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Abstract: To describe an artificial neural network (ANN) methodology in order to estimate the critical flashover voltage
on polluted insulators is the objective here. The methodology uses as input variables characteristics of the insulator
such as diameter, height, creepage distance, form factor and equivalent salt deposit density, and it estimates the
critical flashover voltage based on an ANN. For each ANN training algorithm, an optimisation process is conducted
regarding the values of crucial parameters such as the number of neurons and so on using the training set. The
success of each algorithm in estimating the critical flashover voltage is measured by the correlation index between
the experimental and estimated values for the evaluation set, and finally the ANN with the correlation index
closest to 1 is specified. For this ANN and the respective algorithm, the critical flashover voltage of the test set
insulators is estimated and the respective confidence intervals are calculated through the re-sampling method.

1 Introduction

During the last few years, an increasing demand on energy
consumption is observed, leading to an increase on the
distributed power and, on occasion, to building new networks
in order to support this demand. The consequent higher
standards regarding the strength of the insulators comes as no
surprise, since insulators are one of the most important
components that greatly affect the reliability of the power system.

Heavy atmospheric pollution creates an electrolytic layer
on the surface of the insulator. When combined with fog or
rain, a leakage current flows along the conducting layer.
Additionally, surface pollution and non-uniform potential
distribution along the insulator surface cause glow discharges
or quasi-stable arcs to appear. When the applied voltage
exceeds a critical value, these discharges or quasi-stable arcs
elongate through successive root formation over the polluted
insulator surface until the flashover causes complete bridging.
Therefore it is important to monitor the insulator’s condition
so as to ensure that maintenance takes place in due time.

For this purpose, several researches have been done in
which mathematical and physical models are used [1, 2],
experiments have been conducted [3, 4] or simulation
programmes have been developed [5—7]. New technologies
for the qualitative control of the insulators, such as artificial
neural network (ANNs) and fuzzy logic, have been
developed. Neural network algorithms have been successful
in estimating the equivalent salt deposit density, by using
information regarding temperature, humidity, pressure,
rainfall and wind speed as input data, with the intention of
establishing an effective maintenance policy.

Another ANN [8] has been applied in order to estimate the
critical flashover voltage on polluted insulators. In [9], an ANN
has been used in order to estimate the time-to-flashover when
the applied voltage, the creepage length and the resistance per
unit length are given. The experimental data were obtained
by studies performed on a flat plate model for a polluted
insulator under a power frequency voltage. In [10], an ANN
was trained to deduce whether or not a breakdown is
imminent using data collected from two pollution-related
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monitoring devices. Several other ANNs have been developed
in order to analyse the insulator surface tracking on solid
insulators [11], to estimate the leakage current on silicone
rubber insulators [12, 13] and the partial discharge inception
voltage [14]. Another study [15] presents a multilayer ANN
model that classifies the development of the arc gradient into
three stages.

This paper describes a methodology that was developed for
the estimation of the critical flashover voltage of polluted
insulators by using an (ANN) and selecting the optimum
training algorithm and the respective parameters. Its basic
advantages are:

e the optimisation process to determine the most suitable
parameters for each ANN training algorithm (such as the
number of the neurons in the hidden layer, the kinds and
the parameters of the activation functions),

e the comparison process between different ANN training
processes (such as the deepest descent back-propagation (BP),
adaptive (BP) conjugate gradient algorithm, scaled conjugate
gradient algorithm, resilient algorithm, Newton algorithm),

e the use of three sets for the total optimisation process: the
training set, which is used for the training of each ANN
algorithm, the evaluation set, which is used for the
selection of the ANN and the respective parameters with
the biggest correlation index R® between the actual and
estimated values of the critical flashover voltage, and the
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methodology has the following basic steps and its flow
chart is shown in Fig. 1.

2.1 Data selection

The input variables are the maximum diameter D, (in cm), the
height A (in cm), the creepage distance L (in cm), the form
factor F of the insulator and the layer conductivity o, (in wS),
where as the output variable is the critical flashover voltage U,
(in kV). The data used for the training, evaluation and testing
of the ANN were selected from various sources. Some of
them were acquired by experiments that were carried out in
the High Voltage Laboratory of Public Power Corporation’s
Testing, Research and Standards Centre in Athens [18]
according to the IEC standard 507:1991 [19]. Artificial
pollution was applied on the insulators before conducting the
test to determine the critical flashover voltage. Apart from
this set of experimental measurements, other measurements
were also used, from experiments performed by Zhicheng and
Renyu [20] and Sundararajan e# a/. [21].

A mathematical model was also used to enrich the training
data [16]. The equivalent circuit for the evaluation of the
critical flashover voltage is comprised by a partial arc
spanning over a dry zone in series with a resistance that
represents the pollution layer, as shown in Fig. 2, where
Vare is the arcing voltage, R, the resistance of the pollution
layer and U a stable voltage supply source. In this model,
the critical flashover voltage is given by the following formula

test set, which is the final set under estimation and proves U, = A (L+m-n-D-F-K)
the generalisation ability of the proposed methodology, n+1
(7-4-D,,- )" M

e the use of a small number of experimental results that are
included in the training and evaluation set through the
extension of the training set using the elder mathematical
model [16],

o the calculation of the confidence intervals using the

re-sampling method [17], so that the width of the 7
confidence interval of the critical flashover voltage for each o ANN parameters
insulator is calculated beyond the estimated value. optimization

The methodology is successfully implemented for the
estimation of the critical flashover voltage of 24 artificially
polluted insulators, whereas the training and evaluation sets
are formed by 140 vectors from the mathematical model [16]
and other four experimental vectors (different from the test set).

