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a b s t r a c t

The objective of this paper is to present a new methodology for predicting the critical flashover voltage of
polluted insulators based on fuzzy logic. The prediction contains not only the estimated value, but also the
respective confidence interval based on the re-sampling method. Various parameters, such as the number
and the base width of the triangular membership functions used for the fuzzification process, etc., are
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assigned different values in order to optimize the estimation of the critical flashover voltage. Additionally,
different methods for training the fuzzy system are applied and compared for their appropriateness in
accurately predicting the critical flashover voltage.

© 2010 Elsevier B.V. All rights reserved.
. Introduction

Insulators are one of the most important components that
reatly affect the reliability of the electric system. As, during the
ast years, the demand on energy consumption increases, higher
tandards regarding the insulators’ strength are set.

An electrolytic layer on the surface of the insulator is formed
hen the insulator is under heavy atmospheric pollution. When

ombined with fog or rain, it causes a leakage current to flow the
onducting layer. Additionally, surface pollution and non-uniform
otential distribution along the insulator surface cause glow dis-
harges or quasi-stable arcs to appear, which are elongated through
uccessive root formation over the polluted insulator surface until
he flashover causes the complete bridging. Therefore, it is impor-
ant that the insulator’s condition is monitored so as to ensure that
he maintenance takes place in due time.

Several researches concerning the insulators’ performance

nder pollution conditions have been conducted, in which math-
matical or physical models have been used, experiments have
een carried out or simulation programs have been developed.
ince the experiments concerning the critical flashover voltage Uc

∗ Corresponding author. Tel.: +30 210 7722226; fax: +30 210 7723504.
E-mail address: vkont@central.ntua.gr (V.T. Kontargyri).

378-7796/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.epsr.2010.10.024
are time-consuming and have further obstacles, such as high cost
and the need for special equipment, approaches based on circuit
models for the calculation of the analytical mathematical relation-
ship for either dc or ac flashover voltage on polluted insulators
have been developed [1–3]. Furthermore, the complexity of arcing
phenomena taking place on the surface of a polluted insulator ren-
ders necessary simplifying assumptions during the development of
mathematical models describing the aforementioned phenomena.
However such assumptions need not be made in applying artificial
intelligence methods, such as artificial neural networks and fuzzy
logic.

Specifically, artificial neural networks are developed for the
qualitative control of the insulators by determining important
parameters (such as leakage current or the critical flashover volt-
age) [4–7].

Furthermore, an adaptive network based fuzzy inference system
is applied for the estimation of the flashover voltage on insulators
[8]. Additionally, a fuzzy logic algorithm has already been devel-
oped for detecting electrical trees in polymeric insulation systems
[9], since an electrical tree is the ultimate breakdown mechanism

for this kind of insulation systems. In [10], a self-organizing fuzzy
inference system is designed for electrode optimization.

In this paper, a methodology was developed for the estimation of
the critical flashover voltage of polluted insulators by using fuzzy
logic, selecting the optimum training method and the respective

dx.doi.org/10.1016/j.epsr.2010.10.024
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:vkont@central.ntua.gr
dx.doi.org/10.1016/j.epsr.2010.10.024
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b̃0 = j=1mB(wj) · wj∑n
j=1mB(wj)

(3)

where b̃0 is the centre, n is the number of intervals of width dw,
dividing the axis of the output variables, mB is the membership
G.E. Asimakopoulou et al. / Electric Po

arameters. The contribution of this paper is focused in its basic
eatures:

the optimization process to determine the number of the trian-
gular membership functions and their base width,
the comparison process between different methods for building
the fuzzy logic model (see Section 3),
the use of a small experimental training set through the extension
of the training set using the elder mathematical model [3],
the use of three sets for the total optimization process: the train-
ing set, which is used for the training of each fuzzy logic algorithm,
the evaluation set, which is used for the selection of the parame-
ters that provide us with the biggest correlation index R between
the experimental and estimated values of the critical flashover
voltage, and the test set, which is the final under estimation set
and proves the generalization ability of the proposed methodol-
ogy,
the calculation of the confidence intervals using the re-sampling
method [11], so that the width of the confidence interval of the
critical flashover voltage for each insulator is calculated beyond
the estimated value.

