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Abstract: - The objective of this paper is to compare the performance of different Artificial Neural Network 

(ANN) training algorithms regarding the prediction of the hourly load demand of the next day in 

intercontinental Greek power system. These techniques are: (a) stochastic training process and (b) batch 

process with (i) constant learning rate, (ii) decreasing functions of learning rate and momentum term, (iii) 

adaptive rules of learning rate and momentum term, (c) conjugate gradient algorithm with (i) Fletcher-Reeves 

equation, (ii) Fletcher-Reeves equation and Powell-Beale restart, (iii) Polak-Ribiere equation, (iv) Polak-

Ribiere equation and Powell-Beale restart, (d) scaled conjugate gradient algorithm, (e) resilient algorithm, (f) 

quasi-Newton algorithm, (g) Levenberg-Marquardt algorithm. Three types of input variables are used as inputs: 

(a) historical loads, (b) weather related inputs, (c) hour and day indicators. The training set is consisted of the 

actual historical data from three past years of the Greek power system. For each ANN training algorithm a 

calibration process is conducted regarding the crucial parameters values, such as the number of neurons, etc. 

The performance of each algorithm is evaluated by the Mean Absolute Percentage Error (MAPE) between the 

experimental and estimated values of the hourly load demand of the next day for the evaluation set in order to 

specify the ANN with the smallest value. Finally the load demand for the next day of the test set (with the 

historical data of the current year) is estimated using the best ANN of each training algorithm, so that the 

verification of behaviour of ANN load prediction techniques should be demonstrated. 

 

Key-Words: - artificial neural networks, short-term load forecasting, ANN training back-propagation algorithms  

 

1 Introduction 
In a deregulated electrical energy market, the load 

demand has to be predicted with the highest possible 

precision in different time periods: very short-term 

(for the next few minutes), short-term (for the next 

few hours to a week), midterm (for the next few 

weeks to few months) and long-term (for the next 

few months to years). Especially, short load 

forecasting is very crucial problem, because its 

accuracy effects to other operational issues of power 

systems, such as unit commitment [1], scheduling of 

spinning reserve [2], available transfer capability 

[3], system stability [3],  application of load demand 

programs, etc. Accurate forecasting leads to higher 

reliability and lower operational costs for power 

systems. 

Several forecasting methods have been 

implemented for short-term load forecasting with 

different levels of success, such as ARMAX models 

[4], regression [5], ANNs [6], fuzzy logic [7], expert 

systems etc. Despite the diversity of methods used, 

ANNs are the most common and effective [6].  

Especially, in Greece, ANNs have been used 

successfully either for the intercontinental power 

system [8-10], or autonomous big islands [8, 11-12]. 

Some techniques belong to classical ANNs [9-10] or 

specialized ones (i.e. parallel implementation of 

recurrent ANN and zero-order regulation radial 

basis networks [11]) or they are combined with 

fuzzy logic algorithms [12].  

In this paper the comparison of 14 different basic 

training ANN algorithms is carried out based on the 

basic structure of the ANN proposed by Kiartzis et 

al [8-9] for the inputs and outputs neurons for the 

Greek intercontinental power system. The main 

goals are:  

� the modulation of the internal neural network 

structure (number of neurons of hidden layer, 

initial value of learning rate, etc.) for each 

different training algorithm with respect to the 

best Mean Absolute Percentage Error (MAPE) 

of the evaluation set, 

� the comparison of the respective algorithms 

according to MAPE and computational time and  
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� the suggestion of the best training algorithm for 

this case study. 

The respective results are based on actual hour 

load data of the Greek intercontinental power 

system for years 1997-2000.  

 

2 Proposed ANN Methodology for 

Each Training Algorithm for Short-

term Load Forecasting  
The short-term load forecasting is achieved by 

applying an ANN methodology through the proper 

selection of the parameters for each training back-

propagation algorithm. This methodology has the 

following basic steps and its flow chart is shown in 

Figure 1. 

