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Abstract 

Sentinel-2 (S2) images have been used in several projects to detect large accumulations of marine litter and plastic targets. Their limited spatial 

resolution though hinders the detection of relatively small floating accumulations of marine debris. Thus, this study aims at overcoming this limit 

through the exploration of fusion with very high-resolution WorldView-2/3 (WV-2/3) images.  Various state-of-the-art approaches (component 

substitution, spectral unmixing, deep learning) were applied on data collected in synchronized acquisitions of plastic targets of various sizes and 

materials in seawater. The fused images were evaluated for spectral and spatial distortions, as well as their ability to spectrally discriminate plastics 

from water. Several WV-2/3 band combinations were investigated and five litter indexes were applied. Results showed that: a) the VNIR 

combination is the optimal one, b) the smallest observable plastic target is 0.6×0.6 m2 and c) SWIR bands are important for marine litter detection. 
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1. Introduction 

Marine litter is defined as any persistent, manufactured or 

processed solid material discarded, disposed of or abandoned 

in the marine and coastal environment (UNEP, 2005). Marine 

litter may be found originating both on land (i.e. river 

discharges, flood water events, industrial, and recreational 

littering, etc.) and at sea (fishing, aquaculture, offshore mining 

and extraction operations, etc.). Land-based activities account 

for roughly 80% of marine litter (Jambeck et al. 2015).  

Plastics are the most prevalent debris found due to an increase 

in demand and production of plastic items over the last 70 

years, as well as their slow decomposition (Chamas et al.  

2020; Smail et al. 2019). High concentrations of marine litter 

endanger marine wildlife through entanglement, colonization 

of surface areas, or ingestion. The latter negatively impacts 

human health as well as the marine wildlife which is part of 

our food chain (Rios et al.  2007; Casabianca et al. 2019; 

GESAMP 2019). In addition to harming marine life, marine 

litter has a broad range of negative environmental, socio-

economic and maritime travel safety impact (Rios et al. 2007; 

Casabianca et al. 2019; GESAMP 2019). Although plastic 

litter has been reported since the 1960s, it has become a global 

environmental concern only in more recent years. Scientists 

estimate that by 2050 the plastic litter mass will overweigh the 
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mass of the fish population (Salgado-Hernanz et al., 2021).   

Satellite remote sensing has been identified as  a useful tool 

for marine debris monitoring as it provides global and 

continuous temporal coverage (Maximenko et al. 2019; 

UNEP, 2016).  However, it imposes some significant 

challenges in terms of atmospheric and sea-surface effects, 

radiometric, spatial and temporal resolutions, and availability 

of ground-truth data (Topouzelis et al. 2021). Acuña-Ruz et al. 

(2018) created a spectral library from laboratory spectroscopic 

measurements and used WV-3 images from 0.3 to 1.2 m spatial 

resolution to train machine learning methods to identify 

Anthropogenic Marine Debris (AMD) mixtures over beaches 

on Chiloé island. Their effort to distinguish the various plastic 

materials showed that while the laboratory analysis revealed a) 

distinctive absorption patterns in the SWIR (Shortwave 

Infrared) wavelength region, b) peak reflectance in the NIR 

(Near Infrared) spectrum, and c) variability in the VIS (visible) 

spectrum, the WV-3 spectral resolution could only distinguish 

Expanded Polystyrene (EPS) from the other marine debris. 

Garaba and Dierssen (2018) used a lab spectral library of 

various plastic materials as reference for the detection of a 

large-sized ghost net in airborne SASI (Shortwave infrared 

Airborne Spectrographic Imager) SWIR imagery with pixel 

size 0.5×1.2 m2. They observed that both wet and dry plastic 

spectra have absorption features around 1215 and 1732 nm, 

and the reflectance of wet plastic is lower compared to the one 

of dry plastic, due to water absorption. This highlights the 

effect of ocean water on the spectral properties of polymers 
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and the need to investigate the minimum plastic coverage of 

the ground pixel area that can still allow detection. Lower 

reflectance for wet plastic spectra was also shown by Goddijn-

Murphy and Dufaur (2018)  who verified a theoretical model 

of plastic reflectance. Their model however produced smaller 

reduction compared to Garaba and Dierssen (2018), a fact that 

could be explained by the differences in the experimental 

design and the properties of the selected plastic objects. 

Topouzelis et al. (2019) were the first to conduct an 

experiment with artificial floating targets consisting of 10×10 

m2 PET (Polyethylene terephthalate)-1.5 L water bottles, 

LDPE (Low-density Polyethylene) plastic bags, and nylon 

fishing ghost nets. Sentinel-2 (S2) and Sentinel-1 images were 

investigated. In the optical data, all 10×10 m2 plastic targets 

were distinguishable from the water due to their higher 

reflectance. In SAR data though, only the plastic bottles could 

be detected. In a follow-up study (Topouzelis et al. 2020), S2 

images of artificial plastic targets deployed at sea were 

examined in combination with UAV (Unmanned Aerial 

Vehicle) optical multispectral data. Pixel coverage of plastic 

and linear spectral mixture were used to modify the spectra 

provided by the USGS spectral library. Then, matched filtering 

was used to classify the pixels containing concentrations of 

plastic. This classification technique proved very promising as 

marine plastic litter targets were successfully identified if they 

covered at least 25% of the ground sampling distance (GSD).  

Biermann et al. (2020) made use of S2 images of various 

locations where marine plastic litter has been reported on 

scientific publications, mass, or social media. NDVI and the 

Floating Debris Index (FDI), which was developed in the study 

of Biermann et al. (2020), were used to detect floating litter 

patches and discriminate plastic from other materials. Both 

indexes were employed to train a naïve Bayes classifier to 

compute the probability of a detected pixel to belong to each 

of the following classes: seaweed, spume, timber, 

macroplastics, and seawater. The algorithm classified plastic 

with an overall accuracy of 86%. Martinez-Vicente et al. 

(2020) developed the Normalised Difference Hydrocarbon 

Index (NDHI) for the detection of plastic on the shoreline 

using airborne hyperspectral (HS) data. This index is based on 

the Hydrocarbon Index (HI) (Kühn et al. 2004). The results 

were promising, indicating that subpixel detection is possible, 

while further investigation is needed to determine the 

minimum percentage of coverage that can be detected. Basu et 

al. (2021) evaluated the potential of supervised (SVR (Support 

Vector Regression) and SFCM (Semi-supervised Fuzzy c-

means)) and unsupervised (k-means and FCM (Fuzzy c-

means)) classification algorithms to detect floating marine 

litter. The authors used S2 images containing floating marine 

litter targets with sizes 10×10 m2 and 3×10 m2, and various 

combinations of bands and indexes as attribute sets for the 

classification algorithms. The supervised classification yielded 

higher accuracy, while the unsupervised algorithms provided 

many misclassifications. From the above, it was concluded 

that when artificial large-sized plastic targets are used, S2 

spectral resolution (13 bands in the 440-2200 nm part of the 

spectrum) can detect marine plastic litter.  

In order to increase PRISMA hyperspectral satellite image 

ability to detect small sized plastic targets, Kremezi et al. 

(2021) evaluated several pan-sharpening methods on PRISMA 

HS images with 30 m native spatial resolution, based on the 

ability of the methods to spectrally differentiate plastics from 

water with the minimum spatial distortions. Through 

controlled experiments with plastic targets of various sizes, it 

was observed that in order for a small plastic target to be 

distinguishable it should at least occupy 8% of a pixel of the 

original HS image. Moreover, they proposed a combination of 

three indexes to detect plastic objects. 