The main advantage of any fuzzy logic method against other
ethods like regression models and neural networks is that the

alues of the respective input parameters can be linguistic or
an be approached approximately. The advantages of the pro-
osed methodology against previous classical fuzzy models are the
ptimization process of the characteristics of the triangular mem-
ership functions, the selection of the training methods and the
alculation of the confidence intervals.

The methodology is successfully implemented for the estima-
ion of the critical flashover voltage of 24 artificially polluted
nsulators, while the training and evaluation sets are formed by 140
ectors from the mathematical model [3] and other 4 experimental
ectors (different from the test set).

In Section 2, the basic principles of fuzzy logic are presented,
hile in Section 3, the proposed fuzzy logic methodology for the

stimation of the critical flashover voltage is analyzed. In Section
, the implementation of the methodology is shown analytically.
ection 5 concludes the fuzzy methodology performance, while in
ppendix A the experimental data used as test set are presented.

. Basic principles of fuzzy logic

The mathematical foundation of fuzzy logic is based on the the-
ry of fuzzy sets, which may be considered as a generalization of
he classic theory of sets [12]. Fuzziness is a language attribute.
ts main origin is the ambiguity that exists in the definition and
se of symbols. The switch from the classic theory of sets, where a
trict sense of the participation of an object in a set exists, to the
pplication of fuzzy logic is achieved by the use of the membership
unctions and the logical rules, which compose the means of real-
zation of the classic fuzzy logic models. These models consist of
our elements: the fuzzification, the development of rule basis, the
eduction mechanism and the defuzzification, as it is presented in
ig. 1.

Specifically:

Fuzzification: The process through which a non-fuzzy set is
converted to a fuzzy set (or through which the fuzziness of

the latter merely increases). A linguistic variable is a variable
whose arguments are fuzzy numbers and more generally words
represented by fuzzy sets. For example, the arguments of the lin-
guistic variable diameter may be small, medium and large. We
call such arguments fuzzy values. Each and every one of them
mechanism 

Fig. 1. Basic structure of fuzzy logic [12].

is modelled by a respective membership function. The fuzzy
values small, medium and large may be modelled as shown in
Fig. 2, where three continuous membership functions, msmall(D),
mmedium(D), mlarge(D) modelling the arguments small, medium
and large respectively, are illustrated. Any value of diameter, e.g.
23 cm has a unique degree of membership to each fuzzy value
of diameter. In Fig. 2, for example, diameter 23 cm is small to a
degree 0.40, medium to a degree 0.60 and large to a degree zero.

• Rule base: It is a set of fuzzy rules describing the dependence
between several linguistic variables. These rules are described by
the following pattern:

IF A1 is x1 AND ... AND AN is xN THEN B is y (1)

where A1, . . ., AN are the input variables, x1, . . ., xN are the respec-
tive fuzzy values of the input variables, B is the output variable
and y is the fuzzy value of the output.

• The deduction mechanism is comprised by three sequential steps
[12]:

i. The Larsen–Max Product Implication, which for every rule of
one input–one output implies the membership function from
the input to the output.

ii. The degree of fulfillment (DOF), which extends the previous
step for more than one variable for each rule. The gth rule for
the kth vector is determined:

dofg = mA1,l1,g
(x1k) · · · mAN ,lN,g

(xNk) (2)

iii. The border method forms the final function of the output vari-
able. Fig. 3 illustrates the application of this method in the
case of three neighboring activated triangles, where fb(x) is
the respective function of the output variable.

• Defuzzification, which converts the fuzzy output values into real
non-fuzzy values. The most common methods are the maximum,
the mean value of the maximum and the centre of area (COG,
centre of gravity; or COA, centre of area). When the DOF is being
used, the criterion of the centre of area is the most suitable [12]:∑n
Fig. 2. Membership functions mDiam(D) describing the primary values small, medium
and large, of the linguistic variable diameter.
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Fig. 3. Formation of the final function of

function of the variable B, wj is the value for which the mem-
bership function becomes mB(wj). This method provides mean
square error smaller than the maximum method [12].

