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ABSTRACT 14 

A detailed statistical investigation is conducted in order to correlate some important 15 

biodiesel properties with the respective methyl ester weight composition in fatty acids. The 16 

examined properties are cetane number, density, kinematic viscosity and heating values 17 

(lower and higher). The chosen method for the correlation is the multiple linear regression 18 

analysis. A comprehensive data set was chosen for each interesting property as the basis 19 

for the formulation of the linear relations with respect to the eight, most important, fatty 20 

acids (lauric, myristic, palmitic, stearic, palmitoleic, oleic, linoleic, linolenic). The derived 21 

correlations were then verified against other experimental data, selected from various 22 

sources, with the aim to assess their predictive capability. It was found that for both the 23 

cetane number and density, the derived correlations were, on the one hand highly 24 

statistical, and, on the other, proved successful in predicting the corresponding properties 25 

from randomly selected samples reported in the literature. On the contrary, for both 26 
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heating values and kinematic viscosity, the statistical correlations were weaker, although 27 

for the HHV the relative error between experimental and predicted values was adequately 28 

small.  29 

 30 
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1. Introduction 33 

An extensive research has been carried out in the last decades regarding the use of 34 

biodiesel in engines. This is not surprising since methyl esters produced from agricultural 35 

or animal products succeed in reducing the dependence on oil imports, while at the same 36 

time they enhance the local economy and energy security, and manifest a positive CO2 37 

balance [1–6]. Furthermore, when burned in compression ignition engines, the combustion 38 

of biodiesel usually produces lower carbonaceous pollutant emissions [3,5].  39 

One peculiar aspect of biodiesels (and their originating vegetable oils) is the fact that 40 

they are produced from a variety of feedstocks possessing different chemical composition. 41 

Since the structure of each oil/fat in fatty acids varies (sometimes by a lot) depending on 42 

its origin, the physical and chemical properties of biodiesel differ too; prominent examples 43 

here are the cetane number and the cold-flow properties [1‒5]. Thus, the combustion 44 

characteristics and emissions from engines vary, sometimes by a lot, depending on the 45 

exact biodiesel used [3,5].  46 

A logical question arises here, as to which feedstock possesses the ‘best’ 47 

composition, or, better still, what would be a superior fatty acid (FA) composition, with the 48 

ultimate goal to achieve ‘better’ engine performance and lower emissions. Many 49 

researchers have investigated such issues in the past [7–11], and it seems that a 50 
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reasonable step is to try and correlate biodiesel properties with specific oil attributes such 51 

as fatty acid composition, chain length, molecular weight, degree of unsaturation or 52 

number of double bonds [e.g. 12–22]. For example, Bamgboye and Hansen [12] reported 53 

one such correlation with respect to the FA composition for cetane number (CN) applying 54 

linear regression analysis. Piloto-Rodriguez et al. [13] focused on cetane number too 55 

applying both multiple linear regression (MLR) and artificial neural networks (ANN). The 56 

latter approach was the one followed by Ramadhas et al. [14], while the former (MLR) was 57 

chosen by Gopinath et al. [15]. Apart from CN, existing reports on other properties have 58 

correlated, for example, density with temperature [18]; density, viscosity, CN and higher 59 

heating value were inter-related with molecular weight and number of double bonds by 60 

Ramirez-Verduzco et al. [19]. Ramos et al. [20] correlated oxidation stability, cetane 61 

number, iodine value and cold filter plugging point with the methyl ester degree of 62 

unsaturation and long chain saturated factor. Lastly, a quadratic correlation with the 63 

number of carbon atoms in the original fatty acid and the number of double bonds was 64 

statistically selected as the most suitable by Lapuerta et al. [22], again for cetane number. 65 

The research group involving the first author has studied broadly the use of 66 

biodiesels in engines, under both steady-state [23] and transient conditions [5,24]. 67 

Moreover, two extensive statistical analyses have been conducted, aiming to identify and 68 

analyze the effects of the biodiesel originating feedstocks on engine emissions [25], and 69 

on the properties of the fuel [26]. For the current work, which is, in a sense, continuation of 70 

[26], the focus is again on the biodiesel properties, but now aiming to formulate predictive 71 

correlations with respect to the fatty acid weight composition applying multiple linear 72 

regression techniques.  73 

The target is to expand on previous analyses on the subject [12,13,15] as regards: a) 74 

the sample of oils/biodiesel feedstocks taken under consideration, b) the predictive 75 
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capability of the obtained correlations and c) the number of investigated properties. With 76 

respect to the latter, the usually investigated property is cetane number. In this work, we 77 

also focus on  density, kinematic viscosity and heating values (lower and higher).  78 

2.  Methodology 79 

In order to proceed to the formulation of a reliable correlation between biodiesel 80 

properties and the respective fatty acid weight composition, the first step was the selection 81 

of an appropriately large and representative sample of reported (experimental) values 82 

from the literature. It was our intention to use a broad sample so as to include a great 83 

variety of published data from many sources and feedstocks, including also neat fatty 84 

acids. Particularly in regard to the fatty acids chosen for the correlation, these were the 85 

major four saturated, i.e. lauric, myristic, palmitic and stearic, and the major four 86 

unsaturated, namely, palmitoleic, oleic, linoleic and linolenic. The regression equation 87 

chosen for the multiple linear regression analysis is of the form: 88 

        1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8Property A a x a x a x a x a x a x a x a x      (1) 89 

 90 

with A, a1÷8, constants to be computed by the least squares method, and x1÷8 the 91 

percentage weight of each fatty acid in the sample for every examined property (1: lauric; 92 

