
Steel trusses and other structures with angle section members
are usually designed by elastic methods. This may lead to uneco-
nomical designs when these sections are subjected – besides
the axial force – to biaxial bending arising not only from eccentric
connections, but also from direct transverse loading. This paper
provides a simple inelastic interaction formula, Eq. (14), as well as
an enhanced inelastic formula, Eq. (27), for the combination of
axial force and bending moments about the principal axes which
may be used for angle cross-sections of classes 1 or 2. The formulae
do not always exhaust the full plastic cross-sectional re sistance
but do lead to a more economical design of the section, especially
when bending is dominant. The formulae cover only the design of
the cross-section and do not address stability considerations.

1 Introduction

Angle sections are widely used as truss members due to
their easy connections to adjacent members. Typical ex-
amples are lattice towers for telecommunications purpo-
ses, where equal leg angles are often used for tower legs
and bracing members (Fig. 1). Truss members are primarily
subjected to axial forces. Bending moments arise mostly
from eccentricities at the connections because angles are
connected by one or more bolts in one leg. However, in

telecommunications towers, angle sections are also sub-
jected to bending due to direct transverse wind loading and
the fact that the legs are continuous over the full height,
meaning that they have to be designed for biaxial bending
and normal forces. For such towers, the axial force domi-
nates in the lower part due to high overturning moments,
whereas bending may dominate in the upper part due to
the higher wind forces.

Angle sections are usually designed by elastic methods,
where stresses are determined separately for the (factored)
design moments and forces, and the resulting stresses are
limited by the design strength, this being the yield stress
divided by the partial factor for resistance γM0. However,
the application of the theory of elasticity for the verifica-
tion of angles leads to uneconomic designs due to their
small elastic moment capacity, especially for bending ab-
out the weak axis and the linear superposition of stresses
arising from bending moments and normal forces. 

Modern codes of practice like Eurocode 3 [1] allow
for the use of inelastic design methods for compact cross-
sections of classes 1 or 2, where the bending resistance is
not reduced due to local buckling. These codes provide
plastic interaction formulae for biaxial bending and nor-
mal forces for doubly symmetrical I, H and box sections.
Improved interaction formulae for the same types of cross-
section, including the effects of warping torsion, were pro-
posed by Vayas [2], [3]. Scheer and Bahr [4] provided ine-
lastic interaction diagrams for angle sections subjected to
eccentric axial forces. However, codes of practice do not
generally cover inelastic design of angle sections. In an ef-
fort to overcome this deficit, the present paper treats the
inelastic design of equal leg angle cross-sections subjected
to biaxial bending and axial force. It covers fully the design
of the angle if the design actions arise from second-order
theory, possibly including imperfections. Otherwise, a sta-
bility check of the member design is required in addition.

2 Notation

The dimensions and axes of the cross-section from [1] are
given in Fig. 2a.

A cross-sectional area
N normal force
Mu, Mv bending moments, major and minor prin-

cipal axes

Inelastic resistance of angle sections subjected
to biaxial bending and normal forces

Ioannis Vayas
Aristotelis Charalampakis
Vlasis Koumousis

Fig. 1. Examples of telecommunications
towers with angle sections
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Npl plastic resistance to normal force
Wu,pl, Wv,pl plastic section moduli, major and minor

principal axes
Mu,pl, Mv,pl plastic bending moments, major and minor

principal axes
fy yield strength
n = N/Npl ratio of normal force to plastic resistance

to normal force
mu = Mu/Mu,pl ratio of bending moment to plastic bending

moment, major principal axis
mv = Mv/Mv,pl ratio of bending moment to plastic bending

moment, minor principal axis

3 Plastic forces and moments

Under the assumption that the leg thickness t is small com-
pared with the leg length h, the cross-section may be ideal -
ized as shown in Fig. 2b. Alternatively, the cross- section
could be idealized by the centre-lines of the legs, meaning
that the relevant lengths would be h′ = h – t/2. In such a
case all relations given below are still valid when h is sub-
stituted by h′. For angles with h = 10t, the cross-sectional
area of the adopted model given in Eq. (4) is 4–5 % higher,

whereas for the alternative model it is 5–6 % less than the
true area. However, this error can be eliminated if the cross-
sectional area A is not calculated for the idealized model
but instead is taken from the relevant section tables. Con-
cerning the material behaviour, a bi-linear elastic-plas tic
material law is assumed. 