Spatial resolution, multispectral characteristics (namely 

number, position, and width of the acquisition bands) and 

signal-to-noise ratio (SNR) are crucial factors in the design of 

a sensor dedicated to the detection and discrimination of 

accumulations of marine litter from space. Current orbiting 

sensors were not designed for such an application. As above 

summarised, a number of studies exploited the spatial 

resolution and multispectral characteristics of S2 to perform 

detection and discrimination of marine litter accumulations 

(and targets), however it is now clear that more spatial 

resolution and more spectral bands, arranged in a dedicated 

configuration, would significantly improve the detection of 

marine litter accumulations from orbit. The possibility to fuse 

images of different orbiting sensors in view to improve at least 

one of these aspects, would be consequently beneficial. 

Thus, in this study, we evaluate various state-of-the-art 

image fusion algorithms that make use of component 

substitution, spectral unmixing or deep learning (DL), on S2 

and WV-2/3 (2, 4 m spatial resolution) datasets. The DL 

literature networks were adjusted to the fusion problem since 

they originated from either the pan-sharpening or the single 

image super-resolution (SISR) domain. In addition, three DL 

networks were created for the purpose of the study. Finally, we 

experiment with various WV-2/3 band combinations to find 

the optimal one and examine various indexes for their 

capability to detect floating plastic objects on the fused images.  

 

2. Materials and methods  

2.1. Data description 

Two controlled experiments with artificial plastic targets 

were conducted. The first processes S2 and WV-3 images, 

while the second S2 and WV-2 images. Experiments took 

place in the Tsamakia beach and the Geras Gulf, respectively 

(Figure 1). Both locations are found in the coastal region of 

Lesvos Island, Greece, they are protected from any human 

activities and they provide conditions of both shallow and deep 

water. 

2.1.1. Field data 

 

The first experiment utilised three 10×10 m2 plastic targets 

constructed for the needs of the "Plastic Litter Project 2018" 

conducted by the Marine Remote Sensing Group of the 

University of Aegean on June 7th, 2018. Each target contained 

a different plastic material: PET-1.5 l bottles, LDPE bags, and 

yellowish nylon fishing nets (Figure 1). All the targets are 

visible in the WV-3 image while only the “plastic bottles” and 

“fishing nets” are visible in the S2 image (Figure 2). The 
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second experiment was conducted on June 21st, 2021 utilising 

8 floating plastic targets in two dimensions: 4 plastic targets 

with dimensions 2.4×2.4 m2 and 4 plastic targets with 

dimensions 0.6×0.6 m2 (Figure 1) (Kremezi et al. 2021). These 

targets were constructed using 4 plastic materials: 1) High-

density PE (HDPE) (tarps in white, yellow, and green colour), 

2) PET (transparent water bottles and green oil bottles), 3) 

Polystyrene (PS) (building insulation material in cyan colour), 

and 4) all the above materials in equal quantity. Furthermore, 

two circular targets were placed in the gulf with a radius of 28 

meters. The first contained a white HDPE mesh (PLP, 2021), 

while the other was constructed entirely from wood.  All but 

the 0.6 m PET targets are visible in the WV-2 image, while 

only the two circular 28 m targets are visible in the S2 image 

(Figure 2). All of the constructed targets were anchored in 

place for both the S2 and WV-2/3 satellite acquisitions. 

 

 

Fig. 1. (a) Google earth image with the test areas highlighted, (b) UAV photograph of the plastic targets of the first experiment (Source: Topouzelis et al. 

2019) and (c) UAV photograph showing the 8 plastic targets of the second experiment. 
 

Fig. 2. (a) Natural colours RGB composite of WV-3 image with 4 m spatial resolution and (b) S2 image with 10 m spatial resolution acquired on 07/06/2018. 

(c) Natural colours RGB composite of WV-2 image with 2 m spatial resolution, and (d) S2 image with 20m spatial resolution acquired on 21/06/2021. Red 

rectangles indicate the area where square plastic targets are located. Red ellipses indicate the area with the circular plastic and wooden targets. 
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2.1.2. Satellite data 

The data fusion methods were applied on S2 and WV-2/3  

satellite images. S2 carries an optical instrument payload 

(MSI) that samples 13 spectral bands (442-2200 nm): 4 bands 

at 10 m, 6 bands at 20 m, and three bands at 60 m spatial 

resolution, while WV-3 provides panchromatic imagery (450-

800 nm) with 0.31 m resolution, 8-band Visible-Near Infrared 

(VNIR) imagery (400-1040 nm) with 1.24 m resolution, and 

8-band shortwave infrared (SWIR) imagery (1195-2365 nm) 

with 3.7 m resolution. WV-2 imagery includes a panchromatic 

image with 0.46 m resolution and 8 bands at the VNIR region 

in the same wavelengths as WV-3 with 1.8 m resolution. All 

WV spatial resolutions that have been mentioned above refer 

to nadir captured imagery and worsen for higher looking 

angles of the sensor. In this study, we consider S2 images as 

the images with high spectral resolution and the WV-2/3 

images as the images with high spatial resolution. 

 

2.1.3. Pre-processing 

 

Two S2 L1C images were collected on June 7th, 2018 and 

June 21st, 2021, respectively. For the experiment on June 7th, 

2018, a WV-3 image was acquired almost synchronously with 

the S2 data, while for the experiment on June 21st, 2021, the 

WV-2 satellite captured the area at a time close to the S2 

sensing time (Figure 2). On both dates of image acquisitions 

over the test areas, the targets were located offshore and there 

were clear sky and calm sea conditions. The procured WV-2/3 

images were not atmospherically corrected by the commercial 

provider, but the datasets were converted to Top-Of-

Atmosphere (TOA) reflectance to be comparable with the S2 

datasets. This task was carried out by using the instructions 

from the product provider (Kuester, 2016; Updike and Comp, 

2010).  

Atmospheric corrections were not applied because of a) the 

clear sky conditions during the experiments, b) concerns 

expressed in the literature about the possible reduction effects 

on the spectral signatures (Topouzelis et al. 2019; 

Papageorgiou 2019) which could weaken the plastic signal to 

undetectable levels, c) the differences in the output between 

various algorithms (Biermann et al. 2020), and d) the low 

sensitivity of band subtraction indexes to environmental 

conditions (Hu 2009; Hu et al. 2012). In addition, mitigation 

strategies were not applied for the effects of the different 

observational geometries (BRDF) since issues that could affect 

the performance of the fusion process were not observed (e.g. 

light anisotropies, sunglint) (Kremezi and Karathanassi, 2019). 

Fusion approaches utilised all 13 bands of the S2 images, 

resampled at 20 m spatial resolution. This sampling size was 

chosen because almost all the bands in NIR and SWIR have 20 

m resolution. WV-3 images were resampled at 4 m spatial 

resolution, while WV-2 images at 2 m. For the DL methods 8 

VNIR + 2 SWIR WV bands were used, and for the non-DL, 7 

VNIR + 2 SWIR (coinciding WV-S2 bands). The georeference 

of all datasets was checked to ensure alignment between the 

S2 and WV-2/3 images. Further co-registration steps were not 

considered necessary. 

2.2. Fusion methods 

2.2.1 Related work 

Image fusion is the optimal solution to the technological 

limitations of the spatial and spectral resolutions of a satellite 

sensor. Image fusion techniques evolved from multispectral 

(MS) pan-sharpening [MS + PAN (panchromatic) fusion] to 

MS + MS and MS + HS image fusion (Loncan et al. 2015). 

The first approach was developed by adapting various pan-

sharpening/hyper-sharpening techniques to the 

HS+MS/MS+MS image fusion problem (Component 

Substitution, Multiresolution Analysis, Sparse representation) 

(Yokoya et al. 2017).  