2: myristic; 3: palmitic; 4: stearic; 5: palmitoleic; 6: oleic; 7: linoleic; 8: linolenic). 93 

 The obtained correlations from Eq. (1), for each examined property, will then be 94 

compared against (different) experimental data in order to assess their predictive 95 

capability; where applicable, they will also be compared with other similar relations 96 

developed from past research. 97 
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3.  Results and discussion 98 

3.1.  Cetane Number 99 

The dimensionless cetane number is one of the most critical fuel properties. It is 100 

highly responsible for ignition delay (a relation between CN and ignition delay is, for 101 

example, reported in [21]), hence percentage of premixed vs. diffusion combustion in a 102 

diesel engine [27]. In this way, it influences not only the exact heat release rate but is also 103 

responsible for the emission of pollutants and the radiation of combustion noise 104 

[3,5,26,28]. It is not surprising then that CN has been widely reported in the literature, with 105 

the published values differing by a lot. European specifications EN 14214:2008 dictate a 106 

minimum biodiesel CN of 51, whereas in the U.S. (ASTM D6751) the minimum acceptable 107 

value is 47. On the other hand, since the experimental determination of CN is both time 108 

consuming and quite difficult [7], it is quite reasonable that several predictive models have 109 

been developed in the past. 110 

Figure 1 is indicative of the large variability in the reported CN values (density, 111 

viscosity and heating values too that will be discussed later in the text). These range from 112 

lower than that of the respective automotive diesel fuel up to much higher. The variability 113 

can be mostly attributed to the different FAME structure and fatty acid composition as Fig. 114 

2 eloquently demonstrates for the feedstock sample of Fig. 1 (experimental and 115 

computational uncertainties and errors are not to be excluded too). It seems that a quite 116 

strong correlation between CN and number of double bonds exists [26,28], as Fig. 3 117 

illustrates 118 

  DBCN 62.32 6.13n      (2) 119 
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with 
DBn  the average number of double bonds in the biodiesel molecule. From Fig. 3, it is 120 

made clear that increasing the number of double bonds, i.e. increasing the FA 121 

unsaturation level, results in lower CN values. Highly saturated feedstocks, on the other 122 

hand, such as palm, coconut and tallow exhibit the highest CN values, in the order of 60 123 

(but worse cold-flow properties [26,28]). Klopfenstein [29] determined a second-order 124 

polynomial correlation between CN and chain length, whereas Ramirez-Verduzco et al. 125 

[19] between CN, molecular weight and number of double bonds. Mishra et al., [30] 126 

correlated biodiesel CN with the straight-chain saturated factor and a modified degree of 127 

unsaturation. Various correlations between CN and other properties such as boiling point, 128 

heat of vaporization, heat of combustion etc. are summarized in [15].  129 

Table 1 provides the sample used for the MLR analysis, containing 45 different sets 130 

of CN and FA weight composition values. The first 20 lines in Table 1 correspond to 131 

values reached during past research by the first author [26], and refer to average values 132 

(CN and FA composition) from a huge sample of data, from published reports up to 2011. 133 

The rest of the data in Table 1 derive from Refs. [12,13] and refer to individual 134 

experimental measurements, including also neat fatty acids (last eight lines, taken from 135 

[31]). Thus, it is believed that the data sample used for the regression analysis is 136 

satisfactorily broad. Notice in the neat FAs data in Table 1 that methyl stearate exhibits 137 

the highest CN, possessing also the highest molecular weight. The dependence between 138 

CN and molecular weight (chain length too) is well established in the literature as, for 139 

example, detailed in [15,19,21,31].  140 

Applying the multiple linear regression analysis, Eq. (1) is transformed into 141 
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saturated unsaturated

1 2 3 4 5 6 7 8CN 55.87 0.0747x 0.098x 0.164x 0.176x 0.050x 0.001x 0.140x 0.273x            143 

(3) 144 

The first (constant) term in Eq. (3) is quite high (of the same order of magnitude to past 145 

similar research — see Eqs. (4a)‒(4c) later in this section). Further, saturated acids 146 

contribute towards an increase in the CN, with the magnitude of the respective coefficients 147 

increasing with increasing carbon number. Unsaturated acids, on the other hand, 148 

contribute towards a decrease of the predicted CN, as previous research [12,13,15,28] 149 

confirms. Therefore, it is believed that the derived equation has a sound theoretical basis.  150 

The statistical coefficients of the model are summarized in Table 2, with the R2 151 

found approx. 90%, i.e. a quite high value, despite the wide variability of the selected data 152 

set.  In any case, the most important aspect is the model’s predictive capability. This was 153 

performed on a separate sample, randomly selected from various sources [32‒35]; the 154 

details of the experimental data as well as the predicted ones from Eq. (3) are provided in 155 

Table 3. In all cases, the error is satisfactorily small, and the prediction of the CN quite 156 

successful, a fact that proves the reliability of the derived correlation. 157 

 The next step of the analysis was to compare the correlation reached in the current 158 

work with those from past research, namely the models of (notice the difference in the 159 

obtained coefficients from each study) 160 

a) Bamgboye and Hansen [12],  161 

       2 3 4 5 6 7 8CN 61.1 0.088x 0.133x 0.152x 0.101x 0.039x 0.243x 0.395x   (4a) 162 

b) Piloto-Rodriguez et al. [13] (notice that this model also includes the percentage of 163 

gondoic 20:1 and erucic 22:1 mono-unsaturated fatty acids in the derived correlation, with 164 

‘res’ indicating the sum of other FAs found in the molecule)  165 
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      

    