. Proposed fuzzy logic methodology for the estimation of
he critical flashover voltage

A fuzzy logic methodology is applied in order to estimate the
ritical flashover voltage of the polluted insulators. This methodol-
gy includes the process of selecting the proper training algorithm
nd of optimizing the respective parameters. The basic steps of the
ethodology are presented in the flowchart of Fig. 4 and analyzed

n the following subsections.

.1. Data selection and preprocessing

In the first step the input variables are selected, which are the
ollowing: the maximum diameter Dm (in cm), the height H (in cm),
he creepage distance L (in cm), the form factor F of the insulator
nd the layer conductivity �s (in �S), while the output variable is
he critical flashover voltage Uc (in kV). The dataset was built using
ata acquired from experiments and the application of a mathe-
atical model. In particular, the experiments were carried out in

n insulator test station installed in the High Voltage Laboratory of
ublic Power Corporation’s Testing, Research and Standards Center
n Athens [13] according to the IEC standard 507:1991 [14]. Fol-
owing the application of artificial pollution on the insulators, the
ritical flashover voltage was measured. This set of measurements
as enriched by measurements from experiments performed by

undararajan et al. [15] and Zhicheng and Renyu [2]. In addition,
he mathematical model of an equivalent circuit for the evaluation
f the critical flashover voltage presented by Topalis et al. [3] is
sed for the enlargement of the available dataset, as it has already
appened for the construction of the ANN model [6], of the ANN
ptimization methodology [7] and of the adaptive-network based
uzzy inference system [8] for the estimation of the critical flashover
oltage. A DC model such as the one applied for the enrichment
f the dataset is often used to account for alternating-voltage test
esults as indicated by Rizk [1].

Afterwards the data preprocessing follows, where data are
xamined for normality, in order to modify or delete the values
hat are obviously wrong (noise suppression).

.2. Main procedure
The target of the main procedure is the selection of the most
roper training algorithm and its suitable parameters calibration.

t is mentioned that the training algorithms differ to the deduction
echanism of the fuzzy value of the output, as it is presented in Sec-

ion 3.2.2. For each training algorithm the respective parameters of
utput variable using the border method.

the fuzzy logic model (such as the number of membership func-
tions, the triangle’s base width, etc.) are optimized through a set of
trials. For each combination of the parameters the fuzzy model is
actualized using the training set. After the algorithm execution, the
respective fuzzy model for the evaluation set is applied and the R
index between the experimental and the estimated values of crit-
ical flashover voltage is calculated and the biggest index is chosen
as the best one with its parameters. It is noted that:

R2 = r2
y−ŷ =

(∑n
i=1((yi − ȳreal) · (ŷi − ȳest))

)2∑n
i=1(yi − ȳreal)

2 ·
∑n

i=1(yi − ȳest)
2

(4)

where yi is the experimental value of the critical flashover volt-
age, ȳreal the mean experimental value of the respective dataset
(training, evaluation or test), ŷi the estimated value, ȳest the mean
estimated value of the dataset, n the population of the respective
dataset.

3.2.1. Fuzzy logic procedure 1: the optimization of the parameters
of the fuzzy logic model

The main steps of the fuzzy logic procedure 1 (see Fig. 4), which
estimates the best combination of the number of membership
functions of each variable and the respective triangle’s base width
according to the performance of the R index for the evaluation set
of a specific training algorithm, are presented in Fig. 5 and are as
follows:

(1) For each variable, the odd number of the memberships func-
tions t (3, 5, 7 �́ 9) is selected.

(2) The centre cj of the middle triangle of xjth variable is given by
the following expression:

cj =
∑N

k=1xjk

N
(5)

The initial value of the triangle’s base width bjI is calculated as:

bjI = 2

(
max

k=1,...,N
xjk − min

k=1,...,N
xjk

)
(tj − 1)

(6)

where N is the number of the training data.
Alternatively, the centre cj of the middle triangle can be deter-

mined by user defined values as:

(max{x } + min{x })

cj = jk jk

2
(7)

Next, the base width of the triangle is modified from −˛% to ˛%
with step s%, while the centre of the middle triangle remains
constant. Thus, the number of possible triangles h to be exam-
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Fig. 4. Flowchart of the fuzzy logic optimization methodolo

ined per variable equals to:

h = 2
[

a

s

]
+ 1 (8)

Therefore, for n variables, the number of possible combinations
is hn.