 
Fig. 1.  Flowchart of the ANN methodology for the 

proper selection of ANN parameters per training 

algorithm for short-term load forecasting 

 

(a) Data selection: The input variables for load 

forecasting of d-th day are the following according 

to Kiartzis et al [9]:  

� the hourly actual loads of the two previous days: 

L(d-1,1),…, L(d-1,24),  L(d-2,1),…, L(d-2,24) (in 

MW), 

� the maximum mean temperature per three hours 

and the minimum mean temperature per three hours 

for Athens for the current day and the last day 

max_tempAth(d),  min_tempAth(d), max_tempAth(d-1),  

min_tempAth(d-1) respectively (in 
o
C), 

� the maximum mean temperature per three hours 

and the minimum mean temperature per three hours 

for Thessalonica for the current day and the last day 

max_tempTh(d),  min_tempTh(d), max_tempTh(d-1),  

min_tempTh(d-1) respectively (in 
o
C), 

� the temperature difference between the 

maximum mean temperature per three hours of the 

current day and the respective one of the last day for 

Athens dif_tempAth and Thessalonica dif_tempTh 

respectively: 

 dif_tempAth= max_tempAth(d)- max_tempAth(d-1) (1) 

  dif_tempTh= max_tempTh(d)- max_tempTh(d-1)   (2) 

� the temperature dispersion from comfortable 

living conditions temperature for Athens for the 

current day 2 ( )
Ath

T d  and the previous day 2 ( 1)
Ath

T d − , 

where: 

              

( )
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2
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2

,
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        (3) 

where Tc=18 
o
C, Th=25 

o
C. 

� the temperature dispersion from comfortable 

living conditions temperature for Thessalonica for 

the current day 2 ( )
Th

T d  and the previous day 
2 ( 1)
Th

T d − ,  

� seven digit numbers, which express the kind of 

the week day, where Monday corresponds to 

1000000, Tuesday to 0100000, etc, 

� two sinusoidal functions ( ( )cos 2 /d Tπ , 

( )sin 2 /d Tπ ), which express the seasonal behavior 

of the current day, where T is the number of the 

days of the current year.  

The output variables are the 24 hourly actual load 

demand of the current day L
)
(d,1),…, L

)
 (d,24).  

(b) Data preprocessing: Data are examined for 

normality, in order to modify or delete the values 

that are obviously wrong (noise suppression). Due 

to the great non linearity of the problem, non linear 

activation functions are preferably used. In that 

case, saturation problems may occur. These 

problems can be attributed to the use of sigmoid 

activation functions that present non-linear behavior 

outside the region [-1, 1]. In order to avoid 

saturation problems, the input and the output values 

are normalized as shown by the following 

expression: 

                  ( )min
max min

ˆ
b a

x a x x
x x

−
= + −

−
                (4) 

where x̂  is the normalized value for variable x , 

min
x  and 

max
x  are the lower and the upper values of 

variable x , a  and b  are the respective values of the 

Data selection 

Data preprocessing 

ANN parameters set 

ANN parameters 

combination 

Training Process 

Evaluation Process 

End of trials? 

No 

Yes 

Selection of the respective parameters with 

the best MAPE for the Evaluation Set 

Final Estimation for Test Set  

Main Procedure 

TOPICS ON COMPUTATIONAL BIOLOGY AND CHEMISTRY

ISSN: 1790-5125 109 ISBN: 978-960-474-036-9



normalized variable. 

(c) Main procedure: For each ANN training 

algorithm the respective parameters of the neural 

network are selected through a set of trials. 

Specifically for each ANN parameter (such as the 

neurons of the hidden layer) the training algorithm 

is separately executed for the respective range of 

values (i.e. 20 to 70 neurons with step 1) based on 

the error function (sum of the square of errors for all 

neurons per epoch) for training set and the regions 

with satisfactory results (minimum MAPE for 

evaluation set) are identified. Following, the training 

algorithm is repeatedly executed, while all 

parameters are simultaneously adjusted into their 

respective regions, so that the combination with the 

smallest MAPE for the evaluation set is selected. It 

is noted that the MAPE index between the measured 

and the estimated values of hourly load demand for 

the evaluation set’ days is given by: 

   
( ) ( )

( )
24

1 1

, ,1
100%

,

evm

ev
d iev

L d i L d i

m
MAPE

L d i= =

−
⋅= ⋅ ∑∑

)

 (5) 

where L(d,i) is the measured value of load demand 

for the i-th hour of d-th day for the evaluation set, 

L
)
(d,i) the respective estimated value, mev the 

population of the evaluation set. This index is a 

practical measure, which reflects the approximation 

of the actual load demand independently from its 

units. 

(d) Final estimation for the test set: The actual load 

demand (in MW) for the days of the test set is 

finally estimated by using the respective ANN 

parameters of the current training algorithm.  

This process is repeated for 14 different training 

algorithms, which are synopsized in Table 1. A 

short description of all training algorithms is 

presented in [13], while more analytical 

representations can be found in references of Table 

1 [14-23]. The basic steps of the back-propagation 

algorithm have been described in several textbooks 

[24-25]. According to Kolmogorov’s theorem [24], 

an ANN can solve a problem by using one hidden 

layer, provided it the proper number of neurons. 