2 Proposed ANN methodology

Data selection
Data preprocessing
4

Selection of one ANN | ¢
training algorithm

Main Procedure

No

Training Process
Evaluation Process

End of optimization?

Selection of the training algorithm & respective
parameters with the best R? for the Evaluation Set

No

Have all algorithms
been examined?

QJ Yes

. . - v
for the estimation of the critical [ Confidence terals Caleutaion |
flashover voltage ¥

The estimation of the critical flashover voltage of the polluted
insulators is achieved by applying an ANN methodology
through the proper selection of the training algorithm and
the optimisation of the respective parameters. This

| Final Estimation for Test Set l

Figure 1 Flowchart of the ANN optimisation methodology
for the estimation of the critical flashover voltage of
insulators
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Figure 2 Equivalent circuit for the evaluation of the
flashover voltage

The form factor of an insulator is determined from the
insulator dimensions. For graphical estimation, the
reciprocal value of the insulator circumference (1/p) is
plotted against the partial creepage distance / counted from
the end of the insulator up to the point reckoned. The
form factor is given by the area under this curve and
calculated according to the formula [22]

Lodr
F=] 0 2

The arc constants 4 and 7 have been calculated using
a genetic algorithm model [23] and their values are
A=124.8 and n = 0.409. The surface conductivity o (in
Q Nis given by the following type

o, =(369.05- C +0.42) - 107° 3)

where C is the equivalent salt deposit density in mg/cm?.

Table 1 Description of ANN’s training algorithms

The coefficient of the resistance of the pollution layer K in
the case of cap-and-pin insulators is given by

n+1 L
+2-7T.F.n’1n(2.w-R-F> )

where R is the radius of the arc foot (in cm) and is given by

K=1

R=0469(m-4-D, - )" ‘)

2.2 Data preprocessing

Data are examined for normality, in order to modify or delete
the values that are obviously wrong (noise suppression).
Because of the great nonlinearity of the problem, nonlinear
activation functions are preferably used. In that case,
saturation problems may occur. These problems can be
attributed to the use of sigmoid activation functions that
present nonlinear behaviour outside the region [—1, 1]. To
avoid saturation problems, the input and the output values
are normalised as shown by the following expression

R b—a

x=a+——(x—x,,) 6)
Xmax ~— *min

where X is the normalised value for variable x; %, and %,

are the lower and the upper values of variable x; and  and 4

are the respective values of the normalised variable.

2.3 Main procedure

For each training algorithm (Table 1), the respective
parameters of the network are optimised through a set of

No. Description of ANN’s training algorithms

1 stochastic training with learning rate and momentum term (decreasing exponential functions) [9]

2 stochastic training, use of adaptive rules for the learning rate and the momentum term [9]

3 stochastic training, constant learning rate [9]

4 batch mode, constant learning rate [9]

5 batch mode with learning rate and momentum term (decreasing exponential functions) [9]

6 batch mode, use of adaptive rules for the learning rate and the momentum term [9]

7 batch mode, conjugate gradient algorithm with Fletcher—Reeves equation [24, 25]

8 batch mode, conjugate gradient algorithm with Fletcher—Reeves equation and Powell—Beale restart [24—26]
9 batch mode, conjugate gradient algorithm with Polak—Ribiere equation [24, 27]

10 | batch mode, conjugate gradient algorithm with Polak—Ribiere equation and Powell—Beale restart [24, 26, 27]
11 | batch mode, scaled conjugate gradient algorithm [28]

12 | batch mode, resilient algorithm [29]

13 | batch mode, quasi-Newton algorithm [30]

14 | batch mode, Levenberg—Marquardt algorithm [31, 32]
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trials (such as the neurons can be varied from 2 to 25 or the
activation function can be the linear, the logistic or
hyperbolic). For each combination of the parameters, the
ANN training process is actualised using the respective
training set. After the respective convergence, the R?
index between the experimental and estimated values of the
critical flashover voltage for the evaluation set is calculated
and the biggest index is chosen as the best one with the
respective parameters. It is noted that

RZ 72 L (Z:’lzl ((.yz _}_}real) i (511 _)_)est)))2
=y n _ = 2 n Ao = 2
2 i1 (O = Vo)™ - 2021 0 = D))

7)

where y; is the experimental value of the critical flashover
voltage, y ., the mean experimental value of the respective
data set (training, evaluation or test), j the estimated value,
Yo the mean estimated value of the data set and 7 the
population of the respective data set. This index is a
practical measure, which describes the approach of the
estimated value to the actual one independently from the
units and the quantity of the critical flashover voltage.

2.4 Selection of the best R? index from
all the training algorithms

From all the training algorithms with the respective optimised
parameters, the R?index that performs the highest is chosen as
the best. This algorithm is used for the next steps.

2.5 Calculation of the confidence
intervals

The confidence intervals for the evaluation set are calculated
using the re-sampling method for a specific tail probability p.
These intervals are extended in order to describe the values of
the test set estimating the respective confidence interval with

probability (1 — 2p).