The stress distributions due to axial forces and bending
moments acting alone are given in Fig. 3, and the stress re-
sultants for each leg in Fig. 4. Tension is positive. The figu-
res show that the plastic neutral axes for both strong and
weak axis bending coincide with the principal elastic axes
u-u and v-v. It should be noted that whereas this holds
true for the idealized section shown in Fig. 2b, this is not
the case for the true angle section shown in Fig. 2a, for which
the plastic neutral axis v-v shifts towards the corner.

The plastic resistances are as follows:

Normal force: Npl = A · fy (1)

Bending about the major axis: Mu,pl = Wu,pl · fy (2)

Bending about the minor axis: Mv,pl = Wv,pl · fy (3)

For the idealized section, the cross-sectional area and the
plastic section moduli are determined as follows:

A = 2 · h · t (4)

(5)

(6)

Accordingly,
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Fig. 2. Angle section: a) dimensions and axes, and b) idealiza-
tion
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(8)

Fig. 5 shows that for angles with h/t = 10, the Wpl/Wel ra-
tios are approx. 1.7 for strong axis bending and approx. 2.0
for weak axis bending, and indicate the gain potential in
the plastic design of angles.

4 Combination N + Mv

The stress distribution and the stress resultants in each leg
for combined axial force and bending about the weak axis
are given in Fig. 6. The axial force is resisted by stresses of
equal sign about the leg’s middle axis over a width equal to
n · h, and the bending moment by stresses of opposite sign
in the remaining area.

M
N h M

v pl
pl u pl

,
,=

⋅

⋅
=

4 2 2

5 Combination Mu + Mv

The stress distribution and the stress resultants in each leg
for combined moments about both the strong and weak
axes are given in Fig. 8. The moment Mu is resisted by
stresses of equal sign, but different in each leg, about the
leg middle axis over a width equal to mu · h, and the mo-
ment Mv by stresses of opposite sign in the remaining area.
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Fig. 5. Ratio of plastic to elastic section moduli for angles
with h/t = 10

h/2

fy

fy

fy fy

fy

fy

fy fy

–

–

–

–

(l-n)h

(l-n)h

2

(l-n)h
2

(l-n)h
2

M

M

N

N

2

2
nh

2
nh

h/2

h/2 h/2

+

+

+

+

–

+

+ +

Fig. 6. Stresses and stress resultants in legs due to N + Mv

This stress distribution results in the following minor
axis moment, where evidently the stresses about the middle
axes of the legs do not make any contribution:

(9)

Eqs. (8) and (9) finally yield the plastic interaction relation-
ship, which may be written as:

n2 + mv = 1 (10)

The relevant interaction diagram is plotted in Fig. 7.
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Fig. 7. Inelastic interaction diagram for N + Mv and Mu + Mv
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Fig. 8. Stresses and stress resultants in legs due to Mu + Mv

This stress distribution results in the following major
axis moment, where evidently only the stresses about the
middle axes of the legs make a contribution because the
remaining stresses are symmetrical about this axis:

(11)

Eqs. (7) and (11) confirm the assumed stress distribution
concerning the strong axis bending. Furthermore, the
stress distribution assumed results in the following minor
axis moment, where evidently the stresses about the middle
axes of the legs do not make any contribution because they
are symmetrical about the minor bending plastic neutral
axis:

(12)

Eqs. (8) and (12) finally yield the plastic interaction rela -
tionship, which may be written as:

M
m

h t f
m

h m
N h

v
u

y
u

u
pl= ⋅

−
⋅ ⋅ ⋅ ⋅

+

⋅
⋅ = −( )⋅

⋅

⋅
4

1
2

1

4 2
1

4
2

22

M h t f
m

h m
N h

u y
u

u
pl= ⋅ ⋅ ⋅ ⋅

⋅
⋅ = ⋅

⋅

⋅
2

2 2 2 2

14_138-146_Vayas (SC9).qxd:000-000_Vayas (SC9).qxd  12.06.2009  15:23 Uhr  Seite 140



141Steel Construction 2 (2009), No. 2

I. Vayas/A. Charalampakis/V. Koumousis · Inelastic resistance of angle sections subjected to biaxial bending and normal forces

m2
u + mv = 1 (13)

This interaction relationship is similar to Eq. (10) and ge-
nerates the same interaction diagram as in Fig. 7.

6 Proposed simple formula

Combining Eqs. (10) and (13), the following simple inter-
action formula is proposed:

(|n| + |mu|)2 + |mv| = 1 (14)

Eq. (14) is symmetric about both the mu- and mv-axes. It is
also symmetric with respect to n, i. e. with respect to the
mu-mv plane in the normalized three-dimensional mu-mv-n
space. Fig. 9 shows the upper right quadrant of the inter-
action curve for various values of n.