1 2 3 4 5 6

7 8 20:1 22:1 res

CN 56.16 0.07x 0.1x 0.15x 0.23x 0.05x 0.03x

0.19x 0.31x 0.08x 0.18x 0.1x
                  (4b) 166 

c) Gopinath et al. [15].  167 

       1 2 3 4 6 7 8CN 62.2 0.017x 0.074x 0.115x 0.177x 0.103x 0.279x 0.366x  (4c) 168 

 169 

Figure 4 compares graphically the experimental vs. predicted CN values for all four 170 

models. The model of Bamgboye and Hansen [12] and Gopinath et al. [15] exhibit R2 171 

values 0.82 and 0.81 respectively, that of Piloto-Rodriguez [13] lies slightly lower at 0.80, 172 

whereas the new model slightly higher at R2=0.83, confirming its predictive capability 173 

against well-established previous research. Closer look at the graphs in Fig. 4 reveals 174 

another interesting feature, namely, there are two discrete groups of CN values. One is 175 

located between CN 40 and 52, and the other between 60 and 65. The former 176 

corresponds to vegetable oil-derived biodiesels, and the latter mostly to animal-derived 177 

ones (palm is included here too).  178 

3.2.  Density 179 

The density of a material or liquid is defined as its mass per unit volume. Vegetable 180 

oils (methyl esters too) possess higher density than conventional diesel fuel. This means 181 

that diesel engine fuel pumps, which operate on a volumetric basis, will inject larger mass 182 

of biodiesel (or vegetable oil) than neat diesel fuel, a fact that will influence the air–fuel 183 

ratio in the engine (performance and emissions too [2–5]). In the EU (EN 14214:2008), the 184 

acceptable range of biodiesel density is rather wide (860–900 kg/m3), whereas in the US 185 

(ASTM D6751) there is no density specification.  186 

Figure 1 demonstrates the quite high variability in density values from various 187 

feedstocks (average values); again, it is the different fatty acid composition of the 188 
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originating oil that is mostly responsible for the observed differences. A quite strong 189 

correlation between density and the degree of unsaturation is also established from Fig. 5 190 

(R2=0.87); the respective correlation found in [26] is 191 

  DBρ 869.25 9.17n      (5) 192 

with ρ the density in kg/m3. In general, density increases with the increase in the number 193 

of double bonds; alternatively, the more saturated the originating oil, the lower the density 194 

of the derived methyl ester. Ramirez-Verduzco et al. [19] correlated density not only with 195 

the number of double bonds but also with molecular weight. Similarly, Lapuerta et al. [36] 196 

correlated density with the degree of unsaturation and the chain length. No correlation 197 

between density and fatty acid composition has been found in the literature, and one such 198 

correlation is provided below. 199 

Table 4 contains the data set used for the multi regression analysis between density 200 

and fatty acid composition. Overall 23 values from a variety of different feedstocks were 201 

used. The derived MLR equation is  202 

        

saturated unsaturated

1 2 3 4 5 6 7 8ρ 923 1.01x 0.99x 0.54x 0.62x 0.70x 0.44x 0.37x 0.24x          (6) 203 

where x1÷8 are the percentage weights of the eight fatty acids. An interesting feature in   204 

Eq. (6) is that the saturated FAs assume higher values compared to the unsaturated ones; 205 

this is related to the rather high constant term (923). 206 

The statistical coefficients of the derived MLR analysis are summarized in Table 5. 207 

A quite high R2 value of 94.5% was established, along with a very small standard error of 208 

1.22, indicating a very good correlation between the derived equation and the data sample 209 

it was based on. 210 
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In order to check the reliability of the derived density model, a set of 10 (different 211 

from those of Table 5) experimental values from [18] was used, detailed in Table 6. This 212 

table provides both the experimental and predicted from Eq. (6) values. For all examined 213 

cases, a practically negligible error of less than 0.45% was established, proving the 214 

predictive capability of the model. Figure 6 expands on the results of Table 6 illustrating 215 

the correlation of the predicted results with the experimental data. An R2 value of 0.84 was 216 

determined which is believed to be quite satisfactory. It is of the same order as the one 217 

from Fig. 4 for cetane. Due to lack of other relevant (MLR) analyses, no comparison with 218 

similar approaches was feasible in this case. 219 

 220 

3.3.  Kinematic Viscosity 221 

Viscosity is a measure of the resistance of a fluid which is being deformed by either 222 

shear or tensile stress. For liquid fuels, the less viscous the fluid, the greater its ease of 223 

movement. As regards compression ignition engines, low values of viscosity are favorable 224 

facilitating faster atomization of the fuel spray; this in turn reduces the ignition delay 225 

period. On the other hand, and with regard to mechanical fuel pumps, higher kinematic 226 

viscosity results in reduced fuel leakage losses, and this ultimately leads to both higher 227 

injection pressures and injected fuel mass [27].  228 

Figure 1 demonstrates average values of kinematic viscosity for methyl esters from 229 

various vegetable and animal feedstocks (it is reminded here that biodiesels are 230 

Newtonian fluids for temperatures above 5oC [37]). The corresponding European and U.S. 231 

specification limits are also highlighted in Fig. 1. A rather moderate correlation between 232 

viscosity and unsaturation level (or number of double bonds) was established, as 233 

illustrated in Fig. 7 (R2=0.57). Past research [19,37,38] had correlated kinematic viscosity 234 

http://en.wikipedia.org/wiki/Drag_%28physics%29
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Shear
http://en.wikipedia.org/wiki/Tensile_stress
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apart from the number of double bonds with molecular weight too. It was found that 235 

viscosity increased with increasing molecular weight, and decreased with increasing 236 

number of double bonds. Hong et al., [39], on the other hand, developed a biodiesel 237 

viscosity equation based on the individual pure FAMEs viscosities. Based on the statistical 238 

analysis in [26], a quite high (R2=96.7%) statistical relation between viscosity (μ in mm2/s) 239 

and CN can be established 240 

3 2μ 960.77 0.0059CN 0.9665CN 52.694CN                  (7) 241 

To the best of the authors’ knowledge, no correlation between viscosity and fatty acid 242 

weight composition has been reported in the literature. In order to determine such a 243 

relation, the viscosity and FA values provided in Table 7 have been used (data from Ref. 244 