Another more popular category of such methods are 

algorithms based on spectral unmixing. They exploit all the 

bands of the common spectral region of the initial images 

(Bieniarz et al. 2011; Lanaras et al. 2017; Wei et al. 2016; 

Simoes et al. 2015), and they are ideally used on HS datasets 

since the high spectral resolution is necessary for decomposing 

the mixed pixels, but they have also been proven useful for MS 

datasets. The spectral unmixing approach has been used in the 

HS+MS/MS+MS fusion problem for the last two decades. 

More recently, Berné et al. (2010) implemented the fusion 

process by unmixing the low-resolution HS image using the 

non-negative matrix factorization (NMF) algorithm and then 

obtained the high-resolution abundance maps from the MS 

image by least squares regression. Yokoya et al. (2011) 

presented the coupled NMF (CNMF) algorithm where the 

endmember and abundance matrices are estimated 

alternatively by spectral unmixing based on NMF, taking into 

account the sensors’ spectral response functions (SRFs) and 

point spread functions (PSFs). Akhtar et al. (2015) learned 

distributions for the scene spectra and their proportions in the 

image using the Bayesian dictionary learning and used this 

information to sparse code the high spatial resolution image. 

Lanaras et al. (2015) suggested a projected gradient method 

into the alternate updates of the endmember and abundances 

matrices. Wei et al. (2015) formulated the fused image 

reconstruction problem as an ill-posed linear inverse so they 

included a regularization term to convert it into a well-posed 

inverse problem (Bayesian approach). In addition they 

employed an alternating optimization of fusion and unmixing 

with Sylvester equation solvers which significantly decreased 

the computational complexity (Wei et al. 2015b). Finally, 

Simoes et al. (2015) included an abundance regularization to 

achieve spatial smoothness of the abundances and ensure that 

the fused image retains both the spatial and spectral 

correlation. 

In recent years, several super-resolution DL methods have 

been proposed to super-resolve S2 images. In their vast 

majority, current research has proposed SISR methods based 

on GAN (Generative Adversarial Network) (Goodfellow et al. 

2014) and ResNet (He et al. 2016) architectures. Although our 

study uses two sources of data, SISR DL networks can be 

easily adjusted to fit the fusion problem. 

Several methods aim at producing 10 m S2 bands. Lanaras 

et al. (2018) trained two CNNs to super-resolve the S2 20 m 

and 60 m bands respectively to 10 m. Their network was 
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inspired by EDSR (Lim et al. 2017) which follows the ResNet 

architecture (He et al. 2016). A residual design was also used 

by Palsson et al. (2018) with the same goal. To super-resolve 

the 60 m bands their model made use of the 20 m bands in 

addition to the 10 m bands. Zhu et al. (2019) proposed a 

network that adds channel attention on residual blocks and 

increased the resolution of S2 20 m bands to 10 m. Gargiulo et 

al. (2019) based on PanNet  which uses high-pass filtered 

inputs (Yang et al., 2017) and a PNN (Masi et al. 2016) version 

that uses a residual skip connection at the end of the network 

(Scarpa et al., 2018) superresolved S2 20 m bands to 10 m. Wu 

et al. (2020) proposed a parallel residual network (SPRNet) 

and superresolved S2 60 m  and 20 m bands to 10 m.  Zhang 

et al. (2020) proposed a GAN that uses residual blocks to 

enhance the spatial resolution of 20 m (×2) and 60 m (×6) S2 

bands by injecting information from the 10 m bands. Finally, 

Salgueiro et al. (2021) proposed a CNN model that takes the 

10 m, 20 m, and 60 m S2 bands as input and produces super-

resolved 10 m images for the 20 m and 60 m bands. The model 

uses Residual-in-Residual Dense Blocks (RRDBs) (Wang et 

al. 2019).  

Other methods aim at producing higher than 10 m 

resolutions. Li and Li (2021) used degradation kernel 

estimation and noise injection to construct a dataset of near-

natural LR-HR S2 images and then trained a GAN which 

composed of an Enhanced Super-resolution (ESR)-GAN-type 

generator  (Wang et al. 2019), a PatchGAN-type discriminator 

and a VGG-19-type feature extractor (Simonyan and 

Zisserman 2014). Their model produces S2 RGB images with 

2.5 m spatial resolution by taking as input the respective 10 m 

images.  In addition, by using two sources of data, Romero et 

al. (2020) trained a model based on ESRGAN and produced 

2m RGB-NIR S2 images. The network was first pre-trained 

with artificially generated WV LR-HR (10 m - 2 m) image 

pairs and then fine-tuned with S2-WV image pairs.  

In this study, concerning the fusion methods adapted from 

pan-sharpening techniques, the PCA method was selected as it 

outperformed others in our previous study (Kremezi et al. 

2021). Regarding the unmixing based methods, the Coupled 

Nonnegative Matrix Factorization (CNMF) and Lanaras’ 

(alternating unmixing approach) as well as the HySure and the 

FUSE methods (Bayesian approach) have been selected as 

they have been proven accurate, reliable, and versatile in terms 

of their adaptiveness for fusing PAN, MS, and HS data 

(Kotwal and Chaudhuri, 2013). 

Concerning the DL methods, 6 approaches in total were 

implemented, among which three literature networks (PNN 

(Masi et al. 2016), SRGAN (Ledig et al. 2017), RCAN (Zhang 

et al. 2018))  and three that were created for the purpose of the 

study (Fusion-PNN-Siamese, Fusion-ResNet, Fusion-GAN). 

The DL literature networks were adjusted to the fusion 

problem since they originated from either the pan-sharpening 

(PNN) or the SISR domain (SRGAN, RCAN). PNN was 

selected because of its simplicity and SRGAN because of its 

high popularity and the fact that it is the basis of the rest of the 

super-resolution methods based on GANs. RCAN was 

implemented because it combines the concept of “attention” 

with the residual blocks. Inclusion of attention layers in CNNs 

has shown promising results in many fields. 

Fusion-PNN-Siamese, Fusion-ResNet, and Fusion-GAN 

were designed based on popular DL concepts (parallel 

branches, residual blocks, adversarial learning, concatenation). 

Using a low number of trainable parameters, thus producing 

lightweight networks was also a key requirement. 

2.2.2. Spectral unmixing and component substitution methods 

 

The matrix factorization approach (Loncan et al. 2015) for 

HS + MS fusion essentially exploits the spectral unmixing 

theory. In this case, the Linear Mixed Model (LMM) was used. 

According to the LMM, each pixel is a linear combination of 

numerous independent signals and spectral unmixing aims to 

analyse the composition of these mixed pixels into their 

endmembers and their corresponding abundances. Two 

constraints are usually posed on the LMM model: the non-

negativity (abundance and endmember values must be positive 

numbers) and the sum-to-one constraint (the sum of the 

abundance values must be equal to one). In case that both 

constraints are posed, the Fully Constrained LMM (FC-LMM) 

is applied (Equation 1).  

 

F = E ∙ A  (1) 

where F is the fused image, E ≡ [e1, e2, … , ep] is the matrix of 

all the endmembers present in the image and A ≡ [a1, a2, … , 
a(K×N)] is the matrix of abundances of each endmember for 

every pixel of the fused image.  

The hyperspectral image H with low spatial resolution can be 

expressed as a spatially downsampled F (Equation 2) while the 

multispectral image M can be expressed as a spectrally 

downsampled F (Equation 3). 

 

                                     H ≈ F ∙ B = E ∙ A ∙ B  (2) 

where B is the downsampling operator in the spatial 

dimension.  