2.6 Final estimation for the test set

The critical flashover voltage (in kV) for the polluted
insulators of the test set is finally estimated by using the
training algorithm of the Section 2.4 with the respective
ANN parameters. The prospective confidence intervals are
the respective ones of the Section 2.5. It is also possible to
calculate the confidence intervals for the test set for a
comparative purpose.

In the following section, the ANN training algorithms are
analysed.

3 Mathematical modelling
of ANN

ANNs constitute a useful tool in the field of establishing
relationships between quantities, that otherwise would have
been difficult to model. A typical ANN is comprised of
three layers, the input, the hidden and the output layer.
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The number of nodes of the input layer and the number of
neurons at the output layer are equal to the number of
input and output variables, respectively.

During the execution of each training algorithm, the ANN
is presented with the patterns of the training set. Depending
on the error between the estimated and the actual value, the
weights of the ANN are adjusted until one of the stopping
criteria, referred below, is fulfilled.

The evaluation criterion being used to evaluate the
accuracy of the prediction is the average error for all the V
patterns

1 N
Go =% ; G(n) (8)

where G(n) =1/2)" Jec ej2 (m) is the sum of the square errors
for all output neurons for the nth pattern.

Two different methods for presenting the patterns of the
training set were used. In the first one, each input vector is
randomly presented (stochastic training) minimising the
error function per vector: G(n) =1/2 ZjEC ef(n). In the
second one, all input vectors are presented in series during
the forward process (batch mode) and then, the weights are
corrected minimising the average error function given by
(8). In the case of the BP algorithm, with the steepest
descent the correction of the weights’ is calculated after the
end of the respective epoch ep

Aw(ep) = —n - VG(w(ep)) )
where 7 is the learning rate.

If a momentum term a is added, then the equation for the
correction of the weights’ is

Aw(ep) = —n - VG(wlep)) + a - Aw(ep — 1) (10)

3.1 BP algorithm variations

Apart from the original BP algorithm, several variations have
been applied and have been compared, such as:

o Adaptive BP algorithm [9]. To achieve faster convergence,
the learning rate and the momentum term are adaptively
changed as

n(ep — 1), G, (ep) > G, (ep—1)
nlep—1-ep(=1/T,),  Gylep) < Gylep— 1)

(11)

n(ep) = [

Gav(ep) > Gav(ep - 1)
Gav(ep) = Gav(ep - 1)
(12)

alep) = a(ep — 1),
P/= a(ep—1)~exp(—1/Ta),
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where 7, ng = 1(0), 7, and ay = 4(0) are the time parameters
and the initial values of the learning rate and the momentum
term, respectively.

e Resilient algorithm [29]. The correction of the weights’ is
given by the formula

Aw;(ep)
- dwyfep =D, G (ep) o ep—1) > 0
= Awylep— 1), i%f(ep) §G< ~1)=0
Aiz.Awl—j(ep—l), i;i:(ep) 83100] (ep—1)<0

(13)

where 8, 8, are the increasing and the decreasing factor of
change in the value of the weights between two successive
epochs. In this method, the direction for correcting the
weight is determined only by the sign of the derivative of
the error function, thus providing an alternative solution for
the saturation problem.

¢ Conjugate gradient algorithm [24]. The basic steps of this
method are the following:

a. The first search direction i’o is selected to be the
negative of the gradient

Po = —VG(w)| (14)

=1y

b. The error function is minimised along the search
direction

Aw(ep) = —a, -i)k (15)

where the parameter a; is computed by arithmetic
methods, such as the golden section and bisection.

c. The next search direction is selected according to
}k-&-l = —VG(W)lgq,,, t B Py (16)

where the parameter ;1 is determined either by the
Fletcher—Reeves equation (17) [25] or by the Polak—
Ribiere equation (18) [26]

VG@)|_, - VG@)

— W=t q 17
:BkJrl VG(’H))@:;% ] VG(i.v)liU:@k ( )

A(VG@)|!
Bir1 = v G(€U)|§:M

) VG|,
ket (18)
- VG(w)| loa,

The second and third steps are repeated until the
algorithm has converged. To achieve faster convergence,
the algorithm should be restarted when the following
criterion is fulfilled, as proposed by Powell [26]

IVG@)|5_q, - VO(@)I;

W= ‘w/+1

AVG@)gg, II° (19)

>  lim iy, 1

orthogonality

where the orthogonality limit limyhogonaliyy Can range
from 0.1 to 0.9 — preferably 0.2.

The main disadvantage of this method is the calculation
complexity per learning iteration.

e Scaled conjugate gradient algorithm [28]. It avoids the
weakness of the last one by using the Levenberg—
Marquardt approach. The steps of the algorithm are the
following:

The first direction search is initialised as in (14) as well as
the vector of the weights and biases w, and the rest of the
parameters (0, Ag, Ay, and flag) as

0<o<10*

0<A<10° X=0 flag=1 (20)

If flag = 1, then

o= a/llp,ll
Sk = (VG()l5- Bty Py = VG(@)lg-3,)/ 0% & = Py 3‘%
1)
Parameter J, is given as
8 = 8+ (N — A - B l1° (22)
If 6; < 0, then the Hessian matrix is made positive
ANo=20, —8,/1p,1°) 8, =—8,4+A,-p,II°
4 (A /1Pl ) 6, % A (23)
A=Ay
The step size is calculated
-T -
P 'VG(’w)Lfv:ivk a, = M/ (24)

