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Abstract: - The scopus of this paper is to compare the performance of different structures of Artificial Neural 
Networks (ANNs) regarding the input variables used for short-term forecasting of the next day load in 
intercontinental Greek power system. The input variables can be: (a) historical loads, (b) weather related 
temperatures, (c) hour and day indicators, in two ways: (i) selfsame, (ii) compressed using the Principal 
Components Analysis (PCA). The training algorithm is the scaled conjugate gradient algorithm, for which a 
calibration process is conducted regarding the crucial parameters values, such as the number of neurons, the 
kind of activation functions, etc. The performance of each structure is evaluated by the Mean Absolute 
Percentage Error (MAPE) between the experimental and estimated values of the hourly load demand of the 
next day for the evaluation set in order to specify the optimal ANN. Finally the load demand for the next day of 
the test set (with the historical data of the current year) is estimated using the best ANN structure, so that the 
verification of behaviour of ANN load prediction techniques was demonstrated. 
 
Key-Words: - artificial neural networks, short-term load forecasting, ANN training scaled conjugate gradient 
algorithm, input variables  
 
1 Introduction 
In a liberated electrical energy market, short-term 
load forecasting (for the next few hours to a week) 
is very crucial problem, because its accuracy affects 
other operational issues of power systems, such as 
unit commitment [1], scheduling of spinning reserve 
[2], available transfer capability [3], system stability 
[3], application of load demand programs [4], etc. 
Higher reliability and lower operational costs for 
power systems is achieved by precise load 
forecasting. During last decade several forecasting 
methods have been implemented with different 
levels of success, such as ARMAX models [5], 
regression [6], ANNs [7], fuzzy logic [8], expert 
systems, etc. Especially, in Greece, ANNs have 
been used successfully either for the intercontinental 
power system [9-12], or autonomous big islands [9, 
13-14]. The proposed ANNs techniques belong to 
either classical [10-12] or specialized ones [13] or 
they are based on ANNs combined with fuzzy logic 
algorithms [14].  

In this paper the effects of the proper selection of 
the input variables for the ANN is examined. The 
basic structure of the ANN proposed by Kiartzis et 
al. [9-10] for the inputs and outputs neurons for the 
Greek intercontinental power system is used, while 

the training algorithm is the scaled conjugate 
gradient [16] according to the respective results by 
[12]. The input variables can be: (a) historical 
hourly loads of the last one, two or three days, (b) 
weather related temperatures of the respective days 
in direct form (temperatures recorded every three 
hours) and in indirect form (maximum value, 
minimum value, temperature dispersion from 
comfortable living conditions temperature, etc), (c) 
hour and day indicators, given by sinusoidal or 
binary form. The input variables can form the 
respective input vectors either directly, or through 
compression techniques, such as Principal 
Components Analysis (PCA) [17-18].  The main 
goals are:  
 the modulation of the internal neural network 

structure (number of neurons of hidden layer, 
kind of activation functions, etc.) for each 
different case of input variables with respect to 
the smallest Mean Absolute Percentage Error 
(MAPE) of the evaluation set, 

 the comparison of the respective cases in terms 
of MAPE and computational time and  

 the suggestion of basic directions for the 
selection of the input variables for this case 
study. 
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)

The respective results are based on actual hour 
load data of the Greek intercontinental power 
system for years 1997-2000.  

 
2 Proposed ANN Methodology for 
Short-term Load Forecasting  
The short-term load forecasting is achieved by 
applying an ANN methodology through the proper 
selection of the parameters for scaled conjugate 
gradient algorithm. This methodology has the 
following basic steps and its flow chart is shown in 
Figure 1. 

Fig. 1.  Flowchart of the ANN methodology for the 
proper selection of ANN parameters for short-term 
load forecasting for different kind of input variables 
 
(a) Data selection: In this step the input variables 
for load forecasting of d-th day are formed. The 
basic scenario (1st scenario) is the following 
according to Kiartzis et al [10] and Tsekouras et al 
[11]:  
 the hourly actual loads of the two previous days: 