                                M ≈ R ∙ F = R ∙ E ∙ A   (3) 

where R is the spectral response function (SRF) of the M 

image.  

 

Both matrices R and B can be estimated from the observed 

data.  

In the following analysis, AH represents the abundance 

matrix with the low spatial resolution and EM the endmember 

matrix with the low spectral resolution.  

2.2.2.1. Coupled Non-negative Matrix Factorisation (CNMF) 

CNMF is a representative HS and MS image fusion method. 

Using the SPF and SRF matrices that relate the two datasets, 

the NMF method is alternately applied on the two datasets until 

convergence (Yokoya et al. 2012). The initial matrix E is 

estimated by the vertex component analysis (VCA) 

(Nascimento and Dias, 2005) and then E and AH are alternately 

optimised using the Lee and Seung’s multiplicative rules (Lee 

and Seung, 1999) (Equation 4). 
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                              min‖𝐇 − 𝐄 ∙ 𝐀H ∙ 𝐁‖𝐹
2   (4) 

Next, the abundance matrix A is similarly estimated from the 

MS data. The initial EM is set as the R ∙ E and the initial A is 

estimated by upsampling AH using bilinear interpolation. Then, 

they are optimised by equation 5.   

 
                                  min‖𝐌 − 𝐑 ∙  𝐄M  ∙ 𝐀‖𝐹

2           (5) 

The final fused image is obtained by multiplying the optimised 

A and E. 

 

2.2.2.2. Lanaras’ method 

 

Similar to CNMF, Lanaras’ method alternatively applies 

spectral unmixing on the two input images to produce the 

endmember and abundance matrices (Lanaras et al. 2015). To 

optimize the solution to this problem, a projected gradient 

method based on the Proximal Alternating Linearized 

Minimisation (PALM) algorithm is used to alternately update 

the endmember (Equation 5) and the high-resolution 

abundance (Equation 6) matrices.  

The initial matrix E is estimated by the SISAL algorithm 

and the initial abundance matrix A is estimated by the 

SUnSAL algorithm which exploits sparse unmixing by 

variable splitting and augmented Lagrangian (Bioucas-Dias, 

2009). The SPF and SRF matrices that relate the two datasets 

are required to initialize the degraded versions of the 

endmembers and abundances. 

2.2.2.3. Hyperspectral Superresolution (Hysure) 

HySure identifies the data fusion as a convex optimization 

problem which is solved using a form of Vector Total 

Variation-based (VTV) regularization (Simoes et al. 2015). 

The fusion product is the solution to the following optimisation 

problem (Equation 6): 

𝑚𝑖𝑛
𝑨

1

2
‖𝐇 − 𝐄 ∙ 𝐀 ∙ 𝐁‖𝐹

2 +
𝜆𝑚

2
‖𝐌 − 𝐑 ∙ 𝐄 ∙ 𝐀‖𝐹

2 + 𝜆𝜑𝜑(𝚨) (6)    

where, λm and λφ are the relative weights of the different terms 

and φ is the VTV regularizer (Equation 7).        
 

    𝜑(𝐀) = ∑ √∑ {[(𝐴𝐷ℎ)𝑗
𝑘]

2
+ [(𝐴𝐷𝑣)𝑗

𝑘]
2

}
𝑚 𝜆
𝑘=1

𝑛
𝑖=1          (7) 

where 𝑚𝜆 is the number of the HS image bands and 𝑛 is the 

number of pixels. Moreover, (𝐴𝐷)𝑗
𝑘

  denotes the element in 

the kth row and jth column of the product of matrix A by 

matrices Dh and Dv respectively, which compute the horizontal 

and vertical discrete differences of an image with periodic 

boundary conditions.   

The above problem is solved by following an Alternating 

Direction Method of Multipliers (ADMM) approach by using 

the Split Augmented Lagrangian Shrinkage Algorithm 

(SALSA) (Afonso et al. 2011). 

2.2.2.4. Fast fUsion based on Sylvester Equation (FUSE) 

FUSE solves a Sylvester equation associated with the fusion 

problem derived from Equations 2-3 (Wei et al. 2015b). It aims 

at solving the maximization problem of the likelihoods 

obtained from the forward observation models. The 

computational performance of the algorithm is improved by 

implementing a closed-form solution to the Sylvester equation. 

Similarly to the aforementioned methods, FUSE requires prior 

knowledge of the SPF and SRF matrices. Moreover, the 

algorithm is applied on the principal component subspace and 

the naïve Gaussian priors are used as a priori information.  

2.2.2.5. PCA based method 

In addition to the unmixing-based methods, a method adapted 

from pan-sharpening techniques was implemented. It is a 

Component Substitution (CS) approach, where a component of 

the HS image is substituted with a component of the MS 

image. This method exploits the Principal Component 

Analysis (PCA). Both images are projected into the principal 

component space and subsequently, the HS component that 

contains the spatial information is substituted with the 

respective MS component. Finally, the fused data are projected 

back to the original space. 

2.2.2.6. Optimal band estimation 

The non-DL methods were applied using various WV band 

combinations (Table 1) to determine the optimal number of 

bands and spectral range for downscaling S2 images. Due to 

the higher computational demand of the DL approaches, the 

investigation of the optimal band combination was carried out 

only on the non-DL methods. 

 
Table 1 

WV band combinations 

Combination WV Bands 

all9 All 9 (VNIR +SWIR) 

all7 All7 (VNIR) 

234 Blue – Green – Red 

2346 Blue – Green – Red – NIR1 

2347 Blue – Green – Red – NIR2 

1234 Coastal - Blue – Green – Red 

2348 Blue – Green – Red – NIR1 – SWIR3 

23469 Blue – Green – Red – NIR1 – SWIR6 

23478 Blue – Green – Red – NIR2 – SWIR3 

23479 Blue – Green – Red – NIR2 – SWIR6 

 

2.2.3 Deep learning (DL) methods 

 

For the fusion of the 13 bands of the S2 image with the 

bands of the WV-3 image acquired on 7/6/2018, 6 DL 

approaches were implemented. The first two networks 

(Fusion-PNN, Fusion-PNN-Siamese) were created by 

modifying the CNN architecture proposed by Masi et al. 

(2016) (PNN). Since PNN was designed for pan-sharpening, 

which can be considered a subset of the data fusion problem, 

the input layer of the CNN was modified to suit the fusion of 

the S2 and WV-3 images. The third network (Fusion-ResNet) 
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was constructed by combining residual blocks and layer 

concatenation. The above popular concepts were first 

proposed in the ResNet and UNet (Ronneberger et al. 2015) 

architectures respectively. The fourth network (Fusion-GAN) 

used a generative adversarial approach and the generator 

architecture was based on UNet. Finally, the last two DL 

approaches were the implementations of SRGAN (super-

resolution GAN) and RCAN (residual channel attention 

network). Since SRGAN and RCAN were designed to solve 

the super-resolution problem, the input layer was modified to 

suit the fusion problem. 

 Fusion-PNN was trained with two different band 

configurations: i) 8 VNIR and ii) 8 VNIR + 2 SWIR, while the 

rest of the methods were trained only with the first band 

configuration. The selected SWIR WV-3 bands correspond to 

1640-1680 nm and 2185-2225 nm. The selection was based on 

the fact that these bands are the spectrally closest to the last 

two S2 SWIR bands (1613 nm, 2202 nm).  

2.2.3.1. Architecture – Activation functions 

 

All DL approaches except for Fusion-PNN-Siamese used 

the Early Fusion (EF) method, i.e. the input of the network was 

created by concatenating the S2 and WV-3 bands. The 

sequence of the bands matched the sequence of the 

corresponding wavelengths. In Fusion-PNN-Siamese, the S2 

and WV-3 bands were fed as input to two different branches.  