The comparison parameter is calculated
Ay =28, (C@)lgg, — C@)ggy03)/ i (25)
If A, > 0, then a successful reduction in error can be made as

Aty =ay-p, Fro1 =—VG(@)lgog,,, A=

flag=1

(26)

If 2 mod N,, = 0 (where IV, is the number of weights and
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biases), then the algorithm will be restarted
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making the inversion of the matrix an unnecessary task.
The algorithm requires a greater number of iterations in

}H 1 = —VG(W)lg_g, " 27 order to converge. The computational complexity per
iteration, however, is significantly compressed.
else
The Levenberg—Marquardt [31, 32] method suggests
~ 2 ~uT the following expression for the estimation of the value of the
ch(w) . H —vGe@)|: . o
B = v v pe o (28) welghts
-VG(w)|- -
W=Wy . T d T -1 VG( . )
Pr = V(}(-{u)i@:m+1 + Bt Py (29) Aw, = —(] -J+ - diag[J J]) . w "Zv:fv/z:

o T . T R
If A, > 0.75, then A, = 0.25 - A,, else A, = A,, flag = 0. Aw, = —(J J +A-diagl] ~J]) J ey (34)
If A, <0.25, then A, = A, + §,(1 — Ak)/”‘;)knz (30) Factor A is given by the formula
If VG(w) ity # 6, then 2=+4%+41 and step (2) is A& - B, G (k) > G, (k—1)
repeated, else th@ltraining process has been completed. AMe+1) = | AR, Gy (k) = G, (k= 1) 35)
/\(k)/B7 Gav(k) < Gav(k - 1)

The main disadvantage of this method is its complexity
(O(6N?) per iteration), whereas the complexity for the
basic BP algorithm is OBN?2). If A, =0, then the scaled
conjugate gradient algorithm is identical to the conjugate
gradient algorithm. The advantage of this method is that
the error decreases monotonically, as an increase is not
allowed. In case the error remains unchanged, the Hessian
matrix is defined positively and A, increases.

e Newton algorithm [30]. The basic step of this method
consists of inversing the Hessian matrix V2G(®) in order to
estimate the weights and the biases

Ady, = —VZG(qu)ﬁl:-k VG| ;g

w

(31)

Although this method is, usually, the fastest one, the
inversion of the Hessian matrix according to the following
formulas is complicated.

Hessian matrix:

V2G(@) = J@) - J@) + Y @) - V(@) G2

where parameter 3 takes significant values, such as 10. This
method gives satisfactory results in most problems, especially
when the population of the weights and biases is less than a
few hundreds.

3.2 ANN structure

Each ANN can be comprised by more than one hidden layer.
According to Kolmogorov’s theorem [33], an ANN can solve
a problem using a single hidden layer, if the last one has the
proper number of neurons. Under these circumstances, one
hidden layer is used, however, the number of neurons has
to be properly selected.

The following points need to be noted:

o Stopping criteria. In this study, three stopping criteria are
used, namely the criterion of weight stabilisation criterion
(36), the criterion of error function minimisation (37) and
the criterion of the maximum number of epochs criterion

(38). Analytically, the three criteria are, respectively,

jEC
described by the following expressions
Jacobian matrix:
~ Oey  Oey. de; ‘wgg(ep) - fwg,v)(ep - 1)‘ < limity, V4, v,/ (36)
ow, Ow, dwyy 37)
de, e de, |[RMSE(ep) — RMSE(ep — 1)| < limit,
- 9w, 9w, | dwy (33)

J(w) = Ow, 0w, awNw ep > max_epochs (38)
85.}36 ae.PC 33.[)6 where w) is the weight between 4- the neuron of the /—
dw, dw, - layer and o- the neuron of the (/ — 1)- layer, RMSE =

L N,
w PCXNw

One of the basic variations for the Newton method is the
quasi-Newton method, where the second term of (32) is
omitted. Alternatively, in the one-step secant algorithm,
only the diagonal elements of the matrix are stored, thus

fou ¢2(m) is the root mean square

\/1/(’”2 * our) 222:1

error of the evaluation set with 7, members and goyu
neurons of the output layer (in this case ¢ = 1);
max_epochs is the maximum number of the epochs. It is
mentioned that for each algorithm two different approaches
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are realised regarding the convergence. In case (a) all the three
criteria were used, whereas in case (b) only the first and the
third criterian were used.

e Activation function: In this study, three activation
functions, also known as transfer functions, can be used

4 Critical flashover voltage
estimation using proposed
methodology of the ANN

The proposed methodology is applied, as it has been presented
in Section 2. There are several parameters to be selected,
depending on the variation of the BP algorithm that is being

Logistic: b)) =1/1+e™) (39 used each time in order to train the ANN. The parameters
that are common in all methods are: the number of neurons
Hyperbolic tangent: ¢(x) = tanh (ax + &)  (40) N, the type and the parameters (a, &) of the activation
functions and the maximum number of epochs (max_epochs).
Linear: Plx) =ax+ b (41) For methods 1-6 (see Table 1), the additional parameters are:

By making every possible combination for the activation
functions of the hidden and the output layer and by
changing the values of the parameters @ and 4, the most
suitable combination for each method is selected.