L(d-1,1),…, L(d-1,24),  L(d-2,1),…, L(d-2,24) (in 
MW), 
 the maximum mean temperature per three hours 

and the minimum mean temperature per three hours 
for Athens for the current and the previous day 
max_tempAth(d),  min_tempAth(d), max_tempAth(d-1),  
min_tempAth(d-1) respectively (oC), 

 the maximum mean temperature per three hours 
and the minimum mean temperature per three hours 
for Thessalonica for the current and the previous 
day max_tempTh(d),  min_tempTh(d), max_tempTh(d-
1),  min_tempTh(d-1) respectively (oC), 
 the temperature difference between the 

maximum mean temperature per three hours of the 
current day and the respective one of the previous 
day for Athens dif_tempAth and Thessalonica 
dif_tempTh respectively: 
 dif_tempAth= max_tempAth(d)- max_tempAth(d-1) (1) 
  dif_tempTh= max_tempTh(d)- max_tempTh(d-1)   (2) 
 the temperature dispersion from comfortable 

living conditions temperature for Athens, for the 
current and the previous day 2 ( )AthT d , 2 ( 1AthT d − , 
respectively, where: 
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where Tc=18 oC, Th=25 oC. 
 the temperature dispersion from comfortable 

living conditions temperature for Thessalonica for 
the current and the previous day 2 ( )ThT d , 2 ( 1)ThT d − , 
respectively,  
 seven digit binary numbers, which express the 

kind of the week day, e.g. Monday corresponds to 
1000000, Tuesday to 0100000, etc, 
 two sinusoidal functions ( ( )2 /d Tπ , cos

( )2 /d Tπ ), which express the seasonal behavior 
of the current day, where T is the number of the 
days of the current year.  

sin

So, each input vector comprises 71 elements.  
Other scenarios are the following: 
o 2nd scenario: It is the same with the 1st scenario 

except of using two sinusoidal functions 
( ( )2 / 7dπ , cos ( )2 / 7dπ ) instead of the seven 
digit binary numbers for the kind of the week day. 
In this case the input vector comprises 66 
elements.  

sin

o 3rd scenario: It is the same with the 2nd scenario 
with the difference of using three hours 
temperatures of the day under prediction and the 
previous one for Athens and Thessalonica instead 
of representative temperature functions. In this 
case the input vector comprises 84 elements. 

o 4th scenario: It is the same with the 1st scenario 
using the hourly actual loads only of the last 
previous day. In this case the input vector 
comprises 47 elements. 

o 5th scenario: It is the same with the 1st scenario 
using the hourly actual loads of the three previous 
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Main Procedure 

Final Estimation for Test Set  
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days. In this case the input vector comprises 95 
elements. 

o 6th scenario: It is the same with the 2nd scenario, 
but Principal Components Analysis is additionally 
used for the total number of the input variables 
decreasing them from 66 to 6 for 99% description 
percentage of data dispersion according to 
Kaiser’s criterion [17].  

o 7th scenario: It is the same with the 2nd scenario, 
but Principal Components Analysis is additionally 
used for the total number of the input variables 
except the variables of the kind of the week day 
and of the season of the year decreasing their 
number from 62 to 15 for 99% description 
percentage of data dispersion according to 
Kaiser’s criterion [17]. The total number of the 
input variables (with the respective ones of the 
kind of the week day and of the season of the year) 
is 19.  

In all cases the output variables are the 24 hourly 
actual load demand of the current day L

)
(d,1),…, 

L
)

 (d,24).  
(b) Data preprocessing: Data are examined, in order 
to modify or delete the values that are obviously 
wrong (noise suppression). Due to the great non 
linearity of the problem, non linear activation 
functions are preferably used. In that case, 
saturation problems may occur. These problems can 
be attributed to the use of sigmoid activation 
functions that present non-linear behavior outside 
the region [-1, 1]. In order to avoid saturation 
problems, the input and the output values are 
normalized by the following expression: 

                  ( min
max min

ˆ b ax a x x
x x

−= + −
− )                 (4) 

where x̂  is the normalized value for variable x , 
minx  and maxx  are the lower and the upper values of 

variable x ,  and  are the respective values of the 
normalized variable. 

a b

(c) Main procedure: The ANN is trained using the 
scaled conjugate gradient algorithm (SCGA), whose 
basic steps are as follows [16]:  

ri. The first direction search 0p  is initialized by the 
following equation: 

                             ( )
0

0 w w
p G w

=
= −∇ r r

r r                   (5) 

where G is the mean error function. The vector 
of the weights and biases  is properly chosen. 
The rest parameters (

0wr

σ , 0λ , 0λ , flag) may have 
the following values: 