For the creation of the Siamese network, the outputs of the 

second convolutional layer of the two branches were 

concatenated and then fed to a third convolutional layer. In 

both PNN versions (Figures 3-4), the suggestions of Masi et 

al. (2016) were followed for the number of feature maps, the 

activation function and the size of kernels in the first and 

second convolutional layers (64/ReLU/9×9, 32/ReLU/5×5), as 

well as the kernel size of the third convolutional layer (5×5 

px). The sigmoid activation function (Nwankpa et al. 2018) 

(Equation 8) was applied in the output layer.  

The equation of the ReLU activation function (Agarap, 

2018) is presented in Equation 9.        

 

                               𝜑(𝑥) =
1

1+𝑒−𝑥                               (8) 

 

                                𝜑(𝑥) = max(0, 𝑥)                           (9) 

where 𝑥 is the output produced by the convolution operation. 

 

Fig. 3.  Architecture of Fusion-PNN. 

 

Fig. 4. Architecture of Fusion-Siamese-PNN. 
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The architecture of Fusion-ResNet is shown in Figure 5.  

The encoding part of the network was initialized with a 

convolutional layer and it was also composed of 4 identity 

residual blocks and two convolutional residual blocks. The 

decoding part included two transposed convolutional layers 

and a convolutional layer towards the end. Skip connections 

through concatenation were applied between the encoder and 

the decoder. Further details are shown in Figure 5 (e.g. 

activation-batch normalization layers, convolution 

hyperparameters, number of feature maps etc.). It is noted that 

input and output images shown in Figure 5 correspond to the 

inference resolution. 

The architecture of Fusion-GAN is shown in Figure 6. The 

network was composed of a generator and a discriminator. The 

generator encoder consisted of 5 convolutional layers and the 

decoder of two transposed convolutional layers and a 

convolutional layer towards the end. Skip connections through 

concatenation were applied between the encoder and the 

decoder. Concerning the discriminator, it consisted of 4 

convolutional layers. Further details are shown in Figure 6. It 

is noted that input images shown in Figure 6 correspond to the 

training resolution. 

SRGAN was implemented with the hyperparameters 

suggested by Ledig et al. (2017). The upsampling layers 

towards the end of the network were removed because our 

input x-y size matched the output size. Among others, the 

generator contained 16 residual blocks and the discriminator 8 

convolutional layers where the number of feature maps 

gradually increased (64→512). Further details are shown in 

the respective paper.  

RCAN uses the residual in residual structure and 

incorporates a channel attention module. The settings 

proposed by Zhang et al. (2018) were followed for its 

implementation with the difference that we selected 5 residual 

groups and 10 residual channel attention modules instead of 10 

and 20 to ensure faster training time. Further details are shown 

in the respective paper.  

2.2.3.2. Pre-processing – Training - Inference 

 

Given that ground-truth data at the high-resolution (4 m S2 

image) are not available, the DL approaches were trained 

based on the assumption that the spatial details are self-similar 

and scale-invariant as considered in previous works (e.g. 

Lanaras et al. 2018; Zhu et al. 2019; Wu et al. 2020b; 

Salgueiro et al. 2021). Thus, we assumed that super-resolving 

from 20 m to 4 m can be learned from super-resolving at a 

reduced resolution where ground-truth data are available 

(Wald’s protocol). In more detail, during training the inputs of 

the CNN were: i) the WV-3 bands downsampled to 20 m 

spatial resolution and ii) the Sentinel-2 bands downsampled to 

100 m and then upsampled to 20 m. Thus, the spatial resolution 

Fig. 5.  Architecture of Fusion-ResNet. 
 

Fig. 6.  Architecture of Fusion-GAN. 
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ratio between the WV-3 and S2 bands was 1/5.  During the 

inference stage, the fused output image (spatial resolution: 4 

m) was created by feeding the network with i) the WV-3 bands 

with 4 m spatial resolution and ii) the S2 bands with 20 m 

spatial resolution. Nearest neighbour interpolation was used 

during all resampling operations which led to the same x-y size 

between the WV-3 and the S2 bands. In addition, for each 

band, 1% of the histogram values (left and right) were clipped 

to prevent lower CNN performance due to sparse extreme 

values. 

During training, the Adaptive moment estimation (Adam) 

(Kingma and Ba, 2014) method was used to update the weights 

in the backpropagation process. Concerning the loss function, 

the mean squared error (MSE) was selected as the Loss 

function for Fusion-PNN, Fusion-PNN-Siamese, and Fusion-

ResNet (Equation 10) and the L1 loss (Equation 11) for 

RCAN. In the adversarial training (Fusion-GAN, SRGAN), 

the generator and the discriminator were trained in an 

alternating way according to the adversarial loss function 

shown in Equation 11 (Goodfellow et al. 2014). In addition, 

since the problem belongs in the super-resolution domain, a 

content loss was added to the generator loss to significantly 

increase the performance (Ledig et al. 2017) (Equation 13 

(Fusion-GAN), Equation 14 (SRGAN)). It is noted that the 

originally proposed VGG loss for SRGAN was substituted 

with the pixel-wise MSE loss because our output contained 13 

bands instead of three, thus the VGG Imagenet (Fei-Fei et al. 

2010) pre-trained weights could not be used. 

 

 

Fig. 7. Fusion results for the S2 and WV-3 images acquired on 07/06/2018 (zoomed-in view of the target placement in red window) (Natural colours). (a) 

CNMF 2347, b) HySure all9. (c) PCA all9. (d) Lanaras’ 1234. (e) FUSE 2348. (f) Fusion-PNN_VNIR 

Table 2 

Training details 

Training details 
Fusion-

PNN_VNIR 

Fusion-

PNN_VNIR+SWIR 

Fusion-PNN-

Siamese 

Fusion-ResNet Fusion-GAN SRGAN RCAN 

Loss metric 0.0007 (MSE) 0.0006 (MSE) 0.0006 (MSE) 0.0002 (MSE) 0.0101 (L1) 0.0017 (MSE) 0.0014 (L1) 
Epochs 4000 4000 4000 800 800 500 500 

Batch size 128 128 128 128 128 16 16 

Patch size 9x9 9x9 9x9 40x40 40x40 40x40 40x40 
Number of patches 48600 48600 48600 6400 6400 6400 6400 

Trainable params 170,573 180,941 232,269 906,029 974,542 10,812,831 3,999,957 

Library Keras/TF Keras/TF Keras/TF Pytorch Pytorch Pytorch Pytorch 
Training time (h) 2.0 2.2 3.0 1.1 0.9 7.5 10.0 
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                         MSE =
1

𝑛
∑ (𝑌𝑖 −  �̂�𝑖)

2𝑛
𝑖=1                      (10) 

 

                          L1 =
1

𝑛
∑ |𝑌𝑖 −  �̂�𝑖|

𝑛
𝑖=1                           (11) 

 

 

              𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 [
𝔼(HR∼𝑃(HR))[𝑙𝑜𝑔𝐷(HR) ] +

𝔼(LR∼𝑃(LR))[log (1 − 𝐷(𝐺(LR)]
]   (12) 

 

             𝐿G_Fusion−GAN = −log (𝐷(𝐺(LR)) +  102L1       (13) 

           

              𝐿G_SRGAN = −10−3log (𝐷(𝐺(LR)) +  MSE        (14) 

 

where Yi   are the observed spectral values, �̂�𝑖 are the predicted 

spectral values, and n is the number of pixels in a patch. 