3.3 Confidence intervals

The calculation of the confidence interval for the majority of
the methods used for estimating unknown parameters is
direct. For the ANNs, however, this calculation must be
done according to one of the proposed methods, such as
multilinear regression adapted to ANNSs, error output and
re-sampling. In this case, the re-sampling technique is
applied, because the first one allows only the use of the
linear activation function for the output layer and the second
one doubles the number of the original outputs of the ANN.
In the re-sampling method [17], the errors of the evaluation
set are sorted in an ascending order considering the signs,
and the cumulative sample distribution function of the
prediction errors can be estimated as the following

the time parameter and the initial value of the learning rate
Ty, Mo and the time parameter and the initial value of the
momentum term 7, 4. The additional parameters are s, 7},
and 7y, for methods 7—10; o and Ay for method 11; the
increasing 6; and the decreasing 6, factor of change in the
value of the weights between two successive epochs for

method 12; and A(0) and B for method 14, respectively.

For each one possible combination of the input variables,
the ANN parameters need to be specified. To reduce the
combinations that need to be examined, two steps are
taken. In the first step, the basic algorithm is executed
separately for each parameter’s range of values and the
program registers the regions where satisfactory results for
the current parameter are achieved. Specifically, the
optimisation procedure for selecting the ANN’s parameters
is the following: first, the optimal number of neurons is
determined by giving fixed values to the rest of the
parameters and by varying the number of neurons from 2
to 25 with step 1. The optimal N, is selected as the one
that provides us with the smallest G,,. Next, the type of
the activation functions that gives the best results is
selected, while keeping the value for IV, as determined by
the previous step. Then, for each one of the remaining
parameters, the optimal value is similarly selected, while

0, z2<z
$, &) =1 r/m, =z < Zl <z, (42) a}slsigning todt}fle rest of t}.m parameF;rs theI op{‘inl;:{\l valu}fl:s
1, % <% that emerged from a previous step, if any. In Table 2, the

When m; is large enough, §,,1(z) is a good approximation of
the true cumulative probability distribution F(z). The
confidence interval is estimated by keeping the intermediate
z, and discarding the extreme values, according to the
desired confidence degree. The intervals are computed in
order to be symmetrical in probability (not necessarily
symmetric in z). The number of cases to discard in each tail
of the estimation error distribution is #-p, where p is
the probability in each tail. If 7 - p is a fractional number,
the number of cases to discard in each tail is |7 - p| for the
reasons of safety. In the case of the cumulative probability
distribution F(Z,) to be equal to p, there is a probability p
that an error is less than or equal to Z,, which indicates that
Z, is the lower confidence limit. Consequently, Z; _, is the
upper limit and there is a (1 — 2p) confidence interval for
future errors.

respective intervals of values of all the parameters for every
ANN training algorithm are presented.

In the second step, the main process is repeated for the
reduced number of combinations, in which all parameters can
take any value of their respective region, as determined in the
first step. When this procedure is completed, the combination
that presents the minimum error in the estimation of the
evaluation set is selected. This combination is used for the
estimation of the critical flashover voltage.

Table 3 summarises the optimal results for each training
ANN algorithm with the respective values of the

parameters provided by the optimisation process.

The optimisation process of the algorithm la (stochastic
training with decreasing exponential functions for the
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Table 2 Values interval during the optimisation process of each parameter of every ANN training algorithm

No. Intervals of values of each parameter of the respective ANN training algorithm (according to Table 1)
1 ap=0.1,0.2,...,09, T, = 200,400, ...,3000, no = 0.1,0.2, ...,0.9, T,, = 200,400, ...,3000
2 ap=0.1,0.2,...,0.9, T, = 200,400, ...,3000, no = 0.1,0.2, ...,0.9, T,, = 200,400, .. .,3000
3 Mo = 0.01,0.02, ...,0.5,0.6, ...,2
4 M =0.1,02,...,3
5 ap=0.1,0.2,...,09, T, = 200,400, ...,3000, no = 0.1,0.2, ...,0.9, T,, = 200,400, ...,3000
6 ap=0.1,0.2,...,0.9, T, = 200,400, ...,3000, no = 0.1,0.2, ...,0.9, T,, = 200,400, .. .,3000
7 s =0.04,0.1,0.2, Tp, = 20, 40, Tix = 50, 100, e, = 10°°, 107 °
8 s = 0.04,0.1,0.2, T, = 20, 40, Ty = 50, 100, ey = 10" °, 10>, liMorenogonatity = 0.1,0.5,0.9
9 s =0.04,0.2, T,, = 20, 40, Tyix = 50, 100, e,ix = 107°, 107
10 s = 0.04,0.2, Ty, = 20, 40, Ty = 50, 100, ey = 10 °, 10>, liMortnogonaiity = 0.1,0.5,0.9
11 0c=10310"% 107> \o=10"% 107,510 ®
12 8 =0.1,02,8, =12
13 -
14 A0)=0.1,02,...,12,...,5, B8=23,...,910,20,...,50
Common | N, = {2,3, ...,25}, activation function for hidden and output layers = linear, hyperbolic tangent, logistic,
a=0.102,...,15 b=-05-04,...,05

learning rate and the momentum term with the use of all the
three stopping criteria) is analytically presented below.

The optimisation process is comprised of consecutive steps
in order to determine the values of the parameters of the
ANN. In the first step, the number of neurons varies from
2 to 25 whereas the remaining parameters are assigned with
fixed values. By the common graphs of the G,, against the
number of neurons for the three sets (training, evaluation,
test), as shown in Fig. 3, we draw the conclusion about the
optimal selection for the parameter in question (number of
neurons) (Table 3). The best results are achieved when the
hidden layer is comprised of three neurons. It is observed
that for IV, > 2, an oscillation in the values of G,, occurs,
which supports the previous conclusion.