40 10σ −< ≤         6
00 1λ −< ≤ 0 0 0λ =      1flag =  

ii. If flag is 1, then the second order information are 
calculated: 

                                  /k kpσ σ= r                        (6) 
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                                    T
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iii. The parameter kδ  is scaled: 

                       ( ) 2
k k k k kpδ δ λ λ= + − ⋅

r                 (9) 

iv. If 0kδ ≤ , then the Hessian matrix is made 
positive by: 

                       ( )22 /k k k kpλ λ δ= −
r                  (10) 

                         2
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                                    k kλ λ=                            (12) 
v. The step size is calculated: 
                        ( )

k

T
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                               k ka kμ δ=                          (14) 
vi. The comparison parameter, Δk  , is calculated: 
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vii. If 0kΔ ≥ , then a successful reduction in 
error can be achieved: 

                              k kw a pkΔ = ⋅
r r                         (16) 
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If the increasing number of iterations is multiple 
of the population Νw of the weights and biases, 
then the algorithm will be restarted: 
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If 0.75kΔ ≥ , then 0.25k kλ λ= ⋅ , else k kλ λ= , 
0agfl = . 

viii. If 0.25kΔ < , then  

                      ( ) 21k k k k kpλ λ δ= + −Δ
r            (23) 

ix. If ( )
1

0
kw w

G w
+=

∇ ≠r r

rr , then 1k k= +  and the step 

(ii) is repeated, else the training process has been 
completed. 
The basic disadvantage of the SCGA algorithm 

is the calculation complexity per iteration, which is 
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equal to instead of  of the basic 
steepest descent method. Its basic advantage is that 
the error function decreases monotonically, because 
an increase in error is not allowed. If the error is 
constant for one or two iterations, the Hessian 
matrix has not been positive definite and 

( 26 wO N ) )( 23 wO N

kλ  has 
been increased. 

The respective parameters of the neural network 
are selected through a set of trials. Specifically for 
each ANN parameter (such as the neurons of the 
hidden layer) the training algorithm is separately 
executed for the respective range of values (i.e. 20 
to 70 neurons with step 1) based on the error 
function (sum of the square of errors for all neurons 
per epoch) for training set and the regions with 
satisfactory results (minimum MAPE for evaluation 
set) are identified. Following, the training algorithm 
is repeatedly executed, while all parameters are 
simultaneously adjusted to their respective regions, 
so that the combination with the smallest MAPE for 
the evaluation set is selected. It is noted that the 
MAPE index between the measured and the 
estimated values of hourly load demand for the days 
of the evaluation set is given by: 

 
( ) ( )

( )
24

1 1

, ,1100%
,

evm

ev
d iev

L d i L d i
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L d i= =

−
⋅= ⋅ ∑∑

)
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where L(d,i) is the measured value of load demand 
for the i-th hour of d-th day for the evaluation set, 
L
)

(d,i) the respective estimated value, mev the 
population of the evaluation set. This index is a 
practical measure, which reflects the approximation 
of the actual load demand independently from its 
units. 
(d) Final estimation for the test set: The actual load 
demand (in MW) for the days of the test set is 
finally estimated by using the respective ANN 
parameters of the current scenario of input variables.  

It is mentioned that, according to Kolmogorov’s 
theorem [19], an ANN can solve a problem by using 
one hidden layer, comprising the proper number of 
neurons. Under these circumstances one hidden 
layer is used, but the number of neurons must be 
properly selected. The parameters that can be 
adjusted to optimize the ANN are:  
 the number of neurons Nn of the hidden layer,  
 the type of the activation functions (hyperbolic 

tangent, logistic, linear),  
 the parameters (a, b) of the activation functions, 

i.e. ( ) ( )tanx a x bφ = ⋅ +  for hyperbolic tangent, 
 the maximum number of epochs (max_epochs), 
 the parameters σ  and 0λ . 

It is also noted that during the training process 
for each ANN three stopping criteria are used [20]:  
 weights stabilization (smaller than 1imitl ), 
 the respective error function not to be decreased 

(the variation between two epochs should be smaller 
than 2imitl ) or 
 the excitation of the maximum number of epochs 

(bigger than max_epochs). 
Afterwards, the results of each scenario of input 

variables with the respective optimized parameters 
are compared, in order to choose the one leading to 
the smallest MAPE index within an acceptable 
computational time. 