3) For the training set the fuzzification process for all variables is
realized.

4) For the training set the rule base is created via the weight
process: Assuming that for each fuzzy output value of the
model there is a corresponding weight, i.e. −2, −1, 0, 1,
2 are used for “Very Negative”, “NEgative”, “ZEro”, “PoSi-
tive”, “Big Positive” respectively. For instance, in a certain
rule the output values may appear with the following fre-
quencies: VN(1), NE(3), ZE(2), PS(2), BP(2), then based on
the maximum frequency, the output value would have been
“NEgative”. By applying the weights method, the output is:
1 ·(− 2) + 3 ·(− 1) + 2 · 0 + 2 · 1 + 2 · 2/(1 + 3 + 2 + 2 + 2) = 0.1, that is
“ZEro”. Therefore, for each rule the output with the greater
significance according to the training process is selected.
5) The left part of the rules is determined using the training set
and the corresponding output values are produced. By applying
the deduction mechanism and the COA method, the non-fuzzy
output values are acquired, the respective errors and the R index
are calculated.
the estimation of the critical flashover voltage of insulators.

(6) For the evaluation set the fuzzification process (step 3), the
deduction mechanism and the defuzzification process (step 5)
are realized. The respective R index is finally calculated, which
synopsizes the comparison between the estimated and the
actual values.

(7) Steps 1–6 are repeated for all possible combinations of the num-
ber of triangles of each variable and of the respective base width
forming the respective optimization process. The combination
with the biggest R index provides us with the most satisfactory
results for the evaluation set.

3.2.2. Fuzzy logic training algorithms
In order to deduce the fuzzy value of the output, three cases are

examined. The final estimation for the output is made by:

(1) selecting the one with the maximum frequency,
(2) calculating a rounded weighted mean value:

y =
[∑

fiyi∑
fi

]
(9)

where fi is the frequency by which the output value yi appears

and

(3) calculating a no-rounded weighted mean value:

y =
∑

fiyi∑
fi

(10)
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Fig. 6 and it consists of the following four steps: (1) the fuzzifica-
tion process, (2) the deduction mechanism based on the rule base
formed by the training set, (3) the defuzzification process and (4)
the R index calculation. Practically, it is similar to the fuzzy logic
procedure for the evaluation set.

Start

Rule base 
from training set  

Fuzzification Process 

Deduction mechanism 

Defuzzification Process 

R index calculation 
est combination of the number of membership functions of each variable and the
espective triangle’s base width according to the performance of the R index for the
valuation set of a specific training algorithm.

which means the use of two triangles without rounding. That
is, if the fuzzy output values “VN”, “NE”, “ZE”, “PS”, “BP” have
the respective weights −2, −1, 0, 1, 2 and the calculated output
by Eq. (10) is 0.75, then the second method gives as a result that
it belongs to the fourth triangle “PS”, while in the third method
the output values belongs by 75% to the fourth triangle “PS” and
by 25% to the third “ZE”.

For each one of the above-mentioned methods for deducing the
uzzy value of the output, two cases are examined regarding the
entre of the middle triangle. It can be determined:

a. either as the mean value of the training set by Eq. (5), or
. as the mean value of the upper and lower limits of the training

set by Eq. (7).
In Table 1, the six training algorithms are summarized, which
ave come up from the combination of the three different ways
f the final estimation for the output and from the two forms of
alculation of the centre of the middle triangle.
ystems Research 81 (2011) 580–588

3.3. Selection of the best R index from all the training algorithms

From all the training algorithms with the respective optimized
parameters it is chosen the one that performs the biggest R index
for the evaluation set. This algorithm is used for the next processes.