The next step is the determination of the optimal value for
the time parameter and the initial value of the momentum
term, while keeping the value for NV, as determined by
the previous step and assigning fixed values to the rest
of the parameters. Fig. 4 illustrates the variation of the G,,
of the evaluation set for several values of ag and 7. It is
then self-evident that the preferable combination for ag
and T, is 0.9 and 1400, respectively.

The optimal values for 19 and T, are similarly selected, using
as a criterion the minimum G,,. For 1y > 0.4 and 77, > 1000,
the G, is satisfactorily low. The best results, however, are

achieved for 1y =10.9 and 7, = 1400. Lastly, the proper

combination for the activation functions used in the hidden
and output layers is selected after examining all the nine
possible alternatives (T'able 4). It is obvious that the optimal
selection is the hyperbolic tangent for the two layers.
Accordingly, the values of the parameters of the function are
selected: @y = 0.9, a, = 0.4, by = b, = 0.

Finally, the correlation between the actual and the
estimated values (R?) for the evaluation set is 0.9955. The
respective correlation between the actual and the estimated
values (R?) for the test set is 0.9753, whereas the respective
mean absolute percentage error (MAPE) is 5.12%, where
MAPE for a data set with 7 members is given by

MAPE = M 100%

m

(43)

Fig. 5 illustrates the success of the estimation. Moreover, Fig. 5
depicts the confidence interval of the evaluation and the test
sets. The effectiveness of the estimation provided by the
developed ANN is clearly indicated by the fact that the
interval of the test set is narrower than that of the evaluation
set. In real-life applications, the confidence interval of the test
set is not known. The only information is the confidence
interval of the evaluation set and the estimated value of the
critical flashover voltage. The fact that the interval of the test
set is narrower than the interval of the evaluation set ensures
that the region, to which the estimated value belongs, is
accurate (meaning that the real value of the critical flashover
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Table 3 Results of the ANN algorithms
No. of G,y G,y G,, test | Correlation | N, Activation Remaining
ANN’s training | evaluation set index R? for functions parameters
training set set (x107% | evaluation
algorithm | (x107%) | (x107%) set
Stochastic la 3.0804 1.3118 0.5985 0.9955 3| fi=tanh(0.9x) | o =10.9, T, = 1400,
training fo =tanh(0.4x) [ me = 0.9, T,, = 1400,
max_epochs = 7000
1b 4.4282 3.0511 2.0614 0.9819 3 f1 = tanh(x) ap = 0.8, T, = 1600,
f> = tanh(x) no = 0.2, T,, = 400,
max_epochs = 7000
2a 3.1550 1.9373 1.2398 0.9922 2 | f1=tanh(0.9x) ap = mp = 0.9,
f> =tanh(0.5x) [ T, = 1200, T,, = 800,
max_epochs = 7000
2b 2.6312 2.7941 0.7893 0.9930 2 f1 = tanh(x) ap = 0.4, T, = 2800,
f> = tanh(x) Mo = 0.1, T,, = 2600,
max_epochs = 7000
3a 12.356 1.9286 4.3687 0.9693 3| fi=tanh(0.9x) | o= 0.4, T, = 1000,
f> = tanh(x) Mo = 0.32,
T,, = 1000,
max_epochs = 7000
3b 2.6369 2.5386 0.8043 0.9926 3 f1 = tanh(x) ap = 0.4, T, = 1000,
exp(—0.6x)) T,, = 1000,
max_epochs = 7000
Batch 4a 17.326 4.3633 3.7135 0.9792 18 | f1 =tanh(0.8x) | ao=0.3, T, = 2000,
mode f> = 0.1x no = 3, T,, = 2000,
training max_epochs = 5000
4b 5.4084 3.5243 3.2704 0.9754 21 f1 = tanh(x) ag = 0.3, T, = 2000,
f> = 0.5x no = 3, T,, = 2000,
max_epochs = 5000
5a 189.24 151.28 114.66 0.9149 21 fi=1/ oo = 0.4, T, =400,
(1 4+ exp(—x)) Mo = 0.4, T,, = 200,
f> = 0.25x max_epochs = 7000
Sb 13.875 3.2073 4.2328 0.9651 21 f1 = tanh(x) ap = 0.9, T, = 4800,
L=1/ Mo = 0.9, T,, = 5600,
(1 4+ exp(—x)) max_epochs = 7000
6a 15.205 3.7728 3.8267 0.9765 21| f,=tanh(0.9x) | ag=0.9, T, = 3000,
f> =0.2x Mo = 0.8, T,, = 2600,
max_epochs = 7000
6b 8.0111 2.9104 4.0557 0.9655 21 f1 = tanh(x) ap = 0.9, T, = 5200,
fo =tanh(0.9x) [ mo = 0.8, T,, = 5600,
max_epochs = 7000
7a 1.1338 1.1916 0.3671 0.9972 10 f1 = tanh(x) s=0.2, T,, = 20,
f> = tanh(0.4x) Tiix = 50,
Ctrix = 1076;
max_epochs = 7000
Continued
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Table 3 Continued