[26]). From the data set of this table, a MLR analysis was performed and the results are 245 

summarized in Table 8. Contrary to the preceding CN and density analysis, the derived 246 

viscosity results do not seem that encouraging. A rather moderate R2 in the order of 66% 247 

was established. Equation (8) provides the corresponding MLR correlation 248 

saturated

1 2 3 4

unsaturated

5 6 7 8

μ 5.3380 0.79593x 0.04417x 0.000731x 0.009571x

0.00102x 0.00578x 0.01179x 0.01726x

    

   

              (8) 249 

The derived correlation is more on the mathematical rather than the ‘physical’ side. 250 

Table 9 and Fig. 8 demonstrate the predictive capability of the developed model. As was 251 

rather anticipated, the prediction error is quite large, in the order of 10% for all six 252 

experimental values used, a fact that indicates the relatively low predictive capability of the 253 

derived model. Experimental uncertainties and errors aside, it is rather obvious that 254 

correlating biodiesel viscosity only with its FA weight composition does not prove 255 
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adequate and reliable. Perhaps it is the oxygen content in the biodiesel molecule that is 256 

responsible here. 257 

 258 

3.4.  Heating Values 259 

The lower (LHV or net) and the higher (HHV or gross) heating values are measures 260 

of the fuel’s heat of combustion; the difference between HHV and LHV is the water’s heat 261 

of vaporization. Since methyl esters contain on average 10−12% per weight oxygen, they 262 

exhibit proportionally lower heating values than conventional diesel fuel. This means that 263 

in order to achieve the same engine power, the injected fuel quantity should be larger. 264 

Figure 1 illustrates typical average values for biodiesel lower and higher heating values 265 

from many common feedstocks. Interestingly, there is no specification as regards the 266 

biodiesel heating value (for automotive applications), neither in the EU nor in the U.S.  267 

As was the case with CN, density and viscosity, Ramirez-Verduzco et al. [19] 268 

correlated HHV with molecular weight and number of double bonds; Hong et al. [39], as 269 

well as Fassinou et al. [40,41], correlated the methyl ester HHV with the individual FAs 270 

heating values. Demirbas [42], on the other hand, developed relations between HHV and 271 

viscosity, density and flash point, while Mehta and Anand [43] between LHV and carbon-272 

to-oxygen ratio and number of double bonds. Lastly, Tesfa et al. [44] proposed a LHV 273 

correlation with density and kinematic viscosity (notice that previous fuel-oriented research 274 

has mostly focused on HHV, whereas engine/emissions-oriented studies on LHV). 275 

Table 10 contains a wide set of data (23 observations) for LHV and the respective 276 

fatty acid compositions from various feedstocks (data from [26]). From the data set of this 277 

table, a MLR analysis was performed for HHV (a similar one was performed for LHV). The 278 

only other citation in the literature directly relating HHV with the fatty acid composition is 279 
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[45], but that study only dealt with oils and, in particular, waste frying ones. A rather weak 280 

R2 in the order of approx. 51% was established for HHV (approx. 59% for LHV). For what 281 

is worth, the statistical correlation between both heating values and the degree of 282 

unsaturation was equally weak, as previous research confirms [26,28] and Fig. 9 283 

demonstrates. One possible reason for this might be the uncertainty in the experimental 284 

results, as, for example, not all researchers have been using the same calorimeters. 285 

Equations (9a) and (9b) provide the derived MLR correlations for HHV and LHV 286 

respectively 287 

    

   

saturated

1 2 3 4

unsaturated

5 6 7 8

HHV 39,839.54 1159.62x 24.96x 14.03x 1.71x

52.32x 1.51x 2.78x 8.27x

                      (9a) 288 

In general, the coefficients of saturated acids are higher than those of the unsaturated 289 

ones, but their influence is not monotonic. More specifically, the composition in lauric acid 290 

decreases the HHV, whereas myristic, palmitic and stearic increase it. On the other hand, 291 

the contribution of palmitoleic acid is quite large (e.g. in tallow or mahua FAMEs). A 292 

conclusive observation from Eq. (9a) is the strong dependence of lauric acid on HHV. 293 

Similar comments can be made for the respective LHV correlation Eq. (9b) 294 

 295 

        

saturated unsaturated

1 2 3 4 5 6 7 8LHV 37,667.45 316.73x 96.79x 3.07x 37.64x 25.82x 2.76x 9.46x 3.86x     296 

