domain RGB data were those typically 

required in RS NIR prediction tasks: different 

regions/sensors/dates than the training set. The three NIR 

prediction models were trained in a single Granada image (G1) 

and evaluated on seven out-of-domain heterogenous images 

referring to Granada, Rhodes, Tønsberg, and Venice (G2, R1, 

R2, T1, T2, V1, V2).  It is remarked that former research 

regarding NIR prediction on out-of-domain data is extremely 

scarce. However, such research is significant for the NIR 

enrichment of a) airborne RGB images collected before 2010s 

when NIR imagery was limited; and b) a large number of public 

annotated RGB datasets often used as benchmarks. 

 It is also remarked that attention models have not been tested 

before in the RGB-to-NIR translation. 

In a subsequent step, the study’s attention was directed 

toward the increase of the radiometric similarity between the 

source and target RGB data by employing CycleGAN-based 

unsupervised domain adaptation (UDA) on unpaired data. The 

ultimate objective of UDA was the improvement of the initial 

NIR prediction. The unpaired process followed a more general 

scenario where the source and target RGB patches used in the 

CycleGAN training did not geographically correspond.  To 

implement the UDA, three CycleGAN versions (IN1, IN14, 

BN14) were explored where the effect of different 

normalization techniques (batch normalization (BN), instance 

normalization (IN)) and batch sizes (1, 14) was evaluated. To 

implement the UDA, bi-temporal pairs collected on the same 

month to avoid seasonal changes were selected. Thus, the aim 

was to adapt G2 (target) to G1 (source) and V2 (target) to V1 

(source) based: a) on the logical assumption that the G1-trained 

models should perform better on G1 compared to G2, since G1 

consisted the training set; and b) based on the fact that the G1-

trained models predicted NIR more accurately on V1 compared 

to V2. It is highlighted that through this study, UDA is 

employed for the first time in the enhancement of cross-domain 

band generation. 

In all NIR prediction experiments, the assessment was 

conducted quantitatively and qualitatively on three main land 

cover categories (impervious surfaces/urban fabric, vegetation, 

ground), thus contrary to prior work, the impervious and ground 

classes were not overlooked. 

It was shown that MST++ (vision transformer) produced the 

most satisfactory out-of-domain NIR predictions in all three 

land cover classes and that UDA through the BN14 CycleGAN 

version managed to significantly enhance the NIR prediction 

when there was a substantial RGB radiometric difference 

(radiometric domain gap). 

For future work, the prediction of shortwave-infrared 

(SWIR) information will be explored. In addition, the 

feasibility of UDA between different geographic areas with 

similar spectral characteristics and the spectral enrichment of 

annotated public datasets will be investigated.  
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