 

Training details are given in Table 2. All models were 

trained on an NVIDIA 1070 Ti GPU. The x-y size of the 

images during training was 229×234 px and during inference 

was 1145×1170 px.  

 

3. Image fusion results and evaluation 

3.1. Fusion of S2 and WV-3 (07/06/2018 experiment)  

A CS, 4 unmixing-based, and 6 DL approaches for image 

fusion were evaluated for the 07/06/2018 experiment. The 

fused images of the various methods have 4 m spatial 

resolution and 13 bands. Natural colour composites are 

presented in Figures 7-8. For the CS and unmixing methods, 

the composites for the band combination (Table 1) that 

produced the best fusion results are presented. CNMF and 

HySure outperformed all the other methods in terms of spatial 

information. Their results present clear edges without any 

blurring or remaining artifacts and all plastic targets are 

discernible. Less satisfactory results were produced by the DL 

approaches. Fusion-ResNet and Fusion-GAN show less noisy 

outputs compared to the other DL methods. The lower 

performance could be explained by training in the reduced 

scale (lack of relevant high-frequency information) because of 

the unavailability of ground-truth data and the high ratio (1/5). 

It is noted that contrary to the low performance in the high 

resolution, all DL methods produced high MSE or L1 scores 

in the reduced resolution (Table 2). 

The conclusions reached by the visual interpretation of 

Figures 7-8 are confirmed by image quality metrics (i.e PSNR, 

ERGAS, RMSE, and SSIM (Jagalingam and Hegde, 2015)) 

and indeed, CNMF_2347 presents the best results according to 

3 out of 4 metrics (Table 3).  

Fig. 8. Fusion results for the S2 and WV-3 images acquired on 07/06/2018 (zoomed-in view of the target placement in red window) (Natural colours). (a) 

Fusion-PNN_VNIR+SWIR, b) Fusion-PNN_Siamese, (c) Fusion-ResNet, (d) Fusion-GAN, (e) SRGAN, (f) RCAN 
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 Spectral signatures were also evaluated (Figures 9-12). In 

these Figures, the spectral signatures of the “plastic bottles”, 

“fishing nets”, “plastic bags” targets and of a random water 

pixel respectively, are shown for all fused results as well as for 

the original S2 and WV3 (resampled to 20 m) images. In Table 

4, similarity between these spectra from the fusion results and 

the reference S2 images are examined using the measure of 

spectral angle distance (SAD) and Correlation Coefficient 

(CC) (Jagalingam and Hegde, 2015).  It can be seen that all DL 

methods except for SRGAN outperformed the non-DL 

methods in preserving the S2 spectral characteristics. Among 

the DL methods, best performance was shown by Fusion-

ResNet and Fusion-GAN which are lighter networks than 

RCAN and SRGAN as it can be seen from the number of 

trainable parameters shown in Table 2. CNMF_2347 yields 

also a good spectral performance. 

Overall, water pixels present the lowest SAD values. This 

is attributed to the fact that the pixel coverage of the targets in 

the 4 m /2 m fused image is higher than the pixel coverage in 

the original 20 m S2 image. SAD values between water pixels 

are low because in both images the water pixels are pure. SAD 

values between plastic pixels are higher because the S2 plastic 

pixel is mixed with water, while the WV2/3 plastic pixel is 

pure plastic (Figure 13). As shown in Figure 14, the resulting 

pure plastic pixels in the fused image enable inter- and 

intraclass separability. 

The WV-3 reference spectra mostly differ from the S2 

reference spectra at around 1.0 – 1.5 μm (Figures 9-12). This 

could be explained by observing the lack of overlap in the 

respective SRFs of the sensors in this spectral region (Figure 

15). From our experiments we did not reach safe conclusions 

about correlations between the performance of the fusion 

methods and the similarity of SRFs. This would require further 

analysis which is out of the scope of this study.  

3.2. Fusion of S2 and WV-2 (21/06/2021 experiment) 

The method with the optimal results (CNMF_2347) on the 

07/06/2018 experiment, was applied on the S2 and WV-2 data 

in the second experiment. The fused image has 13 bands and 2 

m spatial resolution. Figure 18 presents the resulting image, 

where it is observed that all targets are visible in the WV-2 

image except for the 0.6 m PET target, which was not visible 

in the original WV-2 image either. 

In Figures 16 and 17 it can be seen that spectral information 

is retained in the fused output. After image fusion, there is high 

separability with water spectra maintaining low reflectance 

values while plastic spectra present quite higher reflectance 

values. This behaviour concurs with the results of the first 

experiment. For the image of the 21/06/2021 experiment, only 

signatures from the big circular targets were extracted since the 

other targets are not visible in the original S2 image. 

Considering the separability between the various plastic 

materials (Figure 17), similarly to Figure 14, it can be seen that 

it is possible. Their identification though needs to be further 

examined and it will be the subject of future work.  

3.3. Marine litter indexes 

3.3.1 Related work 

 

Most marine indexes that have been proposed in the 

literature have focused in detecting vegetation pixels (e.g. 

sargassum). The most popular indexes are the Normalized 

Difference Vegetation Index (NDVI, (Rouse et al. 1973)), the 

Table 4 

Spectral angle distances and correlation coefficients between fusion results and S2 reference spectra 

 SAD CC 

Fusion Method 
Plastic 

Bottles 
Fishing 

Nets 
Plastic 

Bags 
Water 

Pixel 1 
Water 

Pixel 2 
Water 

Pixel 3 
Plastic 

Bottles 
Fishing 

Nets 
Plastic 

Bags 
Water 

Pixel 1 
Water 

Pixel 2 
Water 

Pixel 3 
FUSE_2348 0.37098 0.37687 0.28072 0.09187 0.03267 0.04300 0.76207 0.77718 0.89632 0.99360 0.99874 0.99888 

FUSE_all7 0.36224 0.44848 0.41681 0.13655 0.03159 0.36566 0.77258 0.68648 0.83925 0.97591 0.99866 0.84242 

Lanaras'_1234 0.24236 0.16581 0.20032 0.03918 0.02284 0.06292 0.92348 0.95368 0.96610 0.99951 0.99944 0.99792 

Lanaras'_2347 0.33472 0.19233 0.19853 0.03232 0.01730 0.04230 0.81112 0.95290 0.94393 0.99937 0.99960 0.99896 

CNMF_2347 0.24073 0.18939 0.15737 0.03101 0.02657 0.03562 0.92500 0.95776 0.96313 0.99885 0.99919 0.99950 

CNMF_all7 0.37138 0.28599 0.14775 0.03040 0.03516 0.01809 0.77054 0.90493 0.97559 0.99910 0.99912 0.99979 

HySure_all7 0.35376 0.24772 0.19551 0.08176 0.07707 0.12098 0.79265 0.92077 0.95011 0.99517 0.99613 0.99220 

HySure_all9 0.35525 0.23990 0.18414 0.08190 0.07770 0.12228 0.78959 0.92578 0.96016 0.99522 0.99609 0.99202 

PCA_23478 0.42454 0.23186 0.17579 0.02572 0.03416 0.08236 0.66803 0.94265 0.97053 0.99953 0.99921 0.99701 

PCA_all9 0.41877 0.21243 0.18778 0.02630 0.02649 0.07233 0.67928 0.95398 0.96542 0.99951 0.99950 0.99773 

Fusion-PNN_VNIR+SWIR 0.25883 0.10933 0.08900 0.00928 0.00909 0.00962 0.91513 0.99088 0.99113 0.99990 0.99991 0.99992 