(9b) 297 

The predictive capability of the HHV model against experimental data from the 298 

literature is investigated in Table 12. As can be observed, the resulting (relative) errors 299 

between model and experiment are quite small (always less than 4%; for many cases 300 

even less than 1%), as was also the case in [45]. This proves the quite good predictive 301 
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capability of the derived equations despite the weak R2 value mentioned above between 302 

the model and the data it was based on. 303 

4. Summary and conclusion 304 

A comprehensive statistical analysis was performed with the aim to formulate 305 

predictive correlations between biodiesel properties and the respective fatty acid weight 306 

composition. The examined properties were cetane number, density, heating values and 307 

kinematic viscosity. The FAs used for the analysis were the four major saturated ones 308 

lauric, myristic, palmitic, stearic, and the four major unsaturated palmitoleic, oleic, linoleic 309 

and linolenic. Multi-linear regression analysis was chosen for the formulation of the 310 

predictive correlations. A large sample of data was used for each case, covering a wide 311 

range of feedstocks and property values.  312 

For cetane number and density, the derived correlations were both highly statistical 313 

regarding the data set they were based on, and, more importantly, proved quite successful 314 

in predicting the properties from other sources (small relative error and high correlation 315 

between experimental and predicted values). Particularly for CN, for which previous 316 

correlations exist, the new model seemed to provide a slightly higher degree of predictive 317 

capability. 318 

For both heating values, however, as well as for kinematic viscosity, the obtained 319 

correlations did not prove statistically strong (R2 between 50.5 and 66%). As regards their 320 

predictive capability, the relative error for viscosity ranged between 7 and 13%; for HHV it 321 

was much better, on average 1%. 322 

It is believed that the results from this study can prove useful to researchers and 323 

institutions with respect to simulation and planning. Furthermore, the results of such 324 
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analyses can provide insight into designing a ‘better’ biodiesel feedstock, with desired 325 

attributes, hence favorable diesel engine performance and emissions behavior.  326 

 327 

 328 

 329 

Nomenclature 330 

CN  Cetane number 331 

EU  European Union 332 

FA  Fatty acid 333 

FAME  Fatty acid methyl ester 334 

HHV  Higher heating value 335 

LHV  Lower heating value 336 

ME  Methyl ester 337 

MLR  Multiple linear regression 338 

PME  Palm methyl ester 339 

RME  Rapeseed methyl ester 340 

SME  Soybean methyl ester 341 

TME  Tallow methyl ester 342 

 343 
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Table 1. Cetane number and fatty acid weight composition of the examined data set 461 

 
 

12:0 
C12H24O2 

14:0 
C14H28O2 

16:0 
C16H32O2 

18:0 
C18H36O2 

16:1 
C16H30O2 

18:1 
C18H34O2 

18:2 
C18H32O2 

18:3 
C18H30O2 
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Animal Fat or 
Vegetable Oil 

Index 1 2 3 4 5 6 7 8 

1 Beef tallow 0.15 2.41 24.39 19.08 2.66 41.65 5.91 0.72 60.9 

2 Canola 0 0 4.51 2 0.36 60.33 21.24 9.49 54.8 

3 Chicken fat 0.1 0.73 24.06 6.42 5.65 41.43 18.83 1.06 57.0 

4 Coconut 46.91 18.74 9.69 0 0.11 2.83 6.83 0 61.0 

5 Corn 0 0 11.81 2.13 0.12 27.35 57.74 0.63 52.5 

6 Cottonseed 0 0.72 25.93 1.74 0.36 15.98 55.12 0.16 53.3 

7 Hazelnut 0 0 6.32 3.71 0.3 79.17 10.67 0.15 53.8 

8 Jatropha 0 0.15 14.42 5.82 0.69 42.81 35.38 0.23 55.7 

9 Karanja 0 0 10.89 7.89 0 53.56 21.34 2.09 55.4 

10 Mahua 0 0.15 22.23 22.49 0 39.01 14.87 0.1 56.9 

11 Olive 0 0.05 11.47 2.83 0.9 74.52 9.54 0.51 58.9 

12 Palm 0.37 1.13 42.39 4.2 0.17 40.91 9.7 0.29 61.2 

13 Peanut 0 0 10.33 2.79 0 47.63 31.52 0.64 54.9 

14 Rapeseed 0 0.04 4.07 1.55 0.23 62.24 20.61 8.72 54.1 

15 Rice bran 0.08 0.45 18.12 2.17 0.2 42.35 34.84 0.93 56.3 

16 Rubber seed 0 0.51 9.39 9.41 0.13 24.22 38.12 17.54 50.4 

17 Safflower 0 0.08 7.42 2.38 0.05 14.41 75.31 0.09 51.8 

18 Soybean 0.08 0.12 11.44 4.14 0.16 23.47 53.46 6.64 51.8 

19 Sunflower 0 0.04 6.26 3.93 0.06 20.77 67.75 0.15 51.9 

20 Waste cooking 0.2 0.67 15.69 6.14 0.73 42.84 29.36 2.03 56.2 

21 Actinodapne angust 87.9 1.9 0.5 5.4 0 0 0 0 63.2 

22 Aleurites oluccana 0 0 5.5 6.7 0 10.5 48.5 28.5 37.2 

23 
Argemone 

Mexicana 
0 0.8 14.5 3.8 0 18.5 61.4 0 44.5 

24 Canola 0 0.1 5.2 2.5 0.2 58.1 28.1 0.4 57.0 

25 Lard 0.1 1.9 24.5 14.4 2.8 38.3 13.4 0.3 63.6 

26 
Eurhorbia 

helioscopia L. 
2.8 5.5 9.9 1.1 0 15.8 22.1 42.7 38.2 

27 Garnica morella3 0 0 0.7 46.4 0 49.5 0.9 0 63.5 

28 
Holoptelia 

integrifolia 
0 3.5 35.1 4.5 1.9 53.3 0 0 61.2 

29 Inedible tallow 0.1 2.1 23.9 19.5 2.8 38.5 6.4 0.3 61.7 

30 
Litsea glutinosa 

Robins 
96.3 0 0 0 0 2.3 0 0 64.8 

31 
Moringa oleifera 

Lam 
0 0 9.1 2.7 2.1 79.4 0.7 0.2 56.7 

32 Neolitsa cassia Linn 85.9 3.8 0 0 0 4 3.3 0 64.0 

33 Peanut 0 0 4.9 1.6 0 33 20.4 7.8 53.0 
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34 Pongamia pinnata 0 0 10.6 6.8 0 49.4 19 0 55.8 