3.4. Calculation of the confidence intervals

The calculation of the confidence interval for the majority of the
methods used for estimating unknown parameters is direct. For
the fuzzy model, however, this calculation must be done according
to one of the proposed methods for ANNs [11], such as multilin-
ear regression adapted to ANNs, error output and re-sampling.
In this case the third technique is applied, because the first one
refers to ANNs exclusively and the second doubles the number of
the fuzzy model’s original outputs. According to the re-sampling
method [11], the errors of the evaluation set are sorted in ascending
order considering the signs and the cumulative sample distribution
function of the prediction errors can be estimated as the following:

Sm1 (z) =
{

0, z < z1
r/m1, zr ≤ z < zr+1

1, z ≤ z
(11)

Whenever m1 is large enough, Sm1 (z) is a good approximation of
the true cumulative probability distribution F(z). The confidence
interval is estimated by keeping the intermediate zr and discarding
the extreme values, according to the desired confidence degree. The
intervals are computed in order to be symmetrical in probability
(not necessarily symmetric in z). The number of cases to discard in
each tail of the estimation error distribution is n·p, where p is the
probability in each tail. If n·p is a fractional number, the number
of cases to discard in each tail is �n · p� for safeness reasons. When
the cumulative probability distribution F(Zp) is equal to p, there is a
probability p that an error is less than or equal to Zp, which indicates
that Zp is the lower confidence limit. Consequently, Z1−p is the upper
limit and there is a (1 − 2p) confidence interval for future errors.

3.5. Final estimation for the test set

The critical flashover voltage for the polluted insulators of the
test set is finally estimated by using the fuzzy logic procedure 2
(see Fig. 4) based on the training algorithm of the main procedure’s
step with the respective fuzzy model parameters. It is presented in
End

Fig. 6. Flowchart of the fuzzy logic procedure 2 (see Fig. 4) for the estimation of the
critical flashover voltage for the polluted insulators of the test set.
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Table 1
Description of fuzzy logic training algorithms.

No. Description of fuzzy logic training algorithms

1 The final estimation for the output is made by maximum frequency and the middle triangle of each variable is estimated by the mean value of the training set.
2 The final estimation for the output is made by maximum frequency and the middle triangle of each variable is estimated by the mean value of the upper and

lower limits of the training set.
3 The final estimation for the output is made by rounded weighted mean value and the middle triangle of each variable is estimated by the mean value of the

training set.
4 The final estimation for the output is made by rounded weighted mean value and the middle triangle of each variable is estimated by the mean value of the

upper and lower limits of the training set.
5 The final estimation for the output is made by no rounded weighted mean value and the middle triangle of each variable is estimated by the mean value of

the training set.
6 The final estimation for the output is made by no rounded weighted mean value and the middle triangle of each variable is estimated by the mean value of

the upper and lower limits of the training set.

Table 2
Synopsis of the consecutive executions followed for determining the optimal values for the base width and the number of triangles for each variable for the first training
method of Table 1.

Calibration of
parameter

x1 x2 x3

Parameters’ range h1 = {3,5,7,9},
˛1 = 50%, s1 = 5%,
h2 = 3, h3 = 3, h4 = 9,
h5 = 9, h6 = 5,
˛2 = ˛3 = ˛4 = ˛5 = ˛6 = 0

h1 = 3, ˛1 = 5%,
h2 = {3,5,7,9},
˛2 = 50%, s2 = 5%,
h3 = 3, h4 = 9, h5 = 9,
h6 = 5,
˛3 = ˛4 = ˛5 = ˛6 = 0

h1 = 3, ˛1 = 5%,
h2 = 3, ˛2 = 50%,
h3 = {3,5,7,9},
˛3 = 50%, s3 = 5%,
h4 = 9, h5 = 9, h6 = 5,
˛4 = ˛5 = ˛6 = 0