Under these circumstances one hidden layer is used, 

but the number of neurons must properly be selected 

properly. It is also mentioned that there are several 

parameters to be selected, depending on the 

variation of the back-propagation algorithm that is 

being used each time in order to train the ANN. The 

parameters that are common in all algorithms are:  

� the number of neurons Nn in the hidden layer,  

� the type of the activation functions (hyperbolic 

tangent, logistic, linear),  

� the parameters (a, b) of the activation functions, 

i.e. ( ) ( )tanx a x bφ = ⋅ +  for hyperbolic tangent and 

� the maximum number of epochs (max_epochs). 

For methods 1-6 (see Table 1) the additional 

parameters are:  

� the time parameter and the initial value of the 

learning rate Tη , 0
η , 

� the time parameter and the initial value of the 

momentum term 
a

T , 
0

a (not for methods 3, 4).  

For methods 7-10 (see Table 1) the additional 

parameters are the initial value s, the number of 

iterations Tbn for the step of the basic vector’s 

calculation, the number of iterations Ttrix for the tri-

section step using the golden method for minimizing 

the error function. 

 

TABLE 1 

DESCRIPTION OF ANN’S TRAINING ALGORITHMS 

No. Description of ANN’s training algorithms 

1 Stochastic training with learning rate and momentum term (decreasing exponential functions) [14] 

2 Stochastic training, use of adaptive rules for the learning rate and the momentum term [14] 

3 Stochastic training, constant learning rate [14] 

4 Batch mode, constant learning rate [14] 

5 Batch mode with learning rate and momentum term (decreasing exponential functions) [14] 

6 Batch mode, use of adaptive rules for the learning rate and the momentum term [14] 

7 Batch mode, conjugate gradient algorithm with Fletcher-Reeves equation [15-16]  

8 Batch mode, conjugate gradient algorithm with Fletcher-Reeves equation & Powell-Beale restart [15-17] 

9 Batch mode, conjugate gradient algorithm with Polak-Ribiere equation [15, 18]  

10 Batch mode, conjugate gradient algorithm with Polak-Ribiere equation & Powell-Beale restart [15, 17-18] 

11 Batch mode, scaled conjugate gradient algorithm [19] 

12 Batch mode, resilient algorithm [20] 

13 Batch mode, quasi-Newton algorithm [21] 

14 Batch mode, Levenberg-Marquardt algorithm [22-23]  
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For method 11 the additional parameters are σ  

and 
0
λ , for method 12 the increasing 

1
δ  and the 

decreasing 
2
δ  factor of change in the value of the 

weights between two successive epochs and for 

method 14 the initial factor ( )0λ  and the 

multiplicative parameter β  respectively. 

It is also noted that during the training process 

for each ANN three stopping criterions are used 

[25]:  

� weights stabilization (smaller than 1imitl ), 

� the respective error function not to be improved 

(the variation between two epochs should be smaller 

than 2imitl ) or 

� the maximum number of epochs to be exceeded 

(bigger than max_ epochs ). 

In each training algorithm, the error function is 

the root mean square error 
tr

RMSE  for the training 

set according to: 

             
1

2

1 11

1
( )

outm q

tr k
m kout

RMSE e m
m q = =

=
⋅ ∑∑         (6) 

where 
out

q  is the number of neurons of the output 

layer, ( )k
e m is the error of the k-th output neuron for 

the m-th pattern of the training set. If one of the 

three criteria is satisfied, the main core of back 

propagation algorithm finishes. Otherwise, the 

number of epochs is increased by one and the feed 

forward and reverse pass calculations are repeated. 

Afterwards, the results of all ANN training 

algorithms with the respective optimized parameters 

are compared, in order to choose the one leading to 

the smallest MAPE index within a logical 

computational time. 

 

3 Application for Stochastic Training 

Algorithm with Decreasing Exponen-

tial Functions for Learning Rate and 

Momentum Term 
Following, the aforementioned method is applied 

for the short-term load forecasting in Greek 

intercontinental power system. The training and the 

evaluation sets consist of the 90% and 10% of the 

normal days (no holidays) from the years 1997-1999 

respectively, while the respective test set consists of 

the normal days from the year 2000. The input 

vector ( )inx n
r

 is formed with the 71 input variables 

of section 2, where the load and the temperature 

data are normalized, while the output vector ( )t n
r

 is 

formed by the normalized 24 output actual load 

demand of the day under prediction. 

