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ABSTRACT 

This paper presents a method for the simulation of the behaviour of steel 
structural elements both before and after the attainment of the ultimate load. 
It is based on a strain-oriented formulation of the governing relations usually 
applied to stability problems. Accordingly, the response of elements subjected 
to specific strain conditions is determined. Several types of elements, includ- 
ing single plate panels, transversely loaded beams, axially loaded columns 
and compressed stiffened plates with imperfections, are investigated. The 
analytical results are compared with experimental ones. Various modes of 
failure with different characteristics in the post-critical region are detected. 
The elements examined show that if bending and plate buckling prevail, the 
failure mode is ductile, while in the case of global buckling and lateral tor- 
sional buckling, a nonductile failure is expected. The method may serve for 
both stability and ductility evaluations of steel elements, which are needed 
if the design format includes a direct comparison between ductility supply 
and ductility demand for structural elements. © 1997 Elsevier Science Ltd. 
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Cross-sectional area 
Area of the effective cross-section 
Gross width 
Effective width 
Modulus of elasticity 
Tangent modulus 
Global imperfection (deflection) 
Yield stress 
Applied axial load 
Applied bending moment 
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Plate thickness 
Section modulus 
Modulus of the effective cross-section 
Imperfection factor 
Midspan deflection 
Strain 
Yield strain 
End rotation 
Buckling coefficient 
Dimensionless slenderness 
Poisson's ratio 
Stress acco~ling to the structural response 
Stress according to the material law 
Critical elastic stress 
Reduction factor due to buckling 

1 INTRODUCTION 

The behaviour of steel elements is very much dependent on the type of struc- 
ture under consideration, the geometric, loading and supporting conditions, 
the geometrical imperfections, the residual stresses, etc. The element response 
may be expressed in terms of generalized load--deformation curves, where the 
term 'load' describes force, moment, stress, etc., while the term 'deformation' 
describes deflection, rotation, curvature, etc. Analytically predicted load- 
deformation curves for several elastic structural elements are shown in Fig. 
1. The figure shows the differences in response for the different elements 
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Fig. 1. Analytically predicted elastic response of (a) columns, (b) plates and (c) shells under 
compression. 
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under consideration. The behaviour of real steel elements and subassemblages 
is, however, different from the predicted one corresponding to elastic behav- 
iour. Experimentally derived load-deformation curves of elements that fail 
due to instability, which constitute the vast majority in steel structures, show 
that the structural response is qualitatively very much the same (Fig. 2). The 
load--deformation characteristic consists of a linear part L at small loads, a 
nonlinear part NL due to geometrical nonlinearities and plasticity, and an 
unloading part UL after the attainment of the ultimate load. The type of failure 
is characterized by the unloading part UL of the curve. It is ductile if the rate 
of unloading is small and nonductile if this rate is large. Accordingly, ductility 
may be defined as the capacity of an element, member, etc. to exhibit large 
inelastic deformations without considerable reduction in strength. 

Steel is as a material very ductile. It exhibits inelastic deformations several 
times larger than those at first yield, thereby increasing its strength due to 
strain hardening. However, the ductility of steel elements or members is 
adversely influenced by stability loss. These elements fail usually due to sev- 
eral possible instability modes like local, flexural, lateral torsional buckling, 
etc. These failure modes acting individually or in combination result in 
reductions of ductility. Accordingly, stability and ductility influence each other 
very much. 

The importance of ductility and the post-ultimate branch of the load--defor- 
mation characteristic of a structural element, a subassemblage or a complete 
structure, was recognized from the early application of steel design codes. 
Older steel regulations like BS 449 [1] or DIN 1050 [2], were based on 
strength and defined the end of linearity (point Y in Fig. 2) as the limit state. 
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Fig. 2. Response of real steel elements. 
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This may give the impression that the other parts NL and UL of the structural 
response were neglected. This impression is wrong however, because in 
addition to the limit state definition, variable safety factors dependent on the 
type of failure were introduced. Accordingly, larger values of safety factors 
were prescribed for nonductile failure modes (or failure without warning) and 
smaller values for ductile failure modes (or failure with warning). In that way, 
the parts NL and UL were indirectly taken into account in structural design. 

