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Abstract: - This work attempts to apply Artificial Neural Networks in order to estimate the critical flashover 
voltage on polluted insulators. First, an ANN was constructed in MATLAB and has been trained with several 
MATLAB training functions. Then, an ANN was constructed in FORTRAN using an adaptive algorithm, in 
which the parameters of momentum and learning rate changed during the learning procedure, in order to 
optimize the training process. In each case the Artificial Neural Network uses as input variables the following 
characteristics of the insulator: the diameter, the height, the creepage distance, the form factor and the 
equivalent salt deposit density and estimates the critical flashover voltage.  
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1 Introduction 
The critical flashover voltage of a polluted insulator 
is a significant parameter for the condition of power 
systems. The reliability of a power system is 
dependent on environmental and weather 
conditions, which cause flashovers on polluted 
insulators, leading to system outages. Therefore 
several approaches have been developed for the 
estimation of the flashover voltage on polluted 
insulators. 
The main types of insulator pollution are marine and 
industrial, as well as the combination of both types. 
The coexistence of both pollution (marine and/or 
industrial) and moisture (as dew, fog or drizzle rain) 
is an unfavorable condition for the operation of 
insulators. Heavy atmospheric pollution creates an 
electrolytic layer on the surface of the insulator. 
When combined with fog or rain, a leakage current 
flows along the conducting layer. Additionally, 
surface pollution and non-uniform potential 
distribution along the insulator surface cause glow 
discharges or quasi-stable arcs to appear. When the 
applied voltage exceeds a critical value, these 
discharges or quasi-stable arcs elongate through 
successive root formation over the polluted insulator 
surface until the flashover causes the complete 
bridging. Therefore, it is important to monitor the 
insulator’s condition so as to ensure that the 
maintenance takes place in due time. 

For this purpose, several researches have been done 
in which mathematical and physical models are used 
[1, 2], experiments have been conducted [3, 4] or 
simulation programmes have been developed [5, 6, 
7]. New technologies for the qualitative control of 
the insulators, such as ANNs and fuzzy logic, are 
developed. Neural Network algorithms have been 
successful in estimating the equivalent salt deposit 
density, by using information regarding 
temperature, humidity, pressure, rainfall and wind 
speed as input data, with the intention of 
establishing an effective maintenance policy. 
In the field of high voltage insulators, ANNs can be 
used to estimate the pollution level [8, 9], to predict 
a flashover [10, 11], to analyse surface tracking on 
polluted insulators [12] and also to estimate the 
critical flashover voltage on a polluted insulator.  
This work attempts to utilize the available 
experimental data and the results of a theoretical 
approach, in order to construct and train an ANN 
that can estimate the critical flashover voltage on 
polluted insulators, using as inputs some 
characteristics of the insulator. 
 
 
2 Data collection 
Data concerning cap and pin type insulators was 
used for the training and testing of the ANN. 
Specifically, the following geometric characteristics 
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were used as input variables: the maximum diameter 
Dm (in cm) of the insulator, its height H (in cm), the 
creepage distance on it L (in cm), its form factor F 
and the layer conductivity σs (in μS), while the 
output variable was the critical flashover voltage Uc 
(in kV). 
The experiments were carried out in an insulator test 
station, installed in the High Voltage Laboratory of 
Public Power Corporation’s Testing, Research and 
Standards Center in Athens [13] and according to 
the IEC standard 507:1991 [14]. In this station tests 
have been performed on artificially polluted 
insulators, in order to determine the critical 
flashover voltage. The pollution was simulated 
according to the solid layer-cool fog method. Apart 
from this set of experimental measurements, other 
measurements were used too, from experiments 
performed by Zhicheng et al [15] and Sundararajan 
et al [16]. 
The mathematical model for the evaluation of the 
flashover process of a polluted insulator consists of 
a partial arc spanning over a dry zone and the 
resistance of the pollution layer in series, as shown 
in Figure 1, where Varc is the arcing voltage, Rp the 
resistance of the pollution layer and U a stable 
voltage supply source. 

 

Varc Rp

U  
Fig. 1: Equivalent circuit for the evaluation of the 
flashover voltage. 

The critical voltage Uc (in V), which is the applied 
voltage across the insulator when the partial arc is 
developed into a complete flashover, is given by the 
following formula [17]: 
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where L is the creepage distance of the insulator (in 
cm), Dm is the maximum diameter of the insulator 
disc (in cm) and F is the form factor. The arc 
constants A and n have been calculated using a 
genetic algorithm model [18] and their values are 
A=124.8 and n=0.409. The surface conductivity sσ  