35 Thevetia peruviana 0 0 15.6 10.5 0 60.9 5.2 7.4 57.5 

36 Vallaris solanacea 0 0 7.2 14.4 0 35.3 40.4 0 50.3 

37 Yellow grease 0 1.1 17.3 9.5 2.2 45.3 14.5 1.3 52.9 

38 Lauric 100 0 0 0 0 0 0 0 61.2 

39 Myristic 0 100 0 0 0 0 0 0 66.2 

40 Palmitic 0 0 100 0 0 0 0 0 74.3 

41 Stearic 0 0 0 100 0 0 0 0 75.6 

42 Palmitoleic 0 0 0 0 100 0 0 0 51.0 

43 Oleic 0 0 0 0 0 100 0 0 55.0 

44 Linoleic 0 0 0 0 0 0 100 0 38.2 

45 Linolenic 0 0 0 0 0 0 0 100 31.6 

 462 

 463 

 464 

 465 

Table 2. Statistical coefficients of the developed MLR model for cetane number 466 

  467 Regression 
Statistics 

Multiple Regression 
Model 

Multiple R 0.947 

R2 (%) 89.6 

St. error 3.044 

Observations 45 
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Table 3. Comparison between experimental and computed CN values for model 468 

verification 469 

 470 

 471 

 472 

 473 

FAME Ref. 12:0 14:0 16:0 18:0 16:1 18:1 18:2 18:3 
Exp. 

CN 

Pred. 

CN 

Abs. 

Error 

(%) 

Soybean 32   11.7 3.97  21.27 53.7 8.12 51.3 48.8 5.2 

Peanut 32   17.2 2.7  40.5 36.6 0.5 54.0 53.9 0.1 

Corn 32   11.4 1.3  27.1 60.2 0 55.4 48.8 5.7 

Sunflower 32   4.9 2.3  32.6 59.4 0 51.6 52.9 3.1 

Rapeseed 32   5.2 1.4  66 18.9 5.6 54.5 63.9 2.9 

Palm 32 0.5 1.6 49.8 2.9  38.6 6.6  62.0 62.8 1.1 

Palm kernel 32 48 14.7 11.5 1.4 0 15.9 1.8  62.1 57.4 4.2 

Waste frying 32 1.6 1.5 27.3 4.9  36.1 25.7 1.9 55.0 66.2 8.9 

Beef tallow 33  2.72 25.33 34.7 2.02 31.69 0.75  60.3 54.6 4.6 

Jatropha 33   14.2 6.9 1.4 43.1 34.4  57.1 47.4 3.4 

Soybean 34  0 9 4  23 51 13 49.0 48.2 2.5 

Sunflower 34  0 9 7  10 74  47.0 56.8 5.9 

Koroch 35 0 0 7.9 8.9 0 57.9 14.5 0 53.4 54.6 4.5 

Jatropha 35 0 0 16 6.5 0 43.5 34.4 0.8 57.1 48.8 5.2 



 
Table 4. Density and fatty acid weight composition of the examined data set 

  12:0 
C12H24O2 

14:0 
C14H28O2 

16:0 
C16H32O2 

18:0 
C18H36O2 

16:1 
C16H30O2 

18:1 
C18H34O2 

18:2 
C18H32O2 

18:3 
C18H30O2 

 
 
 

Density 

(kg/m3) 

Mol. weight 
(kg/kmol) 

200.32 228.37 256.42 284.48 254.41 282.46 280.45 278.43 
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Animal Fat 
or Vegetable 
Oil 

Index 1 2 3 4 5 6 7 8  

1 Beef tallow 0.15 2.41 24.39 19.08 2.66 41.65 5.91 0.72 874.3 

2 Canola 0.00 0.00 4.51 2.00 0.36 60.33 21.24 9.49 881.6 

3 Chicken fat 0.10 0.73 24.06 6.42 5.65 41.43 18.83 1.06 876.3 

4 Corn 0.00 0.00 11.81 2.13 0.12 27.35 57.74 0.63 882.2 

5 Cottonseed 0.00 0.72 25.93 1.74 0.36 15.98 55.12 0.16 879 

6 Croton 0.00 0.10 7.25 3.43 0.10 10.80 77.25 5.40 883.2 

7 Hazelnut 0.00 0.00 6.32 3.71 0.30 79.17 10.67 0.15 877.9 

8 Jatropha 0.00 0.15 14.42 5.82 0.69 42.81 35.38 0.23 878.7 

9 Karanja 0.00 0.00 10.89 7.89 0.00 53.56 21.34 2.09 882.9 

10 Linseed 0.00 0.00 5.18 3.26 0.10 19.04 16.12 54.54 891.5 

11 Mahua 0.00 0.15 22.23 22.49 0.00 39.01 14.87 0.10 874.5 

12 Neem 0.40 0.18 17.57 16.6 0.00 45.83 17.79 0.72 876.2 

13 Olive 0.00 0.05 11.47 2.83 0.90 74.52 9.54 0.51 881.2 

14 Palm 0.37 1.13 42.39 4.20 0.17 40.91 9.70 0.29 874.7 

15 Peanut 0.00 0.00 10.33 2.79 0.00 47.63 31.52 0.64 882.9 

16 Rapeseed 0.00 0.04 4.07 1.55 0.23 62.24 20.61 8.72 882.2 

17 Rice bran 0.08 0.45 18.12 2.17 0.20 42.35 34.84 0.93 880.9 

18 Rubber seed 0.00 0.51 9.39 9.41 0.13 24.22 38.12 17.54 882.3 

19 Safflower 0.00 0.08 7.42 2.38 0.05 14.41 75.31 0.09 883.8 

20 Soybean 0.08 0.12 11.44 4.14 0.16 23.47 53.46 6.64 882.8 

21 Sunflower 0.00 0.04 6.26 3.93 0.06 20.77 67.75 0.15 882.9 

22 Waste cooking 0.20 0.67 15.69 6.14 0.73 42.84 29.36 2.03 880.6 

23 Lard 0.25 1.62 25.1 13.23 2.68 44.36 12.06 1.18 873.0 

 