Optimal choice h1 = 3, ˛1 = 5% h2 = 3, ˛2 = 50% h3 = 3, ˛3 = 10%

Calibration of
parameter

x4 x5 y

Parameters’ range h1 = 3, ˛1 = 5%,
h2 = 3, ˛2 = 50%,
h3 = 3, ˛3 = 10%,
h4 = {3,5,7,9},

h1 = 3, ˛1 = 5%,
h2 = 3, ˛2 = 50%,
h3 = 3, ˛3 = 10%,
h4 = 7, ˛4 = −30%,

h1 = 3, ˛1 = 5%,
h2 = 3, ˛2 = 50%,
h3 = 3, ˛3 = 10%,
h4 = 7, ˛4 = −30%,

t
c

4
f

v
e
m
w
m
1
u
m
t

T
V

T

˛4 = 50%, s4 = 5%,
h5 = 9, h6 = 5,
˛5 = ˛6 = 0

Optimal choice h4 = 7, ˛4 = −30%

The prospective confidence intervals are the respective ones of
he confidence intervals’ process. It is also possible to calculate the
onfidence intervals for the test set for comparative purpose.

. Critical flashover voltage estimation using proposed
uzzy logic methodology

The developed methodology is applied for the critical flashover
oltage estimation of polluted insulators. The data from the math-
matical model and a set of the experimental data, containing the
aximum and minimum values are used to train the fuzzy model,
hile the rest of the experimental data was used to test its perfor-

ance. The training set consists of 144 patterns/vectors (of which

40 vectors are derived from the model and 4 vectors are real val-
es), the evaluation set consists of 36 patterns/vectors and the fuzzy
odel is tested using 24 patterns (experimental data). The evalua-

ion set is a subset of the training set with randomly chosen vectors

able 3
alues interval during the optimization process of each parameter of every fuzzy logic tra

No. Correlation index R Triangles’ number

Training set Evaluation set Test set

1 0.936 0.945 0.931 h1 = 3, ˛1 = 5%, h2 =
2 0.920 0.899 0.914 h1 = 5, ˛1 = −50%, h
3 0.978 0.974 0.964 h1 = 3, ˛1 = 50%, h2

4 0.960 0.951 0.918 h1 = 3, ˛1 = 50%, h2

5 0.984 0.979 0.967 h1 = 3, ˛1 = 50%, h2

6 0.966 0.960 0.945 h1 = 3, ˛1 = −10%, h

he optimal fuzzy logic training algorithm is No. 5 (denoted in italics).
h5 = {3,5,7,9},
˛5 = 50%, s5 = 5%,
h6 = 5, ˛6 = 0

h5 = 9, ˛5 = −5%,
h6 = {3,5,7,9},
˛6 = 50%, s6 = 5%

h5 = 9, ˛5 = −5% h6 = 5, ˛6 = −40%

and not an independent one because of the minimal population of
vectors.

Following, the proposed methodology is applied, as it has been
presented in Section 3. The parameters that need to be tuned are:
the number of triangles used for the fuzzification process for each
input variable (h1 through h6) and the percentage by which the
initial value of the triangle’s base is varied (˛1 through ˛6) (which
will ultimately determine the optimal selection for the base width).

For each one possible combination of the variables, the parame-
ters of the fuzzy model need to be specified. In order to reduce the
combinations that need to be examined, three steps are taken:
(1) In the first step, the optimal combination for the number of
triangles for the five input variables and for the output vari-
able is achieved, when the algorithm is executed while the
number of triangles is simultaneously varied for the six param-
eters from 3 to 9 with step 2 and the triangles’ base width

ining algorithm.

and base width

3, ˛2 = 50%, h3 = 3, ˛3 = 10%, h4 = 7, ˛4 = −30%, h5 = 9, ˛5 = −5%, h6 = 5, ˛6 = −40%
2 = 3, ˛2 = 5%, h3 = 3, ˛3 = 50%, h4 = 5, ˛4 = −35%, h5 = 9, ˛5 = 0%, h6 = 3, ˛6 = −50%
= 3, ˛2 = 50%, h3 = 3, ˛3 = 15%, h4 = 3, ˛4 = 0%, h5 = 9, ˛5 = 0%, h6 = 9, ˛6 = −35%
= 3, ˛2 = 0%, h3 = 3, ˛3 = −25%, h4 = 2, ˛4 = 50%, h5 = 9, ˛5 = 50%, h6 = 9, ˛6 = 0%
= 3, ˛2 = 50%, h3 = 3, ˛3 = −35%, h4 = 3, ˛4 = 15%, h5 = 9, ˛5 = −5%, h6 = 9, ˛6 = −45%
2 = 3, ˛2 = 50%, h3 = 3, ˛3 = 50%, h4 = 7, ˛4 = −5%, h5 = 9, ˛5 = −10%, h6 = 9, ˛6 = −35%
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F
(

oltage for 5th method (the final estimation for the output is made by no rounded
eighted mean value and the middle triangle of each variable is estimated by the
ean value of the training set.).