Fig. 10 shows interaction diagrams for the elastic and
plastic design of angles. The elastic curve for n = 0 inter -
sects the two axes at values less than 1 because the elastic
moments are smaller than the plastic ones (Fig. 5). It can
be seen that the gains offered by plastic design are due,
firstly, to the larger plastic moments compared with the
elastic ones and, secondly, to the curved form of the inter-
action diagrams. However, it should be noted that in elas -
tic design the stresses caused by individual forces and mo-
ments are added algebraically. That means the elastic in-
teraction diagrams in Fig. 10 correspond to the signs of
the forces and moments acting, i. e. negative N (compres-

sion), positive Mu, Mv, such that they add up in the ex-
treme fibres. If this is not the case, the elastic diagrams
may be much higher.

For the loading case of N + Mu, a simple formulation
in the manner of paragraphs 4 and 5 is not straightforward
because the asymmetry of the section means that the orien-
tation of the neutral axis is not known. However, as will be
demonstrated in the next section, the proposed simple in-
teraction formula, Eq. (14), holds true in an approximate
but conservative manner for the generic loading case of 
N + Mu + Mv.

7 Validation of simple formula

A new generic fibre model algorithm [5] was employed for
validation purposes. The algorithm can be used for the
analysis of arbitrary sections under biaxial bending and
axial load. The geometry of the cross-section is described
by curvilinear polygons, i. e. closed polygons with edges
that are straight lines or circular arcs. Thus, the angle sec-
tions are described exactly by seven-node curvilinear poly -
gons which take into account the curves of the actual sec-
tion. The stress-strain diagrams of materials consist of any
number and any combination of consecutive polynomials.
Analytical expressions are utilized for the integration of the
stress field even when curved edges are involved.

Fig. 11 shows the results obtained using the code my-
Biaxial [5] in conjunction with CAD software for the case
of the 40 × 40 × 4 mm angle section, n = 0.0 and neutral
axis orientation = 50°. The compression zone is shown in
red, the tension zone in blue.

Fig. 9. Inelastic interaction diagram based on the simple in-
teraction formula

Fig. 10. Interaction diagrams for elastic (under certain con-
ditions) and inelastic design of angles
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Fig. 11. An instance of a 40 × 40 × 4 mm interaction for 
n = 0.0 (dimensions in mm)

Neutral axis z-coordinate 6.36 mm
Compression zone (red)

Centroid, y-coordinate –6.96 mm
Centroid, z-coordinate –8.63 mm
Force –36.09 kN

Tension zone (blue)
Centroid, y-coordinate 6.93 mm
Centroid, z-coordinate 8.58 mm
Force 36.09 kN
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Thus
My 0.623 kNm
Mz –0.502 kNm

Results in global (u,v) reference system
Mu 0.785 kNm
Mv 0.154 kNm

Normalized results
mu 0.835
mv 0.316

Using the code myBiaxial, the interaction curves were ob-
tained for n = –0.6, –0.2, 0.0, +0.2 and +0.6 (Fig. 12).

It can be seen that the symmetry with respect to the
horizontal axis, i.e. the sign of Mv, is not maintained in the
presence of the axial load. The specific case analysed pre-
viously (Fig. 11) using CAD software is shown in the same
graph by way of a red square.

Next, the interaction curves of Fig. 12 are normalized
using the maximum evaluated values of Mu = 0.939 kNm
and Mv = 0.487 kNm. Fig. 13 shows the exact interaction
curves in solid blue lines, whereas the interaction curves
produced by the proposed simple interaction formula are
shown as dotted red lines.

The simple interaction formula is based on equilibrium
formulae for the cases of N + Mv and Mu + Mv. Thus, a

very good approximation is observed for the respective
loading cases, as shown by the green dotted points in Fig. 13
and the entire interaction curve that corresponds to n = 0.

The proposed simple interaction formula is conserva-
tive for the generic case of N + Mu + Mv, but allows the steel
designer to tap safely into the plastic reserves of the section.
A more accurate interaction formula that also takes into ac-
count the non-symmetry about the horizontal axis of the
interaction diagram is proposed in the next section.

8 Enhanced formula

Due to the geometry of the section, the exact position of
the neutral axis is not known for the loading case of N + Mu.
Moreover, if the direction of the neutral axis is forced to be
parallel to the major axis, then satisfying equilibrium yields
bending moments about the minor as well as the major
axis. Following this path, we obtain information about the
corner points of the interaction curves that are marked
with red squares in Fig. 13.

