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Abstract: - The modern methods for power system load prediction are usually based on Artificial Neural 
Networks (ANN), which present satisfactory results. However, the estimation of the confidence intervals can 
not be applied directly, unlike to the classical forecasting methods. One of the most commonly used methods is 
the re-sampling technique, which calculates the respective confidence interval based on the training data set. 
The limits of the training set confidence interval are also applied in the case of the real prediction giving 
satisfactory but slightly underestimated results. The targets of this paper are: (1) to apply the basic re-sampling 
method for the short term forecasting of the next day load in the interconnected Greek power system using an 
optimized ANN proving the aforementioned disadvantage and (2) to propose a modified re-sampling technique 
using a proper corrective multiplication factor. Finally, the next day load demand of the test set is estimated 
using the best ANN structure and the modified confidence intervals.  
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1 Introduction 
In a liberalized electric energy market, the load 
demand has to be predicted with the highest possible 
precision in different time periods: very short-term 
(for the next few minutes), short-term (for the next 
few hours to a week), midterm (for the next few 
weeks to few months) and long-term (for the next 
few months to years). Especially, short-term load 
forecasting is very crucial problem, because its 
accuracy affects other operational issues of power 
systems, such as unit commitment, scheduling of 
spinning reserve, available transfer capability, 
system stability, application of load demand 
management programs, etc succeeding higher 
reliability and lower operational costs for power 
systems. During last decade several forecasting 
methods have been implemented with different 
levels of success, such as ARMAX models [1], 
regression [2], ANNs [3], fuzzy logic [4], hybrid 
systems [5-6] etc. Specifically, in Greece, ANNs 
have been used successfully either for the 
interconnected power system [7-11], or autonomous 
big islands [9, 12-13]. Some techniques belong to 
classical ANNs [7-12] or specialized ones [13] or 
they are based on ANNs combined with fuzzy logic 

algorithms [14].  
All forecasting models lead to a prediction value 

which is rarely equal to the real one. The variance 
between the prediction and the real value should be 
quantified in advance. In regression and other 
classical statistical models this is expressed by the 
confidence interval based on analytical calculations. 
In case of ANNs, the three commonly used methods 
are: (a) the error output, (b) the re-sampling, (c) the 
multi-linear regression adapted to ANN [15]. In [11] 
and [15] the theoretical and practical superiority of 
the re-sampling technique has been proved. In [16] a 
new adaptive confidence interval method based on 
the re-sampling technique has been proposed 
presenting a full version of the respective statistical 
background and giving satisfactory results. For 
fuzzy logic based methods the standard deviation 
has been calculated analytically working out at the 
same time the respective problem [17]. 
In this paper a novel confidence interval estimation 
method based on the re-sampling technique is 
presented. Specifically, the ANN short-term load 
forecasting method of the next day in interconnected 
Greek power system is presented briefly using the 
scaled conjugate gradient training algorithm which 

Recent Researches in Circuits, Systems, Electronics, Control & Signal Processing

ISBN: 978-960-474-262-2 166

mailto:tsekouras_george_j@yahoo.gr
mailto:mastor@wseas.org
mailto:vkont@central.ntua.gr
mailto:ktsirekis@desmie.gr
mailto:xelias@hlk.forthnet.gr
mailto:anastasios.salis@gmail.com
mailto:pkont@mail.ntua.gr


is properly optimized based on the evaluation data 
set [9]. Afterwards, the theoretical determination of 
the confidence intervals using the re-sampling 
technique is analyzed and it is applied proving that 
the confidence intervals between the training, 
evaluation and test sets differ for the same 
probability in tail. In order to correct this mismatch, 
the corrective multiplication factor is introduced and 
three different practical estimation methods are 
presented: (a) the mean value of the hourly ratios of 
the limit of the test set and the limit of the 
evaluation set of the previous year, (b) the 
maximum value of all hourly ratios of the limit of 
the test set and the limit of the evaluation set of the 
previous year, (c) the hourly ratio of the limit of the 
test set and the limit of the evaluation set of the 
previous year. Finally, the proposed method is 
applied for actual hour load data of the Greek 
intercontinental power system and the practical 
superiority of the last estimation method is proved.  