No. of G,y G,y G,, test | Correlation | N, Activation Remaining
ANN’s training | evaluation set index R? for functions parameters
training set set (x107% | evaluation
algorithm | (x107%) | (x107%) set
7b 0.5700 0.5434 0.4441 0.9959 15 f1 = tanh(x) s=0.2, T,, = 20,
f> = tanh(0.8x) Tirix = 50,
Ctrix = 1076;
max_epochs = 7000
8a 12.409 1.6546 3.5029 0.9704 9| fi=tanh(1.2x) s=0.2, T,, = 20,
f> = tanh(0.04x) Tirix = 50,
Ctrix = 1076;
max_epochs = 7000
8b 10.323 1.8298 3.9689 0.9657 7 f1 = tanh(x) s=0.2, T,, = 20,
f> = tanh(0.07x) Tirix = 50,
Ctrix = 1076;
max_epochs = 7000
9a 12.231 1.9136 4.0413 0.9651 7 | f1 = tanh(0.9x) s=0.2, T,, = 20,
f> = tanh(0.1x) Tirix = 50,
Ctrix = 10_6;
max_epochs = 7000
9 17.575 3.5162 2.9477 0.9797 7 | f1 = tanh(0.6x) s=0.2, T,, = 20,
f> = tanh(0.1x) Tirix = 50,
Ctrix = 1076;
max_epochs = 7000
10a 11.935 1.8242 3.9699 0.9658 7 | f1 = tanh(1.2x) s=0.2, T,, = 20,
f> = tanh(0.1x) Tirix = 50,
Ctrix — 10_6;
max_epochs = 7000
10b 12.409 1.6546 3.5029 0.9704 9| fi=tanh(1.2x) s=0.2, T,, = 20,
f> = tanh(0.04x) Tirix = 50,
Ctrix = 1076;
max_epochs = 7000
11a 0.6138 0.7480 0.3289 0.9972 3 | f1 = tanh(0.325x) oc=10"",
f> = tanh(0.1x) Ao = 51078,
max_epochs = 7000
11b 0.7959 0.9673 0.3669 0.9969 3 | f1 = tanh(0.35x) oc=10"",
f> = tanh(0.2x) Ao = 51078,
max_epochs = 7000
12a-b # # # # # # incapability of
convergence
13a-b # # # # H # incapability of
convergence
14a-b # # # # # # incapability of
convergence

voltage belongs to it). Moreover, it is obvious that the upper and
lower limits for both the evaluation and the test set are not
symmetrically distributed around the actual values. This is
attributed to the method for estimating the confidence

interval. The re-sampling method that is used provides us
with a confidence interval that in symmetric in probability
(not necessarily symmetric in the estimated critical flashover
voltage z).
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The same process is repeated for all training algorithms of
Table 1. From the study of the results of Table 3, it is
concluded that the best results are achieved when the scaled
conjugate gradient algorithm is applied and all the three
stopping criteria are used (algorithm 11a).

The optimisation process used in the case of algorithm
11a in order to achieve the minimum G, is the
following: first, the number of neurons is selected us the

one that provides us with the smallest G,, for the three
sets, which in this case is 3. Similarly, with method 1a, it
is deducted that the best results are achieved when the
activation functions are the hyperbolic tangent for both
Iayers with a1 = 0325, a, = 0.1, b1 =b,=0.
Additionally, different values for the parameters o and Ag
are tested (0=10"", 10°% 1073, A=10"7, 1075,
107°), until it is concluded that when o= 107> and
Ao =15-10"8, then the minimum G, is achieved. It
must be noted that, despite the final selection, there are
several other combinations with similar results, meaning
that the algorithm is not very sensitive to different values
of the parameters o and Ag. The correlation between the
actual and the estimated values R? for the evaluation set
is 0.9972. The respective correlation between the actual
and the estimated values R? for the test set is 0.9853,
whereas the respective MAPE is 3.84%.

Fig. 6 depicts the success of the scaled conjugate
gradient algorithm with three stopping criteria in
estimating the critical flashover voltage. It is obvious
that this method gives a satisfactory approach of the
values for the critical flashover voltage. In the same
picture, the confidence interval of the evaluation and the
test set is shown. The effectiveness of the estimation
provided by the developed ANN is clearly indicated by
the fact that the interval of the test set is narrower
than the interval of the evaluation set. This suggests
that, if the only given information is the confidence
interval of the evaluation set, then the estimation of the
critical flashover voltage would have been satisfactorily
accurate.

By using the mathematical model [16], the respective
correlation between the actual and the estimated values
(R?) for the test set is 0.9801, whereas the respective
MAPE is 4.59%, from which the superiority of the ANN
optimisation methodology using the algorithm 1la is
proved. The last one is confirmed in Figs. 7 and 8. Fig. 7
represents the actual and estimated values derived from the
mathematical model [16] and from the proposed ANN
methodology for 24 experimental vectors of the test set,
whereas in Fig. 8, the respective absolute percentage errors
from the mathematical model and from that ANN
methodology are also presented.

Table4 G, (x 10~ %) for the evaluation set for all the possible combinations between the
activation functions for the hidden and the output layer (a; = a, = 0.4, b; = b, = 0)

Activation function for the hidden layer

Logistic | Hyperbolic tangent | Linear

Activation function for | Logistic 2.4212 2.4839 4.1023
the output layer Hyperbolic tangent | 2.1859 1.7304 2.2577
Linear 12.2654 22.4301 18.9700
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5 Conclusions

A novel methodology for the estimation of the critical flashover
voltage of polluted insulators was presented by an ANN. It
performs an extensive search in order to select the optimum
training algorithm and the respective parameters such as
neurons, activation functions, learning rate for the weighting
factors and momentum term. The generalisation ability of the

g » . % ¢ * 9. proposed methodology is achieved by the use of three sets

gan - = = = - (training, evaluation and test). Moreover, the inclusion of a
c g ; - b= 5 - 3 = - e . . ..