There are several crucial ANN parameters to be 

selected, such as:  

� the number of the neurons of the hidden layer, 

which ranges from 20 to 70 with incremental step 

1,  

� the initial value 0 (0)η η=  and the time parameter 

Tη  of the training rate, which get values from the 

sets {0.1, 0.2, …, 0.9} and {1000, 1200,…, 2000} 

respectively, 

� the initial value 0 (0)a a=  and the time parameter 

aT  of the momentum term, which get values from 

the sets {0.1,0.2,…,0.9} and {1000, 1200,…, 

2000} respectively, 

� the type and the parameters of the activation 

functions of the hidden and the output layers, 

where the type can be hyperbolic tangent, linear 

or logistic, while the a1, a2 parameters get values 

from the set {0.1,0.2,…, 0.5} and b1, b2 from the 

set  {0.0, ±0.1,±0.2}. 

The parameters of the stopping criteria are 

defined after a few trials as max_ epochs=10000, 

1imitl =10
-5
, 2imitl =10

-5
.  

The development of the abovementioned method 

in Visual Fortran 6.0 gives the capability to realize 

all possible combinations of the values of the crucial 

parameters. In this study the respective 

combinations account to 836,527,500, which 

practically can not be examined. This forced the 

authors to apply the proposed calibration process 

gradually through consecutive steps in order to 

determine the values of the ANN’s parameters.  

As a first step, the number of neurons varies 

from 20 to 70, while the remaining parameters are 

assigned with fixed values ( 0 0.4a = , 1800aT = , 

0 0.5η = , 2000Tη = , activation functions in both 

layers: hyperbolic tangent, a1=a2=0.25, b1=b2=0.0). 

In Fig. 2 the MAPE indexes for the training, the 

evaluation and the test set are presented. The MAPE 

indexes of the evaluation and the test set keep step 

with the respective one of the training set, even if 

the following relationship is valid for every neuron 

(from 20 to 70):  

         
training evaluation test

MAPE MAPE MAPE< <         (7) 

With the neurons numbered from 20 to 45 the 

MAPE index for the evaluation set has small values 

(the smallest is for 45), while for bigger values it 

rapidly increases. 

As a second step the initial value 0η  and the time 

parameter Tη  of the training rate change 

simultaneously in the respective regions, while the 

other parameters remain constant (neurons=45, 

0 0.5a = , 1800aT = , activation functions in hidden 
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& output layers: hyperbolic tangent, a1=a2=0.25, 

b1=b2=0.0). In Fig. 3 the results of the MAPE index 

for the evaluation set are satisfactory for 

00.5 0.8η≤ ≤  and 1000 1400Tη≤ ≤ . The best result 

is obtained for 0 0.5η = , 2000Tη = . It is mentioned 

that MAPE increases dramatically for 0 0.7η ≥  and  

1600Tη ≥ . 

As a third step the initial value 0a  and the time 

parameter aT  of the momentum term change 

simultaneously in the respective regions, while the 

other parameters are constant (neurons=45, 

0 0.5η = , 2000Tη = , activation functions in hidden 

& output layers: hyperbolic tangent, a1=a2=0.25, 

b1=b2=0.0). The results of the MAPE index for the 

evaluation set are satisfactory for 0 0.6a ≥  and 

1600aT ≥ , while the best result is obtained for 

0 0.9a = , 2000aT = . It is mentioned that MAPE 

increases dramatically for 0 0.5a ≤ . 

Similarly it is found that the ANN gives better 

results using as a hyperbolic tangent activation 

function in both layers with parameters 

1 2a a= =0.25 and 1 2b b= =0.0. It is mentioned that 

in Table 2 the results for different activation 

functions are registered.  

The final calibration of the ANN model is 

realized for 40 to 50 neurons, 0 0.8 0.9a = − , aT =  
1800-2000-2200, 0 0.5 0.6η = − , Tη = 1000-1200-

1400, activation functions in both layers: hyperbolic 

tangent with parameters 1 2a a= =0.20-0.25-0.30, 

1 2b b= =0. 