The stress distribution of Fig. 14 is valid for n < 0 and
results in the following major axis moment:
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I. Vayas/A. Charalampakis/V. Koumousis · Inelastic resistance of angle sections subjected to biaxial bending and normal forces

Fig. 12. Interaction curves for a 40 × 40 × 4 mm section subjected to (a) compressive and (b) tensile axial load

Fig. 13. Interaction curves: exact (blue) and with simple formula Eq. (14) (red dotted) for (a) compression (n = 0, –0.2, –0.6)
and (b) tension (n = 0, +0.2, +0.6)
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After some algebraic manipulation, Eq. (15) yields:

mu = 1 – n2, n ≤ 0 (16)

Similarly, the stress distribution of Fig. 14 results in the
following minor axis moment:

(17)

After some algebraic manipulation, Eq. (17) yields:

mv = 2n2 + 2n, n ≤ 0 (18)

Eqs. (16) and (18) provide the coordinates (mu, mv) of the
corner points of the interaction curves that are marked
with red squares in Fig. 13a. In particular, the coordinates
for n = 0.0, –0.2, –0.6 are evaluated as (0,1), (0.96, –0.32),
(0.64, –0.48) respectively.

Seeking to include the aforementioned points in the
interaction curve while maintaining its parabolic form, the
following expression is employed for the upper part of the
interaction curve:

(n + ρn1 · |mu|)2 + mv = 1, n ≤ 0, 1 – n2 ≥ mv ≥ 2n2 + 2n
(19)

where parameter ρn1 is calculated from:

(20)

Similarly, the following expression is obtained for the lower
part of the interaction curve:

–(n + ρn2 · |mu|)2 + mv = –1, n ≤ 0, n2 – 1 ≤ mv ≤ 2n2 + 2n
(21)
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where parameter ρ2 is calculated from:

(22)

Following similar formulation for the case of a tensile
axial load, i.e. n > 0, the upper part of the interaction curve
is given as:

(n + ρp1 · |mu|)2 + mv = 1, n ≥ 0, 1 – n2 ≥ mv ≥ –2n2 + 2n (23)

where parameter ρp1 is calculated from:

(24)

Similarly, for the lower part of the interaction curve:

–(n + ρp2 · |mu|)2 + mv = –1, n ≥ 0, n2 – 1 ≤ mv ≤ –2n2 + 2n
(25)

where parameter ρp2 is calculated from:

(26)

It can be seen that for n = 0, all ρ parameters are equal to
unity and the enhanced formulae are reduced to the sim-
ple interaction formula, given by Eq. (14).

Unifying and simplifying Eqs. (19) to (26) for com-
pressive or tensile axial loads as well as for the upper or
 lower part of the interaction diagram, the enhanced inter-
action formula may be derived as:

(27)

where sgn(·) is the signum function and sgn(0) = 1. Accord ing
to Eq. (27), ρs = 1 for the upper part of the interaction
curve (mv ≥ 2 · n · (1 – |n|)), and ρs = –1 for the lower part
(mv < 2 · n · (1 – |n|)).

9 Validation of enhanced formula

Fig. 15 shows a comparison of the actual interaction curves
(solid blue lines) with the ones produced by the proposed
enhanced formula (dotted red lines) for the same example
as Fig. 13.

In addition, Fig. 17 shows the loci of the corner points,
which are included as dotted green lines. The loci are pro-
duced by the parametric coordinates of the corner points,
i.e. (±(1 – n2), 2 · n · (1 – |n|)), –1 ≤ n ≤ 1.

It can be seen that the enhanced formula is symmetric
only about the v-axis. In addition to the loading cases of N +
Mv and Mu + Mv, equilibrium formulae are employed for the
case when the orientation of the neutral axis is parallel to the
major axis of the section. Thus, very good approximation is
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also observed at the corner points of the interaction curves,
shown as red squares in Fig. 15. For the generic case of N +
Mu + Mv, the proposed enhanced formula is practically exact. 

10 Examples using the proposed formulae

The legs of a telecommunications tower consist of 160 ×
160 × 15 mm angles of grade S 235 material. Their cross-
section is to be verified for the following design forces and
moments as provided by the structural analysis: 
a) NEd = –800 kN My,Ed = –4.60 kNm Mz,Ed = 2.0 kNm
b) NEd = –800 kN My,Ed = –4.60 kNm Mz,Ed = 2.0 kNm
c) NEd = –400 kN My,Ed = –4.60 kNm Mz,Ed = 2.0 kNm

The material safety factor for cross-section verifica-
tion is γM0 = 1.0.