remains unchanged. 212 = 4096 repetitions of the execution of
the algorithm are realized. During each execution, the correla-
tion between the actual and the estimated values is calculated.
The results are expanded by making the following comparison:
firstly, the combination, for which the maximum correlation for
the evaluation set is achieved, is determined. Following, several
other combinations that give satisfactory correlation close to
the optimal are examined, so that the stability of the best solu-
tion can be confirmed. By this process, the optimal combination
for the number of triangles is determined.

2) In the second step, the base width and the number of trian-
gles for each parameter are determined separately, by giving
fixed values for the parameters of all variables but one. Then,
for each one of the remaining parameters the optimal value is
similarly selected, while assigning to the rest of the parameters
the optimal values that emerged from previous executions, if
any. Table 2 summarizes these executions as described above
for the 1st method of Table 1 (The final estimation for the output
is made by maximum frequency and the middle triangle of each
variable is estimated by the mean value of the training set.). At

the same time, each parameter’s “optimal” region, which gives
similar results to the optimal choice, is determined.

3) In the third step, the main process is repeated for the reduced
number of combinations, in which all parameters can take any
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ig. 9. Representation of the actual and the estimated values from the mathematical mode
results from 5th method) for the test set.
(the final estimation for the output is made by no rounded weighted mean value and
the middle triangle of each variable is estimated by the mean value of the training
set).

value of their respective “optimal” regions, as determined in
the first and the second step. After this final execution of the
algorithm, the optimization process comes to an end and the
combination that presents the maximum R index in the esti-
mation of the evaluation set is selected. This combination is
used for the estimation of the critical flashover voltage of the
test set.

A polarization of the values (systematic error) is observed result-
ing to non-zero mean error, because in fuzzy logic models the
minimization of an error function is not realized as in regres-
sion and ANN models. In order to avoid this, the polarization of
the training set is added to the estimated values. By this way,
a zero mean error is achieved without affecting the correlation
value.

Table 3 summarizes the optimal results for each training algo-

rithm with the respective values of the parameters provided by the
optimization process. Specifically, by comparing methods 1–3–5
and 2–4–6 we conclude that the best results are achieved when
the estimation for the critical flashover voltage is done using the no
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vector for test set

Actual values
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l [3], from the ANN methodology [7] and from the proposed fuzzy logic methodology
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ounded weighted mean value independently regarding the calcu-
ation form of the centre of the middle triangle and the kind of set
the inequalities R1 < R3 < R5 and R2 < R4 < R6 hold for training, eval-
ation and test sets). Similarly, by comparing methods 1–2, 3–4
nd 5–6 we conclude that the best results are achieved when the
stimation for the critical flashover voltage is done using the mean
alue of the training set as the centre of the middle triangle inde-
endently regarding the calculation form of the final estimation for
he output and the kind of set (the inequalities R1 > R2, R3 > R4 and
5 > R6 hold for training, evaluation and test sets).

Totally, by comparing the R index of the evaluation and the train-
ng set of all the six methods, it is concluded that the best results
re achieved when the final estimation for the output is done using
he no rounded weighted mean value and the centre of the middle
riangle is determined as the mean value of the training set (5th

ethod – see Table 3). Then the correlation between the actual
nd the estimated values for the test set R is 96.7%.

Fig. 7 depicts the success of the 5th method (see Table 1) in
stimating the critical flashover voltage. It is obvious that this
ethod gives a satisfactory approach of the values for the criti-

al flashover voltage. Fig. 8 illustrates the confidence interval of
he evaluation and the test set. Obviously, the interval of the test
et is narrower than the interval for the evaluation set because
f the successive estimation. This suggests that, if the only given
nformation is the confidence interval of the evaluation set, then
he estimation of the critical flashover voltage will be satisfactorily
ccurate.