Fusion-PNN_VNIR 0.09894 0.07254 0.13386 0.00912 0.01276 0.00511 0.99165 0.99419 0.98222 0.99989 0.99979 0.99997 

Fusion-GAN 0.03372 0.05548 0.05377 0.01514 0.01417 0.00944 0.99835 0.99599 0.99621 0.99987 0.99981 0.99994 

SRGAN 0.24277 0.21780 0.20430 0.21516 0.18271 0.19169 0.90649 0.92685 0.93819 0.93664 0.95560 0.95782 

RCAN 0.09238 0.08684 0.09470 0.01033 0.01118 0.00878 0.99122 0.99066 0.98900 0.99991 0.99988 0.99991 

Fusion-ResNet 0.05893 0.07196 0.09577 0.00982 0.01300 0.00918 0.99444 0.99382 0.98990 0.99987 0.99979 0.99991 

Fusion-PNN-Siamese 0.25876 0.27071 0.10190 0.00843 0.00921 0.00727 0.90122 0.90228 0.98835 0.99990 0.99989 0.99994 

 

Table 3 

Quality metrics between fusion results and WV reference images 

Fusion Method PSNR ERGAS RMSE  SSIM 

FUSE_2348 5.89 64.38 331.57  0.192 
FUSE_all7 8.71 46.69 239.69  0.067 

Lanaras'_1234 9.01 44.35 234.55  0.300 

Lanaras'_2347 8.11 49.20 260.48  0.321 
CNMF_2347 27.24 5.45 29.06  0.490 

CNMF_all7 25.68 6.54 34.94  0.597 

HySure_all7 19.71 12.98 67.64  0.559 
HySure_all9 21.25 10.89 56.65  0.571 

PCA_23478 15.24 21.64 114.27  0.028 

PCA_all9 15.46 21.10 111.37  0.028 
Fusion-PNN_VNIR+SWIR 4.65 73.30 388.60  0.069 

Fusion-PNN_VNIR 4.62 73.49 389.47  0.068 

Fusion-GAN 5.21 68.71 365.10  0.072 
SRGAN 4.45 74.97 396.85  0.052 

RCAN 5.78 64.50 343.94  0.075 

Fusion-ResNet 5.05 69.99 371.39  0.063 
Fusion-PNN-Siamese 4.88 71.39 378.85  0.068 
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Fig. 11. Spectral signatures of plastic bags from all fusion results. S2 and WV-3 reference spectra are also included. 

 

Fig. 9. Spectral signatures of plastic bottles from all fusion results. S2 and WV-3 reference spectra are also included. 

 

Fig. 10. Spectral signatures of fishing nets from all fusion results. S2 and WV-3 reference spectra are also included. 
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Fig. 12. Spectral signatures of a random water pixel from all fusion results. S2 and WV-3 reference spectra are also included. 

 

Fig. 13. Spectral signatures of the plastic bottles target and a water pixel from the S2 and WV-3 reference images. 

 

Fig. 14. Comparison of water and plastic target spectra before and after S2 and WV-3 fusion with CNMF method and 2347 band combination (07/06/2018 

experiment). 

 



M. Kremezi et al.                                                                                                                                                                                   Marine Pollution Bulletin 

14 

 

 

Fig. 15. Spectral Response Functions of the S2 and WV-3 sensors. 

 

Fig. 16. Comparison of water, large plastic target and wood target spectra before and after S2 and WV-2 fusion with CNMF method and 2347 band 

combination (21/06/2021 experiment). 

 

Fig. 17. All plastic target spectra and wood spectra after S2 and WV-2 fusion with the CNMF method and 2347 band combination for the 21/06/2021 image. 
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Hydrocarbon Index (HI, Kühn et al. 2004), and the Floating 

Algae Index (FAI) which has been developed for Landsat, 

Medium Resolution Imaging Spectrometer (MERIS), and 

Moderate Resolution Imaging Spectroradiometer (MODIS)  

(Hu et al. 2015; Hu 2009; Wang and Hu 2016). The indexes 

use either band subtraction or ratio operations, the former 

being considered less sensitive to environmental conditions 

(Hu 2009; Hu et al. 2012).  

Several researchers have studied the performance of the 

aforementioned indexes in discriminating vegetation from 

plastic based on the fact that vegetation causes elevated Red 

Edge reflectance in contrast to marine debris that causes only 

elevated NIR values (Hu et al., 2015). Biermann et al. (2020) 

and Kikaki et al. (2020) also observed that vegetation shows 

higher values in the visible range compared to marine debris. 

Garaba and Dierssen (2018) applied HI and observed an 

overlap between vegetation and landfill plastics because 

natural hydrocarbons have similar absorption features to 

synthetic hydrocarbons and assumed that NDVI or FAI could 

be more efficient in differentiating vegetation from plastics.  In 

addition, Hu et al. (2015) concluded that FAI could potentially 

differentiate vegetation from garbage given sufficient pixel 

coverage.  

Other researchers have focused more in the detection of 

marine debris. Papageorgiou (2019) developed the S2-based 

index by observing reverse slope between S2 plastic and water 

spectra in the range 780-833 nm and 833-865 nm. In addition, 

Biermann et al. (2020) developed FDI based on FAI to identify 

floating debris. In FDI the red band was substituted with the 

Red Edge band. However, they showed that NDVI displayed 

higher performance in separating plastic pixels from other 

categories (timber, foam, pumice). FDI combined with NDVI 

and three spectral bands (Red Edge, NIR, SWIR) was 

proposed as input to a Naïve-Bayes classifier which achieved 

86% accuracy. Both above mentioned studies exploited S2 

spectra from the experiment conducted in 07/06/2018 

(Topouzelis et al. 2019). 

 

3.3.2 Evaluation of the marine litter indexes 

All the fused images have very high spatial resolution and 

three bands in the SWIR region, consequently, they can be 

exploited by various marine litter indexes which rely on 

discriminative features of plastic and water spectra. Five 

indexes were applied on the CNMF_2347 fused images: HI, 

the S2-based index, FDI, NDVI and FAI (Equations 15-20). 

HI was tested on three different band combinations based on 

absorption features observed on plastic spectra: 1) 560, 665, 

and 783 nm, 2) 560, 740, and 865 nm, and 3) 783, 833, and 

865 nm. The best result was produced by the 3rd combination.  

𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅−𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅+𝑅𝑅𝐸𝐷
                          (15) 

𝐹𝐴𝐼 = 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷 − (𝑅𝑆𝑊𝐼𝑅 − 𝑅𝑅𝐸𝐷)
𝜆𝑁𝐼𝑅−  𝜆𝑅𝐸𝐷

𝜆𝑆𝑊𝐼𝑅− 𝜆 𝑅𝐸𝐷
    (16) 

 

𝐹𝐷𝐼 = 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸2 − (𝑅𝑆𝑊𝐼𝑅 − 𝑅𝑅𝐸2)
𝜆𝑁𝐼𝑅−  𝜆𝑅𝐸2

𝜆𝑆𝑊𝐼𝑅− 𝜆 𝑅𝐸2
    (17) 

 

𝑆2 − 𝑏𝑎𝑠𝑒𝑑 =
(𝑅𝑅𝐸3−𝑅𝑁𝐼𝑅)+(𝑅𝑁𝑁𝐼𝑅−𝑅𝑁𝐼𝑅)

𝑅𝑅𝐸3+𝑅𝑁𝑁𝐼𝑅
            (18) 

 

𝐻𝐼 = (𝜆𝛣 − 𝜆𝛢)
𝑅𝐶−𝑅𝐴 

𝜆𝐶− 𝜆𝛢
+  𝑅𝐴 − 𝑅𝐵                  (20) 

 

where, RED:665 nm, RE2:740 nm, RE3:783 nm, NIR: 833 

nm, NNIR: 865 nm, and SWIR:1614 nm. 