(in 1−Ω ) is given by the following type: 
( ) 6369.05 0.42 10s Cσ −= ⋅ + ⋅  (2) 

where C is the equivalent salt deposit density in 
mg/cm2. 
The coefficient of the pollution layer resistance K in 
case of cap-and-pin insulators is given by 
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where R is the radius of the arc foot (in cm) and is 
given by 
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3 ANN algorithm in MATLAB 
An ANN is usually trained with the error 
backpropagation algorithm, in which the occurring 
errors of the output layer return in the input layer to 
modify the weights. This procedure is repeated until 
the occurring errors reach accepted values. 
In the present work an adaptive ANN has been 
designed in MATLAB and trained to estimate the 
critical flashover voltage, when the geometric 
characteristics of an insulator mentioned above are 
given. The total number of vectors, which include 
the input and output variables, was 118. The 80% of 
these 118 input-output patterns was decided to be 
used to train the network, while the rest 20% was 
used to test the function of the network. That means 
that the training set consisted of 94 vectors and the 
testing set consisted of 24 vectors.  
The ANN was designed through an algorithm that 
used functions of MATLAB. The data used to train 
and test the network was set as matrices in different 
files, which were then called by the program. By 
changing some parameters in the code of this 
program, tests could be made with different training 
methods, in order to see which function gave the 
best results. The four training methods that were 
tested were: traingd, traingda, traingdx and trainlm 
and are all variations of the basic error 
backpropagation algorithm [19]. With traingd the 
network is trained according to the gradient descent 
backpropagation, with traingda the network is also 
trained according to the gradient descent 
backpropagation with adaptive learning rate. The 
function traingdx combines adaptive learning rate 
with momentum training. An adaptive learning rate 
is a learning rate that is adjusted according to an 
algorithm during training to minimize training time. 
Finally, trainlm uses the Levenberg-Marquardt 
backpropagation [19]. 
For each one of those training methods a set of 
scenarios was taken, in which the parameter that 
was changing was the number of epochs. One epoch 
is the presentation of the set of training (input and 
target) vectors to the network and the calculation of 
new weights and biases. So, for each training 
method, there was a set of 10 scenarios, for a change 
at the number of epochs from 500 to 5000 with a 
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step of 500. In each scenario there was an inner 
change of the number of neurons (from 2 to 25), in 
order to find the best architecture for the network, 
i.e. the number of neurons in the hidden layer that 
gives the minimum root mean squared error (RMSE) 
that is defined by the following type: 

∑
=

=
2

1

2

2
)(1 m

i
k ie

m
RMSE  (5) 

where m2 is the number of the testing vectors and ek 
the absolute difference between the real and the 
estimated flashover voltage for the testing set. 
 
 
3.1 Results  
For each training function, a 3D graph of the RMSE 
versus the number of neurons and the epochs has 
been made, in order to see which are the “areas” that 
minimize the error. Those 3D graphs are presented 
in Fig. 2 – Fig. 5. 
As it is shown by the four figures below, the best 
results (minimum RMSE) are given by traingdx 
(gradient descent backpropagation with adaptive 
learning rate and momentum) for 6-12 neurons and 
approximately 1500 epochs. For over 13 neurons the 
network becomes unstable, giving very big errors. 
This was to be expected, as – according to an 
empiric rule – the number of neurons in the hidden 
layer should not be greater than the twofold of the 
input variables. The next step is to define for which 
value of the learning rate, this network gives 
minimum RMSE. To obtain this, the number of 
epochs was kept constant, the number of neurons 
changed from 6 to 12 (because the best results 
appeared in this area) and using as training method 
the traingdx, the learning rate altered from 0.1 to 0.9 
with a step of 0.05. The minimum RMSE appeared 
for learning rate 0.3, 12 neurons and its value was 
0.31. The momentum constant during the whole 
procedure had the default value 0.9, as defined by 
MATLAB. 

 
Fig. 2: RMSE versus number of neurons and number 
of epochs for traingd. 

 
Fig. 3: RMSE versus number of neurons and number 
of epochs for traingda. 

 

 
Fig. 4: RMSE versus number of neurons and number 
of epochs for traingdx. 

 

 
Fig. 5: RMSE versus number of neurons and number 
of epochs for trainlm. 

The correlation between real and estimated values of 
Uc, for learning rate equal to 0.3 is 2 0.95305R = .  
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4 ANN algorithm in FORTRAN 
An adaptive ANN has been designed in Digital 
Fortran and trained to estimate the critical flashover 
voltage, when given some of the insulator’s 
characteristics.  
The main steps of the proposed estimation model 
are the following: 
a. The N input variables are selected from the 

respective database. In this case five parameters 
(Dm, H, L, F, C) are used as input variables. 

b. All variables are properly normalized, in order 
to avoid saturation phenomena during the 
training process of the ANN model [20].  

c. For each ANN parameter the adaptive back 
propagation (a-BP) algorithm is separately 
executed for the respective range of values in 
order the regions with satisfactory results to be 
identified. According to Kolmogorov’s theorem 
[20] an ANN can solve a problem, using a 
single hidden layer, if the last one has the 
proper number of neurons. Under these 
circumstances one hidden layer is used, 
however the number of neurons has to be 
properly selected. 

d. Then the a-BP algorithm is repeatedly executed, 
while all parameters are simultaneously 
adjusted into their respective regions, so as the 
combination that produces the minimum 
forecast error for the given evaluation set, is 
selected. 

e. Finally, the flashover voltage is estimated for 
the under study experiments. 