 
2 ANN Methodology for Short-term 
Load Forecasting  
The short-term load forecasting is achieved by 
applying an ANN methodology through the proper 
selection of the parameters of the scaled conjugate 
gradient algorithm. This methodology includes the 
following basic steps and its flow chart is shown in 
Figure 1. 
(a) Data selection: In this step the input variables 
for load forecasting of the d-th day are formed 
according to Kiartzis et al [7-8], Tsekouras et al [9-
10] including:  

(1) the hourly actual loads of the two previous 
days,  
(2) the maximum mean temperature per three 
hours and the minimum mean temperature per 
three hours for Athens and for Thessalonica, for 
the current and the previous day,  
(3) the temperature difference between the 
maximum mean temperature per three hours of 
the current day and the respective one of the last 
day for Athens and Thessalonica,  
(4) the temperature dispersion from comfortable 
living conditions temperature for Athens and for 
Thessalonica, for the current and the previous 
day,  
(5) seven-digit binary numbers, which express 
the kind of the week day,  
(6) two sinusoidal functions cos(2πd/T) and 
sin(2πd/T)), which express the seasonal behavior 
of the current day, where T is the number of the 
days of the current year. So, each input vector 
comprises 71 elements, while the output 

variables are the 24 hourly actual load demand of 
the current day.  

(b) Data preprocessing: Data are examined, in order 
to modify or delete the values that are obviously 
wrong (noise suppression). Due to the great non 
linearity of the problem, non linear activation 
functions are preferably used. In that case, 
saturation problems may occur. These problems can 
be attributed to the use of sigmoid activation 
functions that present non-linear behavior outside 
the region [-1, 1]. In order to avoid saturation 
problems, the input and the output values are 
normalized. 

Data selection 

Data preprocessing 

Fig. 1.  Flowchart of the ANN methodology for the 
proper selection of ANN parameters for short-term 
load forecasting for different kind of input variables 
 
(c) Main procedure: The ANN is trained using the 
scaled conjugate gradient algorithm (SCGA), whose 
basic steps have been presented in [10, 18]. The 
basic disadvantage of the SCGA algorithm is that its 
calculation complexity per iteration is twofold of the 
basic steepest descent method. Its basic advantage is 
that the error function decreases monotonically. The 
respective parameters of the neural network are 
selected through a set of trials. Specifically for each 
ANN parameter (such as the neurons of the hidden 
layer, the type of the activation functions 
(hyperbolic tangent, logistic, linear), the parameters 
of the activation functions, the maximum number of 

ANN parameters set 

ANN parameters 
combination 

Training Process 

Evaluation Process 

End of trials? 

No
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Selection of the respective parameters with 

the best MAPE for the Evaluation Set 

Main Procedure 

Final Estimation for Test Set  
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epochs, the SCGA algorithm parameters) the 
training algorithm is separately executed for the 
respective range of values (i.e. 20 to 70 neurons 
with step 1) based on the error function (sum of the 
square of errors for all neurons per epoch) for the 
training set and the regions with satisfactory results 
(minimum Mean Absolute Percentage Error 
(MAPE) for evaluation set) are identified. It is noted 
that the MAPE index between the measured and the 
estimated values of hourly load demand for the 
evaluation set’ days is given by: 

 
( ) ( )

( )
24

1 1
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,

evm
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where L(d,i) is the measured value of load demand 
for the i-th hour of d-th day of the evaluation set, 
L (d,i) the respective estimated value, mev the 
population of the evaluation set. This index is a 
practical measure, which reflects the approximation 
of the actual load demand independently from its 
measurement units. 

Following, the training algorithm is repeatedly 
executed, while all parameters are simultaneously 
adjusted to their respective regions, so that the 
combination with the smallest MAPE for the 
evaluation set is selected. It is also noted that:  

(1) The ANN is solved by using one hidden layer 
and properly calibrating the number of neurons 
according to Kolmogorov’s theorem.  
(2) During the training process for each ANN 
three stopping criterions are used: stabilization of 
the weights, the respective error function not to 
be decreased or the violation of the maximum 
number of epochs [9]. 