 

NDVI was developed in radiance data that were corrected 

only for the sun angle (Rouse et al. 1973) and HI can be also 

applied on radiance data (Kühn et al. 2004). In addition, FAI 

is considered less sensitive than NDVI to atmospheric 

conditions or solar/viewing geometry (Hu et al. 2015). 

However, FDI and the S2-based index were developed using 

atmospherically corrected data by the ACOLITE algorithm. In 

this study, atmospheric correction was not performed on the 

fused images before applying the indexes. 

Figures 19(a-e)-20(a-e) present the implemented indexes. 

For the marine plastic litter detection, thresholds were roughly 

defined according to the range of the target values in order to 

delineate a significant percentage of the targets. The accuracy 

score was calculated for every index (Table 5). It is noted that 

Fig. 18. CNMF_2347 fusion result for the S2 and WV-2 images acquired on 21/06/2021. (a) full image, (b) zoomed-in view of the square targets’ placement 

and (c) zoomed-in view of the circular targets’ placement (Natural colours). 
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the recall and precision scores were not shown as they would 

be misleading since the values are similar for all indexes. This 

is expected because of the small number of target pixels (low 

precision) and our thresholding strategy (high recall).  

 
Table 5 

Accuracy score of plastic target detection on indexes images 

Date Method TP FP FN TN Accuracy 

2
0
1
8
 

FDI 18 431 0 814130 0.999 

S2_based 12 13390 6 801171 0.984 

HI 789 18 2623 0 811938 0.997 
NDVI 18 3783 0 810778 0.995 

FAI 18 2952 0 811609 0.996 

2
0
2
1
 

FDI 191 1179 31 563481 0.998 
S2_based 191 21483 31 543177 0.962 

HI 789 217 517170 5 47490 0.084 

NDVI 222 148627 0 416033 0.737 
FAI 215 226014 7 338646 0.600 

 

All indexes showed high accuracy score values in the first 

experiment with FDI producing the lowest number of false 

positive pixels. In the second experiment FDI showed highest 

accuracy and smallest number of false positive pixels. The 

lower performance of S2-based, HI, NDVI, and FAI in the 

second experiment could be explained by the low pixel 

coverage of the small plastic targets (1/3 of the 2 m fused pixel) 

and varying experimental conditions.  

Figures 19(f)-20(f) show the results after implementing the 

FDI thresholds. It is observed that all plastic targets are 

detected, except for one small (0.6 × 0.6 m2) target (PET), 

which was not clearly discriminated both in the fused and the 

original WV image. False detection of very shallow water 

(right next to the shoreline) and other floating objects (e.g., 

boats) are also observed. Finally, some false positives can be 

seen over the border of the wooden target. The rest of the 

indexes also falsely detected wood pixels (FDI: 60 px, S2-

based:18 px, HI: 16 px, NDVI: 196 px, FAI: 63 px).  

It should be noted that although FDI and the S2-based index 

were developed using data from the first experiment, thus a 

positive bias is expected, it is important to take into account 

the high performance in the second experiment where the 

properties of the targets and the environment differed. In 

contrast to the first experiment, the second employed a) PS, 

colourful HDPE and mixed plastic targets, b) greater variety of 

sizes, c) a wooden target, and d) different location (gulf vs 

bay). In addition, the positive bias is reduced by the fact that 

atmospheric corrections were not applied in our study contrary 

to the development of both indexes.  

 

4. Conclusion 

In this study, we fused Sentinel-2 (S2) and WorldView-2/3 

(WV-2/3) images to increase the capability of S2 imagery to 

detect marine plastic targets. Although the plastics might be 

visible on the very high resolution (VHR) images, the SWIR 

region of the spectrum, which is captured in S2 imagery, is 

very important in order for the plastics to be identified and 

Fig. 19. Application of the marine litter indexes on the S2-WV-3 fused image collected on 07/06/2018 (land is removed) with the area of the plastic targets 

highlighted. (a) FDI.  (b) S2-based. (c) HI. (d) NDVI. (e) FAI. (f) FDI after thresholding implementation. 
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distinguished from other materials. Artificial plastic targets 

were constructed and various image fusion techniques were 

evaluated for their performance in terms of preserving spectral 

and spatial information. The CNMF method proved the best 

for this application as it produces a fused image with clear 

edges, no blurring, and with a relative favourable impact on 

the spectral characteristics of the materials. DL methods 

showed high performance in terms of spectral similarity 

between the fused and the S2 images. In this regard, Fusion-

GAN and Fusion-ResNet outperformed all other fusion 

methods (non-DL and DL).  Among the plastic targets, only 

the small PET target was not distinguishable by visual 

inspection. It is worth noting that this target was not 

distinguishable even in the WV-2 image. This could be rather 

attributed to the transparency of the bottles that served as PET 

material for this target in combination with its placement in 

quite shallow seawater. The smallest plastic target that was 

observed in the fused image is 0.6×0.6 m2 in size and is 

equivalent to 3% pixel coverage of the original S2 (20m) 

image and almost 1/3 of the pixel coverage of the original WV-

2 (2m) image. 

Furthermore, results showed that the VNIR (Visible-Near 

Infrared) combination is the most efficient for the image 

fusion. This is an important finding, because most satellite 

sensors are sensitive to the VNIR part of the spectrum, so the 

likelihood of temporally close acquisitions of the same marine 

litter accumulation increases, which is a critical factor 

considering that marine litter accumulations move, change or 

vanish in relatively short time. However, exactly for this 

reason, the described fusion approach might be limited for 

detecting litter accumulations in the sea, unless suitable 

constellation-based solutions can offer the possibility of 

“nearly” simultaneous image acquisitions between different 

satellites. It is worth mentioning that, still remaining in the 

frame of monitoring plastic pollution in the environment, the 

proposed fusion approach could find application in the 

detection of accumulations of plastic litter on land close to 

water bodies (i.e. sources of marine litter), which is a more 

static scenario, although with higher complexity in terms of 

background. 

Five indexes that detect plastic material using 

discriminative features in the VIS, NIR, and SWIR parts of the 

spectrum were applied on the fused images. In this case, the 

SWIR bands of the fused image proved to be quite useful. FDI 

which exploits SWIR bands, was the only index that 

adequately detected plastic material in the fused images. It 

outperformed the other indexes, not only in the first 

experiment where indeed there was a positive bias but also in 

the second experiment. This finding reinforces the value of S2 

SWIR bands for marine litter detection and shows that fusion 

with VHR images can produce fused S2 products able to detect 

marine plastic litter accumulations at smaller scales.   

Fig. 20. Application of the marine litter indexes on the S2-WV-3 fused image collected on 21/06/2021 (land is removed) with the area of the plastic targets 

highlighted. (a) FDI.  (b) S2-based. (c) HI. (d) NDVI. (e) FAI. (f) FDI after thresholding implementation. 
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Concerning the computational needs, they would not 

prevent the usage of our approach in an operational level 

because current mainstream industrial and research hardware 

is capable of maintaining the computational needs for the 

fusion methods implemented in the study, even for the DL 

methods. Regarding costs, even though the required 

processing equipment can be considered inexpensive, 

procurement of the required commercial VHR data indeed 

increases the cost, at least for the moment. 

Another interesting finding of this research was the 

observation of dissimilarities in the spectral regions of S2 

bands between the signatures of the various plastic materials 

and other floating debris extracted from the fused images. This 

topic along with pinpointing the scalability of the proposed 

methodology, will be the subject of future work. 
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