35 0] E - P s - - % small number of experimental results in the training and
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5% s = -Rx evaluation sets and the successive estimation achieved on

o i i . . purely experimental results, of which the test set consists,

0 4 8 12 16 20 2 suggests that practically only a small number of experimental
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Figure 6 Representation of the actual and the estimated
values and of the confidence interval for the evaluation
and test set with 5% probability in each tail for the
scaled conjugate gradient algorithm with three stopping
criteria (algorithm 11a) for the test set

In Fig. 8, it is observed in most cases when the absolute
percentage error values are big, the error of the ANN
methodology is significantly better than the one derived
from the mathematical model.

B From mathematical model B Actual values O From ANN methodology

Ue(kV)

0
1 23 4 5 67 8 910111213 141516171819 20 21 2223 4
Incremental number of vectors for test set
Figure 7 Representation of the actual and estimated values
from the mathematical model [16] and from the proposed
ANN methodology (results from algorithm 11a) for the test
set

results is required in order to train an ANN that provides us
with more than satisfactorily accurate estimations. For the test
set (24 experimental values), the estimated results are better
than the ones calculated by the mathematical model [16],
because the correlation (R?) for the optimal selection of
parameters for the scaled conjugate gradient algorithm using
the three stopping criteria (the criterion of weight stabilisation
the criterion of error function minimisation and the criterion
of the maximum number of epochs’ criterion) is 98.53%, in
contrast to the correlation of the mathematical model
(98.01%) [16]. In addition, the MAPE of the most effective
ANN is 3.84% instead of 4.59% of the mathematical model
[16]. Currently, the confidence interval of the critical
flashover voltage for each insulator is calculated using the
re-sampling method beyond the estimated value. This leads
to a more accurate, generalised and objective estimation of the
respective critical flashover voltage and makes the proposed
methodology a powerful and useful tool.
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7 Appendix

In this section, the theoretical and experimental data that
were used in this work are presented.

Using the data given in Table 5 and the following values for
the equivalent salt deposit density C (in mg/ cm?): {0.02, 0.03,
0.04, 0.05, 0.06, 0.13, 0.16, 0.23, 0.28, 0.34, 0.37, 0.49, 0.52,
0.55} and applying (1), the flashover voltage can be calculated.
The experimental data is also given in Table 6.

Table 5 Values that were used in the mathematical model for the calculation of the flashover voltage

D, cm 26.8 26.8 25.4 254 29.2 27.9 321 28.0 254 20.0
H, cm 15.9 15.9 16.5 14.6 15.9 15.6 17.8 17.0 14.5 16.5
L, cm 33.0 40.6 43.2 31.8 47.0 36.8 54.6 37.0 30.5 40.0
F 0.79 0.86 0.90 0.72 0.92 0.76 0.96 0.80 0.74 1.29
Table 6 Experimental values
D, cm H, cm L, cm F C, mg/cm? U, (kV)
Test set 25.4 14.6 27.9 0.68 0.13 12.0
254 14.6 27.9 0.68 0.16 111
25.4 14.6 27.9 0.68 0.23 8.7
25.4 14.6 27.9 0.68 0.28 9.1
25.4 14.6 27.9 0.68 0.34 7.5
25.4 14.6 27.9 0.68 0.37 7.8
25.4 14.6 27.9 0.68 0.49 6.2
25.4 14.6 27.9 0.68 0.52 6.8
25.4 14.6 30.5 0.70 0.02 22.0
25.4 14.6 30.5 0.70 0.05 16.0
254 14.6 30.5 0.70 0.10 13.0
254 14.6 30.5 0.70 0.16 11.0
25.4 14.6 30.5 0.70 0.22 10.0
254 14.6 43.2 0.92 0.05 19.0
25.4 14.6 43.2 0.92 0.10 15.0
254 14.6 43.2 0.92 0.16 13.0
25.4 14.6 43.2 0.92 0.22 12.0
254 14.6 43.2 0.92 0.30 10.5
22.9 16.6 43.2 1.38 0.03 20.9
22.9 16.6 43.2 1.38 0.04 19.4
Continued

IET Sci. Meas. Technol., 2009, Vol. 3, No. 1, pp. 90-104
doi: 10.1049/iet-smt:20080009

103
© The Institution of Engineering and Technology 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 16, 2009 at 07:53 from IEEE Xplore. Restrictions apply.



www.ietdl.org

Table 6 Continued

D, cm H, cm L, cm F C, mg/cm? U, (kV)
22.9 16.6 43.2 1.38 0.05 18.3
22.9 16.6 43.2 1.38 0.06 16.9
22.9 16.6 43.2 1.38 0.10 15.8
22.9 16.6 43.2 1.38 0.20 13.6
Training set 25.4 14.6 27.9 0.68 0.55 6.1
25.4 14.6 30.5 0.70 0.30 8.5
25.4 14.6 43.2 0.92 0.02 26.0
22.9 16.6 43.2 1.38 0.02 235
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