 

 

Table 5. Statistical coefficients of the developed MLR model for density 

Regression 

Statistics 

Multiple Regression 

Model 

R 0.972 

R2 (%) 94.54 

St. error 1.22 

Observations 23 
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Table 6. Comparison between experimental (from [18]) and predicted density values for 

model verification 

 

 

 

 

Biodiesel 
Experimental 

Values (kg/m3) 

Predicted Values 

(kg/m3) 
Error (%) 

Soybean (SME) 887.3 883.4 0.44 

Rapeseed (RME) 886.0 882.8 0.36 

Palm (PME) 877.9 875.2 0.31 

SME+RME 885.7 882.3 0.32 

RME+PME 882.1 878.7 0.38 

SME+PME 882.0 879.8 0.25 

SME+RME+PME 883.0 880.5 0.28 

Sunflower 887.2 882.9 0.50 

SME+RME 884.3 882.6 0.49 

SME+RME 884.7 880.7 0.46 



 

Table 7. Kinematic viscosity and fatty acid weight composition of the examined data set 

  12:0 
C12H24O2 

14:0 
C14H28O2 

16:0 
C16H32O2 

18:0 
C18H36O2 

16:1 
C16H30O2 

18:1 
C18H34O2 

18:2 
C18H32O2 

18:3 
C18H30O2 

 
 
 

Kinematic 

Viscosity 

(mm2/s 

@40oC) 

Mol. weight 
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Animal Fat or 
Vegetable Oil 

Index 1 2 3 5 4 6 7 8  

1 Beef tallow 0.15 2.41 24.39 19.08 2.66 41.65 5.91 0.72 4.83 

2 Canola 0 0 4.51 2 0.36 60.33 21.24 9.49 4.40 

3 Chicken fat 0.1 0.73 24.06 6.42 5.65 41.43 18.83 1.06 4.81 

4 Corn 0 0 11.81 2.13 0.12 27.35 57.74 0.63 4.32 

5 Cottonseed 0 0.72 25.93 1.74 0.36 15.98 55.12 0.16 4.70 

6 Croton 0 0.1 7.25 3.43 0.1 10.8 77.25 5.4 4.48 

7 Hazelnut 0 0 6.32 3.71 0.3 79.17 10.67 0.15 4.55 

8 Jatropha 0 0.15 14.42 5.82 0.69 42.81 35.38 0.23 4.72 

9 Karanja 0 0 10.89 7.89 0 53.56 21.34 2.09 5.04 

10 Linseed 0 0 5.18 3.26 0.1 19.04 16.12 54.54 4.06 

11 Mahua 0 0.15 22.23 22.49 0 39.01 14.87 0.1 5.06 

12 Neem 0.4 0.18 17.57 16.6 0 45.83 17.79 0.72 4.72 

13 Olive 0 0.05 11.47 2.83 0.9 74.52 9.54 0.51 5.05 

14 Palm 0.37 1.13 42.39 4.2 0.17 40.91 9.7 0.29 4.61 

15 Peanut 0 0 10.33 2.79 0 47.63 31.52 0.64 4.77 

16 Rapeseed 0 0.04 4.07 1.55 0.23 62.24 20.61 8.72 4.63 

17 Rice bran 0.08 0.45 18.12 2.17 0.2 42.35 34.84 0.93 4.70 

18 Rubber seed 0 0.51 9.39 9.41 0.13 24.22 38.12 17.54 4.79 

19 Safflower 0 0.08 7.42 2.38 0.05 14.41 75.31 0.09 4.10 

20 Soybean 0.08 0.12 11.44 4.14 0.16 23.47 53.46 6.64 4.29 

21 Sunflower 0 0.04 6.26 3.93 0.06 20.77 67.75 0.15 4.53 

22 Waste cooking 0.2 0.67 15.69 6.14 0.73 42.84 29.36 2.03 4.75 

23 Lard 0.25 1.62 25.1 13.23 2.68 44.36 12.06 1.18 4.89 

 

 

 

 

Table 8. Statistical coefficients of the developed MLR model for kinematic viscosity 

  Regression 

Statistics 

Multiple Regression 

Model 

R 0.8148 

R2 (%) 66.39 

St. error 0.199 

Observations 23 
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Table 9. Comparison between experimental (from [19,39]) and predicted kinematic 

viscosity values for model verification 

 

 

 

 

Biodiesel 
Experimental 

Values (mm2/s) 

Predicted Values 

(mm2/s) 
Error (%) 

Beef tallow 4.36 4.71 8.0 

Soybean 4.01 4.5 12.2 

Sunflower 4.03 4.45 10.4 

Corn 4.18 4.52 8.1 

Cottonseed 4.06 4.6 13.3 

Canola+Lard 4.47 4.78 6.94 



Table 10. Heating values and fatty acid weight composition of the examined data set 