The respective results would have been improved if more vec-
ors for the training set and the evaluation set were available.

The correlation index R achieved by the optimal selection of
arameters is 96.7% when the final estimation for the output is
one by no rounded mean value and the centre of the middle
riangle is estimated by the mean value of the training set (5th

ethod), which is quite satisfactory compared to the respective
ndex of ANN methodology [6], which is equal to 99.3%, of the
NN optimization methodology [7], which is equal to 99.86%, of

he adaptive-network-based fuzzy inference application [8], which
s equal to 99.93%, of simple empirical models [3] and [16], which
re equal to 98.7% and 96.4%, respectively. However, it should be
oted that such a comparison is not justifiable due to the differ-
nt datasets upon which each method is applied. The last one is
onfirmed in Fig. 9. Fig. 9 represents the actual and the estimated
alues derived from the mathematical model [3], from the ANN
ethodology [7] and from the proposed 5th fuzzy method for 24

xperimental vectors of the test set.

. Conclusions

A methodology for the estimation of the critical flashover volt-
ge of polluted insulators using fuzzy logic was presented. It
erforms an extensive search in order to select the optimum train-

ng algorithm and the respective parameters such as the number
nd the base width of the triangles, etc. The generalization ability
f the proposed methodology is achieved by the use of three sets
training, evaluation and test). Finally, the best correlation index
is achieved when the final estimation for the output is done by

o rounded mean value and the centre of the middle triangle is
stimated by the mean value of the training set. The respective
esults are quite satisfactory compared to the respective indexes of
revious methods [3,6,7,8,14].
Currently, the estimation of the critical flashover voltage for
ach insulator contains not only the estimated value, but also the
espective confidence interval based on the re-sampling method.
he estimated value based on the selection of the training method
ith a high correlation index R is a necessary but not a unique crite-

[
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rion. The wide spread of the estimated values using the confidence
interval for the evaluation set gives useful information about the
estimation of the critical flashover voltage, because for each insu-
lator there is not only one estimated value, but a values interval
with known probability (in this case 90%), which gives an estima-
tion of the error size (in this case there is probability of 10% the
final estimated value to be out of the respective values interval).
This leads to a more accurate, generalized and objective estimation
of the respective critical flashover voltage and makes the proposed
methodology a powerful and useful tool.

Appendix A.

In this section, the experimental data used in this work as a test
set are presented [2,13,15].

Dm (cm) H (cm) L (cm) F C (mg/cm2) Uc (kV
25.4 14.6 27.9 0.68 0.13 12.0
25.4 14.6 27.9 0.68 0.16 11.1
25.4 14.6 27.9 0.68 0.23 8.7
25.4 14.6 27.9 0.68 0.28 9.1
25.4 14.6 27.9 0.68 0.34 7.5
25.4 14.6 27.9 0.68 0.37 7.8
25.4 14.6 27.9 0.68 0.49 6.2
25.4 14.6 27.9 0.68 0.52 6.8
25.4 14.6 30.5 0.70 0.02 22.0
25.4 14.6 30.5 0.70 0.05 16.0
25.4 14.6 30.5 0.70 0.10 13.0
25.4 14.6 30.5 0.70 0.16 11.0
25.4 14.6 30.5 0.70 0.22 10.0
25.4 14.6 43.2 0.92 0.05 19.0
25.4 14.6 43.2 0.92 0.10 15.0
25.4 14.6 43.2 0.92 0.16 13.0
25.4 14.6 43.2 0.92 0.22 12.0
25.4 14.6 43.2 0.92 0.30 10.5
22.9 16.6 43.2 1.38 0.03 20.9
22.9 16.6 43.2 1.38 0.04 19.4
22.9 16.6 43.2 1.38 0.05 18.3
22.9 16.6 43.2 1.38 0.06 16.9
22.9 16.6 43.2 1.38 0.10 15.8
22.9 16.6 43.2 1.38 0.20 13.6
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