 
3 Analytical Application for Proposed 
Methodology for the Basic Scenario 
Following, the aforementioned method is applied 
for short-term load forecasting in Greek 
intercontinental power system. The training and the 
evaluation sets consist of the 90% and 10% of the 
normal days (no holidays) of the years 1997-1999 
respectively, while the test set consists of the normal 
days of the year 2000. The input vector ( )inx nr  is 
formed comprising 71 input variables according to 
the 1st scenario, where the load and the temperature 
data are normalized. The output vector ( )t n

r
 is 

formed by the normalized 24 output actual load 
demand of the day under prediction. 

The range of variation in the crucial ANN 
parameters is mentioned below:  

 the number of the neurons of the hidden layer, 
which ranges from 20 to 70 with incremental step 
of 1 neuron,  
 the parameters σ  and 0λ  can be 10-3, 10-4, 10-5 
and 10-6, 10-7, 5⋅10-8 respectively, 
 the type and the parameters of the activation 
functions of the hidden and the output layers. The 
type can be hyperbolic tangent, linear or logistic, 
while the parameters a1, a2 get values from the set 
{0.1,0.2,…, 0.5} and b1, b2 from the set  {0.0, 
±0.1,±0.2}. 
The parameters of the stopping criteria are 

defined after a few trials as =5000, 
=10-5, =10-5.  

max_ epochs

1imitl 2imitl

The development of the abovementioned method 
in Visual Fortran 6.0 gives the capability to realize 
all possible combinations of the values of the crucial 
parameters. In this study the respective 
combinations account to 2,581,875, which 
practically can not be examined and this is the 
reason for the development of the proposed 
calibration process.  
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Firstly, the number of neurons varies from 20 to 
70, while the remaining parameters are assigned 
with fixed values ( ,510σ −= 8

0 5 10λ −= × , activation 
functions in both layers: hyperbolic tangent, 
a1=a2=0.25, b1=b2=0.0). In Fig. 2 the MAPE indexes 
for the training, the evaluation and the test set are 
presented. The MAPE indexes of the evaluation and 
the test set keep step with the respective one of the 
training set, even if the MAPE index for test set is 
bigger than the respective one of the evaluation set 
and the MAPE index of evaluation set is bigger than 
the respective one of the training set. The MAPE 
index for the evaluation set has small values for all 
neurons (the smallest is for 43 and 52 neurons), 
which proves the stability of this training algorithm. 

As a second step it is observed that better results 
are obtained using in both layers the hyperbolic 
tangent as an activation function with parameters 

=0.5, =0.25 and =0.0. The results are 
quite similar to the following regions for the 
parameters: 0.1<a1<0.9, 0.1<a2<0.5 και b1≈b2≈0. It 

is mentioned that in Table 1 the results for different 
activation functions are registered.  

1a 2a 1b b= 2

The selection of the parameters σ  and 0λ  has not 
any significant participation in the final MAPE 
results. 

The final calibration of the ANN model is 
realized for 43 to 53 neurons, 510σ −= , 

8
0 5 10λ −= ×

2a

, and activation functions in both layers: 
hyperbolic tangent with parameters =0.45-0.50-
0.55, =0.20-0.25-0.30, =0. 

1a
1b b= 2

2

Finally, the best result for the MAPE index of the 
evaluation set is 1.487% and it is obtained for an 
ANN with 52 neurons in the hidden layer, =0.5, 

=0.25 and 
1a

2a 1b b= =0 using hyperbolic tangent 
activation function in both layers. 
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Fig. 2.  MAPE(%) index for the all sets, 1st scenario, neurons: 20-70, ,510σ −= 8

0 5 10λ −= × , activation 
functions in both layers: hyperbolic tangent, a1=a2=0.25, b1=b2=0.0 

 
TABLE 1 

MAPE(%) OF (A) TRAINING SET, (B) EVALUATION SET, (C) TEST SET FOR DIFFERENT ACTIVATION 
FUNCTIONS FOR  NEURONS: 52, 510σ −= , 8

0 5 10λ −= × , 1a a2= =0.25, =0.0 1b b= 2

 Activation function of hidden layer  
 Hyperbolic sigmoid Hyperbolic tangent Linear 

Activation function of 
output layer 

(A) (B) (C) (A) (B) (C) (A) (B) (C) 

Hyperbolic sigmoid 1.260 1.512 1.821 1.294 1.517 1.814 1.629 1.755 1.978 
Hyperbolic tangent 1.401 1.525 1.745 1.324 1.509 1.769 1.532 1.742 1.951 

Linear 1.465 1.581 1.760 1.344 1.539 1.733 1.688 1.820 1.983 
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4 Application for Different Scenarios 
of Input Variables 
The proposed methodology of section 2 is applied to 
six different scenarios of input variables for the 
short-term load forecasting in Greek intercontinental 
power system (which have been described in section 
2). The training, the evaluation and the test sets are 
the same with the respective ones of section 3. The 
ANN’s parameters are properly selected and the 
respective results are presented in Table 2.  