 

 
Fig. 2.  MAPE(%) index for the all sets, neurons: 20-70, 0 0.4a = , 1800aT = , 0 0.5η = , 2000Tη = , activation 

functions in both layers: hyperbolic tangent, a1=a2=0.25, b1=b2=0.0 

 
Fig. 3. MAPE(%) index for the evaluation set, { }0 0.1,0.2,...,0.9η = , { }1000,1200,..., 2000Tη = , neurons: 45, 

0 0.4a = , 1800aT = , activation functions in both layers: hyperbolic tangent, a1=a2=0.25, b1=b2=0.0 
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The best result for the MAPE index of the 

evaluation set is 1.48% and is obtained for an ANN 

with 45 neurons in the hidden layer, 0 0.9a = , 

2000aT = , 0η =0.5, Tη = 2000, 1 2a a= =0.25 and 

1 2b b= =0 using hyperbolic tangent activation 

function in both layers. 

 

4 Application for the Set of 14 ANN’s 

Training Algorithms 
Following, the proposed methodology of section 2 is 

applied to each training algorithm for the short-term 

load forecasting in Greek intercontinental power 

system properly selected ANN’s parameters (see 

Table 3). The training, the evaluation and the test 

sets are the same with the respective ones of section 

3. The results of all training algorithms are 

registered in Table 4.  

The best results of MAPE for evaluation set are 

given by the stochastic training algorithm with the 

use of adaptive rules for the learning rate and the 

momentum term and by the scaled conjugate 

gradient algorithm. The respective results of MAPE 

for the test set are satisfied, even if the stochastic 

training algorithm with the use of decreasing 

functions for the learning rate and the momentum 

term presents slightly better results. But the scaled 

conjugate gradient algorithm also presents very 

good generalization of the results for the test set, 

because the respective MAPE has the second 

smallest value. 

The analogy of the respective computational time 

(with the proper parameters calibration) for the first 

11 training algorithms is: 3.2÷3÷1.2÷4.0÷3.5÷1.4÷ 

10÷12÷12÷12÷1. Finally, the scaled conjugate 

gradient algorithm is proposed to be used. 

In Fig. 4 the estimated and the measured 

chronological load curves on Thursday, June 8, 

2000, are presented indicatively, where the 

respective MAPE equals to 1.173%. 
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Fig. 4. Chronological load curve (measured and 

estimated values) for a day of the test set (Thursday, 

June 8, 2000) 

 

5 Conclusions  
This paper compares the performance of 14 

different Artificial Neural Network (ANN) training 

algorithms (see Table 1) during the prediction of the 

hourly load demand of the next day in Greek 

intercontinental power system. The structure of the 

input and the output neurons (71 and 24 

respectively) are determined by Kiarzis et al [9]. 

The rest parameters, such as number of neurons of 

the hidden layer, activation functions, weighting 

factors, learning rate, momentum term, etc, are 

determined by the proposed calibration 

methodology of section 2 through an extensive 

search. The performance of each algorithm is 

measured by the Mean Absolute Percentage Error 

(MAPE) for the evaluation set. Finally, the scaled 

conjugate gradient training algorithm is proposed, 

because of its small values of MAPE and the 

smallest computational time.  

In future the proposed methodology can be 

improved (i) by using different kinds of input and 

outputs, (ii) by using compression techniques for 

inputs, (iii)  by estimating the optimization process 

and (iv) by determining the confidence intervals of 

the under prediction chronological load curves. 
 

TABLE 2 

MAPE(%) OF (A) TRAINING SET, (B) EVALUATION SET, (C) TEST SET FOR DIFFERENT ACTIVATION 

FUNCTIONS FOR  NEURONS: 45, 0 0.4a = , 1800aT = , 0 0.5η = , 2000Tη = , 1 2a a= =0.25, 1 2b b= =0.0 

 Activation function of hidden layer  

 Hyperbolic sigmoid Hyperbolic tangent Linear 

Activation function of 

output layer 
(A) (B) (C) (A) (B) (C) (A) (B) (C) 

Hyperbolic sigmoid 2.030 2.048 2.625 1.510 1.621 1.817 1.788 1.850 2.091 

Hyperbolic tangent 1.671 1.737 2.042 1.383 1.482 1.749 1.900 1.987 2.200 

Linear 1.603 1.691 1.903 1.390 1.522 1.747 1.936 2.023 2.194 
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TABLE 3 

VALUES INTERVAL DURING THE OPTIMIZATION PROCESS OF EACH PARAMETER OF EVERY ANN TRAINING 

ALGORITHM 

No. Values intervals of each parameter of the respective ANN training algorithm (see Table 1) 

1-2 α0 = 0.1,0.2,…,0.9, Τα = 1000,1200,…,2000, η0 = 0.1,0.2,…,0.9, Τη = 1000,1200,…,2000 