Three points need to be noted:  
•Stopping criteria: The feed forward and reverse 
pass calculations are repeated per epoch (one epoch 
is the presentation of the set of training, input and 
target, vectors to the network and the calculation of 
new weights and biases) until the weights are 
stabilized, or until the respective error function is 
not further minimized or the maximum number of 
epochs is reached. If one of the three criteria comes 
true, the main core of back propagation algorithm 
comes to an end. Otherwise, the number of epochs 
is increased by one, the adaption rules are applied 
and the feed forward and reverse pass calculations 
are repeated.  
•Validation criteria: For the evaluation set the root 
mean square error (RMSEva), the mean absolute 
square error (MAPEva) and the correlation ( 2

vaR ) can 
be calculated.  
•Activation function: The hyperbolic tangent gives 
better results in this kind of problem. In the case of 
hyperbolic tangent the unknown parameters are h1 
and h2, as:  

( ) ( )1 2tanhf x h x h= ⋅ +  (6) 

In order to converge rapidly, both the training rate 
and the momentum term are adaptively changed as: 

( )
( ) ( ) ( )
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where Tη , 0 (0)η η= , aT , 0 (0)a a=  are respectively 
the time parameters and the initial values of both the 
training rate and the momentum term and 

( )trRMSE ep  is the root mean square error for the 
training set after the end of the ep  epoch. 
In fact the ANN adapts its parameters according to 
the error’s progress. If ( )1trRMSE ep −  is larger than 

( )trRMSE ep , which means that weights are updated 
in the correct direction, then it is desired to maintain 
this direction in the next epoch. This is achieved by 
decreasing the learning rate and keeping the 
momentum term constant in the next epoch. 
Otherwise, if ( )trRMSE ep > ( )1trRMSE ep − , which 
means that the weights are shifted to the opposite 
direction, it is reasonable to reduce the influence of 
this direction in the next epoch by decreasing the 
momentum term and keeping the learning rate 
constant. 
The ANN parameters need to be specified. In order 
to reduce the combinations, two steps are realized. 
In the first step, the basic algorithm is executed 
separately for each parameter’s range of values. The 
program registers the regions where satisfactory 
results for the current parameter are achieved. In the 
second step, the main process is repeated for the 
reduced number of combinations, in which all 
parameters can take any value of their respective 
region, as determined in the first step. When this 
procedure is completed the combination that 
presents the minimum error in the forecast of the 
evaluation set is selected.  
 
 
4.1 Results  
The training set consisted of 148 patterns / vectors 
(of which the 140 vectors had derived from the 
model and 8 vectors were real values) and the 
network was tested using 20 patterns (experimental 
data). The goal is to reduce the number of 
experiments needed for the operation of the ANN. 
Using the results produced by the mathematical 
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model, the ANN can be tested with even less real 
values. 
The first test is the decision of the number of 
neurons (N). The criterion was the minimization of 
the RMSEtr for the training set. The minimum 
RMSEtr appears for six neurons (RMSEtr=0.112). 
The next step was to define the parameters of the 
momentum (constant term and time parameter) that 
lead to minimum RMSEtr. Fig. 6 shows a 3D plot of 
the RMSEtr as a function of the momentum. The 
constant term of momentum (a0) changes from 0.1 
to 0.9 and the time parameter (Ta) from 500 to 5000. 
The minimum RMSEtr appears for 0 0.8a =  and 

4000aT = . 
 

 
Figure 6: Determination of the constant term and 
time parameter of the momentum. 
 

 
Figure 7: Determination of the constant term and 
time parameter of the learning rate. 
 
Finally, the parameters of the learning rate (initial 
value and time parameter) should be determined. 
For this reason, a third test took place, in which the 
constant term of the learning rate (η0) changed from 
0.1 to 0.9 and the time parameter (Tn) of the learning 
rate from 500 to 5000. Fig. 7 shows a 3D plot of the 
RMSE as a function of the learning rate. It is 

obvious that the minimum RMSEtr appears for 
0 0.9η =  and 4500nT = . The value of the RMSEtr 

is now 0.070kV. This error is smaller than the one 
the network gave before the optimization of the 
momentum and the learning rate and it shows that 
the ANN is now capable of estimating the value of 
the critical flashover voltage very accurately. 
The correlation between real and estimated values of 
Uc is 2 0.98610R = . It must be mentioned that the 
ideal value for the correlation is 1, so 0.98610 is not 
only an acceptable value, but also a very good one. 
 
 
5 Conclusions 
In this paper ANNs have been successfully applied 
for the estimation of the flashover voltage on 
polluted insulators. The network was trained to 
estimate the critical flashover voltage when some of 
the insulator’s characteristics are given. The ANN 
that was designed in FORTRAN gives better results 
than the ANN that was designed in MATLAB, 
using fixed functions for the construction of it. 
A disadvantage of the ANN in MATLAB is that no 
one can influence on the learning rate variation upon 
the time. Also, the momentum is kept constant 
during the learning process. In the ANN that was 
constructed in FORTRAN all these parameters 
could be adjusted to give the best results.  
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