  12:0 
C12H24O2 

14:0 
C14H28O2 

16:0 
C16H32O2 

18:0 
C18H36O2 

16:1 
C16H30O2 

18:1 
C18H34O2 

18:2 
C18H32O2 

18:3 
C18H30O2 

Higher 

Heating 

Value 

(kJ/kg) 

Lower 

Heating 

Value 

(kJ/kg) 

Mol. weight 
(kg/kmol) 200.32 228.37 256.42 284.48 254.41 282.46 280.45 278.43 
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(common) 
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Animal Fat 
or 
Vegetable 
Oil 

Index 1 2 3 5 4 6 7 8   

1 Beef tallow 0.15 2.41 24.39 19.08 2.66 41.65 5.91 0.72 40,040 37,220 

2 Canola 0 0 4.51 2 0.36 60.33 21.24 9.49 39,975 37,980 

3 Chicken fat 0.1 0.73 24.06 6.42 5.65 41.43 18.83 1.06 39,890 37,630 

4 Corn 0 0 11.81 2.13 0.12 27.35 57.74 0.63 40,190 37,610 

5 Cottonseed 0 0.72 25.93 1.74 0.36 15.98 55.12 0.16 40,480 38,600 

6 Croton 0 0.1 7.25 3.43 0.1 10.8 77.25 5.4 40,280 38,175 

7 Hazelnut 0 0 6.32 3.71 0.3 79.17 10.67 0.15 39,800 37,825 

8 Jatropha 0 0.15 14.42 5.82 0.69 42.81 35.38 0.23 40,380 37,230 

9 Karanja 0 0 10.89 7.89 0 53.56 21.34 2.09 40,275 38,050 

10 Linseed 0 0 5.18 3.26 0.1 19.04 16.12 54.54 40,410 36,490 

11 Mahua 0 0.15 22.23 22.49 0 39.01 14.87 0.1 40,180 37,830 

12 Neem 0.4 0.18 17.57 16.6 0 45.83 17.79 0.72 39,960 36,880 

13 Olive 0 0.05 11.47 2.83 0.9 74.52 9.54 0.51 40,280 37,155 

14 Palm 0.37 1.13 42.39 4.2 0.17 40.91 9.7 0.29 39,985 37,290 

15 Peanut 0 0 10.33 2.79 0 47.63 31.52 0.64 39,930 37,080 

16 Rapeseed 0 0.04 4.07 1.55 0.23 62.24 20.61 8.72 40,335 38,050 

17 Rice bran 0.08 0.45 18.12 2.17 0.2 42.35 34.84 0.93 40,475 37,625 

18 
Rubber 

seed 
0 0.51 9.39 9.41 0.13 24.22 38.12 17.54 40,350 38,045 

19 Safflower 0 0.08 7.42 2.38 0.05 14.41 75.31 0.09 40,155 37,820 

20 Soybean 0.08 0.12 11.44 4.14 0.16 23.47 53.46 6.64 40,020 38,145 

21 Sunflower 0 0.04 6.26 3.93 0.06 20.77 67.75 0.15 40,000 37,750 

22 
Waste 

cooking 
0.2 0.67 15.69 6.14 0.73 42.84 29.36 2.03 39,805 37,800 

23 Lard 0.25 1.62 25.1 13.23 2.68 44.36 12.06 1.18 39,950 37,880 

 

Table 11. Statistical coefficients of the developed MLR model for both heating values 

  Regression 

Statistics 
HHV LHV 

R 0.711 0.7673 

R2 (%) 50.52 58.88 

St. error 188 396 

Observations 23 
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Table 12. Comparison between experimental (from [19,39,40,45,46]) and predicted HHV 

for model verification 

 

 

 

 

Biodiesel 
Experimental HHV 

(kJ/kg) 

Predicted HHV 

(kJ/kg) 
Error (%) 

Beef tallow 39,570 40,229 1.67 

Soybean 40,230 40,232 0.01 

Sunflower 40,665 40,163 1.23 

Corn 41,140 40,194 2.30 

Cottonseed 40,665 40,368 0.73 

Corn 39,930 40,210 0.70 

Waste cooking 39,741 40,549 2.03 

Canola+Lard 40,050 40,206 0.39 

Safflower 39,500 40,212 1.80 

Sesame 39,300 40,223 2.35 

Linseed 39,840 40,461 1.56 

Jatropha 39,000 39,374 0.96 

Palm 39,110 40,579 3.76 

Rice bran 38,600 40,155 4.03 



 

Fig. 1. Cetane number, density, heating values and kinematic viscosity for biodiesels from 

various feedstocks (data from [26]) 
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Fig. 2. Percentage weight of individual fatty acids in oil and animal feedstocks (solid line 

corresponds to average values) (data from [26]) 
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Fig. 3. Correlation between oil/fat unsaturation level and biodiesel average cetane number 

from 25 feedstocks (data from [26]) 
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Fig. 4. Comparison of the predictive capability of the current model vs. three earlier ones 

(experimental data from Table 3) 
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Fig. 5. Correlation between oil/fat unsaturation level and biodiesel average density from 

25 feedstocks (data from [26]). 

 

 

 

Fig. 6. Predictive capability of the developed model for density (kg/m3) (experimental data 

from [18]) 
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Fig. 7. Correlation between oil/fat unsaturation level and biodiesel average kinematic 

viscosity from 24 feedstocks (data from [26]). 

 

 

Fig. 8. Predictive capability of the developed model for kinematic viscosity (mm2/s@40oC) 

(experimental data from [19,39]) 



 

 

 

34 

 

 

 

Fig. 9. Correlation between oil/fat unsaturation level and biodiesel average LHV and HHV 

from 25 feedstocks (data from [26]). 

 

 