3 η0 = 0.01,0.02,…,0.1,0.2,…,3 

4 η0 = 0.1,0.2,…,3 

5-6 α0 = 0.1,0.2,…,0.9, Τα = 1200,1500,…,6000, η0 = 0.1,0.2,…,0.9, Τη = 1200,1500,…,6000 

7, 9 s=0.04,0.1,0.2, Tbv=20, 40, Ttrix=50, 100, etrix=10
-6
, 10

-5
 

8, 10 s=0.04,0.1,0.2, Tbv=20, 40, Ttrix=50, 100, etrix=10
-6
, 10

-5
, lim

orthogonality
=0.1,0.5,0.9 

11 σ=10
-3
, 10

-4
, 10

-5
, λ0=10

-6
, 10

-7
, 5⋅10-8 

12 1
δ =0.1,0.2,…,0.5, 

2
δ =0,1,0.2,…, 2 

13 - 

14 ( )0 0.1,0.2,...,1, 2,...,5λ = , 2,3,...,9,10,20,...,50β =  

Common n
N = 20,21,...,70, activation function for hidden and output layer = hyperbolic tangent, 

linear, logistic, a1=0.1,0.2,…, 0.5, a2 =0.1,0.2,…, 0.5, b1=0.0, ±0.1,±0.2, b2 =0.0, ±0.1,±0.2 

 

TABLE 4 

MAPE(%) OF TRAINING, EVALUATION & TEST SETS FOR 14 DIFFERENT ANN TRAINING ALGORITHMS WITH 

THE RESPECTIVE PROPERLY CALIBRATED PARAMETERS 

N
o
. 
O
f 

tr
a
in
in
g
 

a
lg
o
ri
th
m
 

M
A
P
E
(%

) 
o
f 

tr
a
in
in
g
 s
e
t 

M
A
P
E
(%

) 
o
f 

e
v
a
lu
a
ti
o
n
 

se
t 

M
A
P
E
(%

) 
o
f 

te
st
 s
e
t 

N
e
u
ro
n
s 

A
c
ti
v
a
ti
o
n
 

fu
n
c
ti
o
n
s 

Rest Parameters 

1 1.383 1.482 1.749 45 
f1=tanh(0.25x), 

fο=tanh(0.25x) 
α0=0.4, Τα=1800, η0=0.5, Τη=2000, e= 

10-5 max_epochs=10000 

2 1.311 1.475 1.829 30 
f1=tanh(0.40x), 

fο=1/(1+exp(-0.25x)) 
α0=0.7, Τα=1800, η0=0.5, Τη=1300, e= 

10-5 , max_epochs=12000 

3 1.372 1.489 1.833 48 
f1=tanh(0.50x), 

fο=tanh(0.25x) 
η0=0.1, e= 10

-5, max_epochs=10000 

4 2.356 2.296 2.602 48 
f1=tanh(0.40x), 

fο=0.40x 
η0=2.0, e= 10

-5 , max_epochs=12000 

5 2.300 2.294 2.783 25 
f1=tanh(0.50x), 

fο=0.25x 
α0=0.9, Τα=6000, η0=0.9, Τη=6000, e= 

10-5, max_epochs=12000 

6 2.019 2.026 2.475 22 
f1=tanh(0.50x), 

fο=0.25x 
α0=0.9, Τα=6000, η0=0.9, Τη=6000, e= 

10-5, max_epochs=12000 

7 1.798 1.831 2.147 43 
f1=tanh(0.40x), 

fο=0.20x 
s=0.04, Tbv =20, Ttrix =50, e= 10-5, 

max_epochs=5000 

8 2.544 2.595 3.039 43 
f1=tanh(0.40x), 

fο=0.20x 
s=0.04, Tbv =20, Ttrix =50, e= 10-5, 

max_epochs=5000, limorthogonality=0.9 

9 2.545 2.600 3.035 43 
f1=tanh(0.40x), 

fο=0.20x 
s=0.04, Tbv =20, Ttrix =50, e= 10-5, 

max_epochs=5000 

10 2.544 2.600 3.035 43 
f1=tanh(0.40x), 

fο=0.20x 
s=0.04, Tbv =20, Ttrix =50, e= 10-5, 

max_epochs=5000, limorthogonality=0.9  

11 1.294 1.487 1.781 52 
f1=tanh(0.50x), 
fο=tanh(0.25x) 

σ=10-5, λ0=5x10
-8, e=10-5, max_epochs= 

10000 

12-14 # # # # # No convergence 
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