(d) Final estimation for the test set: The actual load 
demand (in MW) for the days of the test set is 
finally estimated by using the respective ANN 
parameters.  

The best result for the MAPE index of the 
evaluation set is 1.487% for the case of Greek 
intercontinental power system with training years 
1997-1999 (the training and the evaluation sets 
consist of the 90% and 10% of the normal days 
without holidays, respectively), while the respective 
test set consists of the normal days of the year 2000. 
The MAPE indexes for the training and the test set 
are 1.294% and 1.781% respectively. These are 
obtained for an ANN with 52 neurons in the hidden 
layer using hyperbolic tangent activation function in 
both layers (tanh(0.5·x) for the hidden layer, 
tanh(0.25·x) for the output layer, where x is the 
respective sum of the properly weighted inputs of 
the neuron) (see [10, paragraph 4] for more details). 

 

3 Confidence interval estimation by 
re-sampling technique   
The estimation of the confidence intervals for ANN 
models is not applied directly, unlike to the classical 
models. Three techniques have been mentioned in 
[15]: (a) the output error, (b) the re-sampling, (c) the 
multi-linear regression adapted to ANN.  

In [11] the theoretical superiority of the re-
sampling technique has been proved, because the 
output error technique doubles the number of the 
ANN’s outputs increasing the respective number of 
the ANN weights and the respective computational 
time significantly, while the multi-linear regression 
adapted to ANN technique allows only the use of 
the linear activation function for the output layer, 
which deteriorates the MAPE results. On the 
contrary, the re-sampling technique does not affect 
the computational time and the MAPE results. 

In order to estimate the confidence interval using 
the re-sampling technique, the prediction and the 
respective error are calculated for each set and for 
all available m input vectors. These errors are sorted 
in ascending order considering the signs and the 
cumulative sample distribution function of the 
prediction errors can be estimated by: 
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When m is large enough, Sm(z) is a good 
approximation of the true cumulative probability 
distribution F(z). The confidence interval is 
estimated by keeping the intermediate zr and 
discarding the extreme values, according to the 
desired confidence degree. The intervals are 
computed in order to be symmetrical in probability 
(not necessarily symmetric in z). The number of 
cases to discard in each tail of the prediction error 
distribution is n·p, where p is the probability in each 
tail. If n·p is a fractional number, the number of 
cases to discard in each tail is  for safety 
reasons. If the cumulative probability distribution 
F(Zp) equals to p, then there is a probability p that 
an error is less than or equal to Zp , which indicates 
that Zp is the lower confidence limit. Consequently, 
Z1-p is the upper limit and there is a (1-2p) 
confidence interval for future errors. 

n p⎢⎣ ⋅ ⎥⎦
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4 Application of the Re-sampling 
technique for Short-term Load 
Forecasting in Interconnected Greek 
Power System based on ANN STLF 
Methodology  
In [10] the application of ANN STLF methodology 
is described analytically. After the selection of the 
best ANN the 90% confidence interval is estimated 

using the re-sampling technique with 5% probability 
in each tail. In Fig. 2 the prediction errors of a 
typical summer day for Greek interconnected power 
system in 2000 (Thursday 8-6-2000) are presented 
for the training, evaluation and test sets respectively, 
while in Fig. 3 the respective measured and 
estimated load values are presented together with 
the 90% confidence intervals from the evaluation set 
and from the test set. 
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Fig. 2.  90% confidence interval limits with respect to the training, evaluation and test sets for the best ANN 
model for 8-6-2000 in Greek interconnected power system 
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Fig.3.  Chronological active load curves of the measured load, the estimated load, the estimated load with the 
5% lower limit with respect to evaluation set, the estimated load with the 5% upper limit with respect to 
evaluation set, the estimated load with the 5% lower limit with respect to test set, the estimated load with the 
5% upper limit with respect to test set for the best ANN model for 8-6-2000 in Greek interconnected power 
system 