The relation of the respective computational time 
(with the proper parameters calibration) for the 
seven basic scenarios is: 1÷0.98÷1.1÷0.8÷1.3÷0.4÷ 
0.55. 

The best results of MAPE for evaluation set are 
obtained with the basic scenario, which have been 
formed by Kiartzis et al [10] (only the training 

algorithm is different). The second and the third 
scenarios lead to similar results (the alternative way 
of formulation for week day and the direct use of 
three hours temperatures). It is worth mentioned that 
the best results of MAPE for the test set are given by 
the third scenario with similar results obtained by 
the first and the second scenarios. The subtraction or 
the addition of hourly loads of one day (alternatively 
the use of hourly loads of one or three previous 
days) leads to worse results. The use of compression 
technique decreases the computational time 
significantly, but it is crucial for the input variables 
of week and of seasonal behavior not to be 
suppressed (otherwise the performance of the MAPE 
for the evaluation set is decreased by 20%). 

Finally, the first scenario is proposed to be used.

 
TABLE 2 

MAPE(%) OF TRAINING, EVALUATION & TEST SETS FOR 7 DIFFERENT SCENARIOS OF INPUT VARIABLES WITH 
THE RESPECTIVE PROPERLY CALIBRATED PARAMETERS 

No. of 
scenario 

MAPE(%) of 
training set 

MAPE(%) of 
evaluation set 

MAPE(%) 
of test set 

Neurons – Range of 
examined neurons 

Activation functions 

1 1.294 1.487 1.781 52 (20-70) f1=tanh(0.50x), fο=tanh(0.25x) 
2 1.315 1.516 1.776 48 (20-70) f1=tanh(0.50x), fο=tanh(0.25x) 
3 1.293 1.504 1.717 39 (20-80) f1=tanh(0.50x), fο=tanh(0.25x) 
4 1.574 1.674 2.224 21 (20-70) f1=tanh(0.30x), fο=1/(1+exp(-0.20x)) 
5 1.524 1.804 1.808 76 (30-90)  f1=tanh(0.25x), fο=1/(1+exp(-0.25x)) 
6 1.901 1.960 2.570 21 (15-60) f1=tanh(0.30x), fο=1/(1+exp(-0.30x)) 
7 1.458 1.583 1.900 28  (15-60) f1=tanh(0.50x), fο=tanh(0.25x) 

 
5 Conclusions  
This paper compares the performance of seven 
different ANN structures regarding the input 
variables for short-term load forecasting in Greek 
intercontinental power system. The basic structure 
of the input variables is determined by Kiartzis et al 
[10]. The other scenarios for input variables involve 
historical hourly loads of different number of 
previous days, weather related temperatures of the 
respective days in direct form (temperatures of 
every three hours) and in indirect form (maximum 
value, minimum value, temperature dispersion from 
comfortable living conditions temperature, etc), 
hour and day indicators in sinusoidal or binary form. 
Alternatively Principal Component Analysis (PCA) 
can be used for data compression. The training 
algorithm used is the scaled conjugate gradient one 
according to the results of [11]. The rest parameters, 
such as the number of neurons of the hidden layer, 
activation functions, weighting factors, etc. are 
determined by the proposed calibration 
methodology of section 2 through an extensive 

search. The performance of each scenario is 
measured by the Mean Absolute Percentage Error 
(MAPE) of the evaluation set. Finally, the basic 
scenario of input variables is proposed, because of 
the small MAPE obtained. If small computational 
time is required, then PCA should be performed 
only on load and temperatures variables.  

The proposed methodology can be improved (i) 
by using different kinds of outputs, (ii) by 
estimating the optimization process and (iii) by 
determining the confidence intervals of the under 
prediction chronological load curves. 
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