Cross-section data (Fig. 16):
A = 46.06 cm2, Iu = 1747 cm4, Iv = 450.8 cm4, 
umax = 63.5 mm, umin = 49.6 mm

Cross-section classification:

→ class 1 (inelastic design is permitted)

c
t

h t r
t

= − − = − − = <160 15 17
15

8 5 9.

v cmmax .= =16

2
11 3

Npl,Rd = 46.06 · 23.5 = 1082 kN 

The moments about the principal axes are determined from:

a) Mu,Ed = –1.84 kNm Mv,Ed = –4.67 kNm

– Elastic design (Fig. 17)

Total stresses:

σ0 = –17.37 – 6.58 = –23.95 kN/cm2 > fy/γM0 = 23.5 kN/cm2

σ1 = –17.37 + 1.19 + 5.14 = –11.04 kN/cm2 < 23.5 kN/cm2

σ2 = –17.37 – 1.19 + 5.14 = –13.42 kN/cm2 < 23.5 kN/cm2
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a) b)

Fig. 15. Interaction curves: exact (blue) and with enhanced formula Eq. (27) (dotted red) for (a) compression 
(n = 0, –0.2, –0.6) and (b) tension (n = 0, +0.2, +0.6)
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Exploitation factor for elastic design: 

– Inelastic design with simple formula Eq. (14)

Exploitation factor for inelastic design: 

– Inelastic design with enhanced formula Eq. (27)

Exploitation factor for inelastic design: 

(|–0.739| + 0.965 · |–0.030|2 + 1 · (–0.153) = 0.438

Significant plastic reserve according to the enhanced for-
mula because of the quadrant (see Fig. 18a).

b) Mu,Ed = 4.67 kNm Mv,Ed = 1.84 kNm

– Elastic design 

Using a similar calculation to case a, the total stresses are:

σ0 = –14.78 kN/cm2 σ1 = –22.41 kN/cm2 σ2 = –16.37 kN/cm2

Exploitation factor for elastic design: ν = =22 41
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– Inelastic design with simple formula Eq. (14)

Exploitation factor for inelastic design: 

– Inelastic design with enhanced formula Eq. (27)

Exploitation factor for inelastic design: 

(|–0.739| + 0.965 · |0.076|2 + 1 · (0.060) = 0.720

Practically the same result because of the quadrant (see
Fig. 18b).

c) Mu,Ed = 4.67 kNm Mv,Ed = 1.84 kNm

– Elastic design 

σ0 = –6.1 kN/cm2 σ1 = –13.73 kN/cm2 σ2 = –7.69 kN/cm2

Exploitation factor for elastic design: 

– Inelastic design with simple formula Eq. (14)

Exploitation factor for inelastic design:
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Fig. 18. Interaction curves for examples (a) to (c)
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– Inelastic design with enhanced formula Eq. (27)

Exploitation factor for inelastic design: 

(|–0.370| + 0.974 · |0.076|2 + 1 · (0.060) = 0.257

Practically the same result because of the quadrant (see
Fig. 18c).

The interaction diagrams for the examples are shown
in Fig. 18.

11 Conclusions

Appropriate inelastic interaction formulae, Eqs. (14) and
(27), for simultaneous biaxial bending around the princi-
pal axes and normal force were derived for equal leg angle
sections. They allow for a plastic cross-section verification,
suitable for angle sections of classes 1 and 2. Eq. (14) is
simple but may not fully exhaust the inelastic section re-
serves for certain sign combinations of axial force and

ρs = − ⋅ − ⋅ − −( )( ) =sgn . ( . ) . sgn( .0 060 2 0 370 1 0 370 0 5226 1) =

n m

m

u

v

= − = − = =

=

400
1082

0 370 467
6121

0 076

184
30

. , . ,

660
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ρ =
− − − − ⋅ − ⋅ − −( . ) sgn( . ) ( . ) .0 370 0 370 1 2 0 370 1 0 370(( )⋅
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=

1
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.

weak axis moment. Eq. (27) almost fully exhausts the sec-
tion capacity but is a little more complicated.

The numerical results presented indicate that the ap-
plication of inelastic design may lead to more economical
but nevertheless safe designs in practice, as in the case of
telecommunications towers. However, this more delicate
design should be accompanied by a more elaborate stabi-
lity analysis.
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