From Fig. 2 it is observed that the lower limits of the confidence intervals for the three sets are quite 
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similar. The ratio of the lower hourly error of the 
test set to the respective one of the evaluation set 
varies between 0.71 and 1.60, while the mean value 
is practically 1. However, the upper limit of the 
confidence intervals for the test set is almost the 
double of the respective one of the evaluation set. 
The ratio of the upper limit error load of the test set 
to the respective one of the evaluation set varies 
between 1.22 and 3.02, while the mean value is 
equal to 1.78. From Fig. 3 it is observed that the 
confidence interval of the test set is broader than the 
respective one of the evaluation set. Similar 
behavior is observed for all days studied.  

This is obvious in Table 1, where the ratios 
between (a) the 5% lower limit with respect to test 
set to the 5% lower limit with respect to training set, 
(b) the 5% upper limit with respect to test set to the 
5% upper limit with respect to training set, (c) the 
5% lower limit with respect to test set to the 5% 
lower limit with respect to evaluation set, (d) the 5% 
upper limit with respect to test set to the 5% upper 
limit with respect to evaluation set, are presented. 
The respective abbreviations of the ratios are r1, r2, 
r3 and r4. Specifically, the ratios of the lower limits 
are closer to 1, while the ratios of the upper limits 
are significantly larger than 1, which means that the 
upper limit of load error is underestimated. It is also 
observed that the mean ratios based on the 
evaluation set approach are closer than the ones 
based on the training set, although the respective 
interval ([min hourly ratio, max hourly ratio]) is 
broader. In fact the limits of the test set are 
unknown in real applications, which means that they 
should be corrected based on the estimation of the 
confidence interval from the training or evaluation 
set.  

 
5 Modification of the Re-sampling 
technique using the Corrective Factor  
According to the results of §4 the estimation of the 
confidence interval of the test set using either the 
confidence interval limits of the training set or the 
respective ones of the evaluation set directly, is not 
completely satisfactory. This problem can be solved 
practically by multiplying the limits of the training 
or evaluation set with a proper number so as to 
remove this dissimilarity.  

Next, three candidates of corrective 
multiplication factors for each limit are examined:  
(a) the mean value of the hourly ratio of the limit of 
the test set with respect to the limit of the evaluation 
set,  

            
24
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(b) the maximum value of the hourly ratio of the 
limit of the test set with respect to the limit of the 
evaluation set,  
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(c) the hourly ratio of the limit of the test set with 
respect to the limit of the evaluation set, which 
entails 24 different values for each limit:  

       ( )  
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These ratios are calculated for the previous year 
e.g. if the forecasting year is 2000 with training 
years 1997-99, the corrective factors will be 
calculated using as forecasting year 1999 and 
training years 1996-98. It is noted that if a factor is 
smaller than 1, it will be set equal to 1 for safety 
reasons. 

The proposed method is applied for actual hourly 
load data of the Greek interconnected power system 
for the case study of [10]. In Fig. 4 the hourly 5% 
upper limit load error of the confidence interval is 
presented for: (i) the evaluation set (10% of normal 
days of the training years 1997-99), (ii) the test set 
(normal days of the year 2000), (iii) the estimation 
of the test set based on the mean value of hourly 
ratio of the upper limit of the test set with respect to 
the respective one of the evaluation set, (iv) the 
estimation of the test set based on the maximum 
value of hourly ratio of the upper limit of the test set 
with respect to the respective one of the evaluation 
set, (v) the estimation of the test set based on the 
hourly ratio of the upper limit of the test set with 
respect to the respective one of the evaluation set. 

It is obvious that the estimation of the confidence 
interval using the mean value of the hourly ratio (1st 
candidate) overestimates the real confidence interval 
of the test set for 08.00-12.00, while it 
underestimates it for 17.00-23.00 (especially for 
21.00). The estimation of the confidence interval 
using the maximum value of the hourly ratio (2nd 
candidate) overestimates the real confidence interval 
of the test set significantly and it is a over-
conservative solution with extremely extended 
limits. The estimation of the confidence interval 
using the hourly ratio of the limit of the test set with 
respect to the limit of the evaluation set (3rd 
candidate) is the closest one to the real confidence 
interval of the test set.  

In this way the practical superiority of the last 
candidate factor is proved and it is proposed for use.  
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TABLE 1 
ANN SHORT-TERM LOAD FORECASTING IN GREEK INTERCONNECTED POWER SYSTEM FOR PREDICTION YEAR 
2000 WITH TRAINING YEARS 1997-99: RATIOS BETWEEN THE 5% LOWER LIMIT OF TEST SET TO THE 5% LOWER 
LIMIT OF TRAINING SET (r1) & OF EVALUATION SET (r3), RATIOS BETWEEN THE 5% UPPER LIMIT OF TEST SET TO 

THE 5% UPPER LIMIT OF TRAINING SET (r2) & OF EVALUATION SET (r4) 
Hour 1 2 3 4 5 6 7 8 9 10 11 12     

r1 1.11 0.95 1.28 1.48 1.25 1.03 0.98 1.26 1.19 0.99 0.97 1.17     
r2 1.80 1.81 1.46 1.68 1.68 1.90 2.05 2.15 2.00 2.07 2.14 2.31     
r3 1.02 1.10 1.09 1.16 0.99 0.81 0.73 1.60 1.09 0.93 0.71 0.91     
r4 1.84 1.48 1.45 1.35 1.22 1.51 1.44 1.35 1.48 1.44 1.37 1.44  From all days 

Hour 13 14 15 16 17 18 19 20 21 22 23 24  Min Max Mean 
r1 1.21 1.12 1.19 1.18 1.15 1.18 0.73 1.04 0.72 0.84 1.04 1.07 0.72 1.48 1.09 
r2 2.29 2.46 2.04 2.16 1.95 1.92 2.21 2.66 3.04 2.89 2.65 2.44 1.46 3.04 2.16 
r3 1.07 0.86 1.13 1.13 1.18 1.03 0.79 0.87 0.76 0.89 0.94 1.02 0.71 1.60 0.99 
r4 1.71 1.85 1.94 2.03 1.67 2.05 2.41 2.14 3.02 2.18 2.37 2.01 

} 
1.22 3.02 1.78 
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Fig. 4.  Hourly curves of (a) the 5% upper limit load error for the evaluation set, (b) the 5% upper limit load 
error for the test set, (c) the 5% estimated upper limit load error for the test set based on the mean value of the 
hourly ratio of the limit of the test set with respect to the limit of the evaluation set of the previous year, (d) the 
5% estimated upper limit load error for the test set based on the maximum ratio of the hourly ratio of the limit 
of the test set with respect to the limit of the evaluation set of the previous year, (e) the 5% estimated upper 
limit load error for the test set based on the hourly ratio of the limit of the test set with respect to the limit of the 
evaluation set of the previous year in Greek interconnected power system 

 
6 Conclusions  
This paper presents the improved features of the re-
sampling technique for the ANN confidence interval 
estimation in case of the short term load forecasting. 
Specifically, the basic re-sampling method for 
confidence interval estimation is applied for the 
short term forecasting of the next day load in the 
interconnected Greek power system using an 
optimized ANN. The obtained results have proved 
that the confidence interval limits of the test set are 
underestimated using the respective ones either of 
the evaluation or the training set (especially for the 

upper limit the difference has been tripled). This has 
led to propose a modified re-sampling technique 
using a proper corrective multiplication factor 
between the limit of the test set and the respective 
one of the evaluation set. Three candidates factors 
have been examined: (a) the mean value of the 
hourly ratios of the limit of the test set to the limit of 
the evaluation set of the previous year, (b) the 
maximum value of all hourly ratios of the limit of 
the test set to the limit of the evaluation set of the 
previous year, (c) the hourly ratio of the limit of the 
test set to the limit of the evaluation set of the 
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previous year. From the comparison of the applied 
methods for actual hour load data of the Greek 
interconnected power system in year 2000 the 
superiority of the hourly ratios of the limit of the test 
set to the limit of the evaluation set of the previous 
year has been proved and it is proposed for use. 
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