New design regulations, like LRFD [3] or Eurocode 3 [4], rely more directly 
on ductility. The limit state is now defined as point U of the structural charac- 
teristic, so that nonlinearities, part NL of the curve, are directly taken into 
account. The application of this criterion to a subassemblage (e.g. a portal 
frame) implies that individual elements have already reached their limit state 
and they move towards the unloading part UL. In that case it is plastic redistri- 
bution that ensures the increase of the total applied load on the structure. This 
indicates that plastic analysis relies directly on ductility. Ductility is also the 
basis of design in another important engineering field that deals with the seis- 
mic design of steel structures. In both cases an evaluation of the ductility 
provided by the various members is required. 

Design specifications provide rules for the determination of limit 'loads' 
(stresses, moments, forces) of steel members. Based on observation of actual 
behaviour in tests and on theoretical considerations, a 'design model' is selec- 
ted, leading to a strength function. Then, by statistical interpretation of all 
available test data, the efficiency of the model is checked and appropriate 
values of the safety factors are evaluated. This leads to the determination of 
design values of the strength function. Standard procedures for such statistical 
evaluations are provided by the relevant codes (e.g. Eurocode 3, Annex Z [5]). 

After having defined the limit 'load' (Fig. 2, point U), current design regu- 
lations provide simple methods for the simulation of the structural behaviour 
up to this load (Fig. 2, regions L and NL). Unfortunately, there is a lack of 
relevant simple methods for the description of the structural response beyond 
the limit load. 

This paper presents a method for the simulation of the behaviour of mem- 
bers beyond the ultimate load, thus allowing the evaluation of their ductility. 
The method may be applied to various members such as plates, beams, col- 
unms or beam columns which may fail due to one or more instability modes. 
The application of the method is shown for both simple and complicated 
elements and failure modes, its validity is verified by comparison with corre- 
sponding experimental results. It will also be shown that for cases where 
coupled instabilities appear, it is necessary to include all member character- 
istics in the criteria for classification with respect to ductility. 
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2 STRAIN-ORIENTED METHOD FOR STABILITY PROBLEMS 

Although the governing differential equations may be different, most problems 
of stability are currently treated in a similar way (Fig. 3). In a first step a 
dimensionless slenderness is determined from 

(1) 

where fy is the yield stress and O'cr is the critical elastic stress of the element. 
The evaluation of a reduction factor X as a function of the slenderness 

according to a buckling curve follows. The ultimate stress is finally given by 

o-u = )d'y. (2) 

The method applies equally to most stability problems. The type of element 
under consideration (linear element, plate, shell), the buckling mode (local, 
global buckling, torsional lateral buckling, etc.), the loading and supporting 
conditions are taken into account by appropriate selection of the critical stress 
crcr and the buckling curve. 

The methodology described above serves the evaluation of the ultimate 
stress tru (or load Fu). If the entire element characteristic up to the limit point 
U, Fig. 2, is to be determined, the procedure is modified as follows. 

For an applied strain e smaller than the yield strain ey, the corresponding 
stress is, according to the material law, equal to 

tr o = eE. (3) 
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Fig. 3. Treatment of stability problems: (a) stress-strain characteristic; (b) buckling curve. 
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Eqn (1) is then modified to 

,4, 

From this slenderness value, which is lower than that determined by eqn 
(1), a new reduction factor is determined according to the buckling curve. 
The element response that corresponds to the strain e is found from 

or = xo -o .  (5) 

Linear behaviour is characterized by X = 1, while region NL corresponds to 
values X < 1. 

Eqns (3) and (4) imply that slender elements with small values of O'er exhibit 
linear behaviour only at small strain levels, while compact elements may 
behave linearly up to the yield strain (Fig. 3(a)). The limit stress is, according 
to this procedure, always achieved at the level of the yield strain. 

The main disadvantage of this method which is incorporated in many design 
codes (Eurocode 3 [4]) is that it simulates the element behaviour only up to 
the yield strain. For an accurate description of the structural response over 
the entire range of strain and thus beyond the limit load, a strain-oriented 
methodology for strains larger than ey is required. The influence of strain 
hardening has also to be taken into account, to allow for the evaluation of 
e.g. resistance moments of beams above the plastic moment Mp. 

In the following, a strain-oriented method presented by Vayas and Psycharis 
[6], allowing for the simulation of the element behaviour beyond failure with 
inclusion of strain hardening effects, will be shown. The element under con- 
sideration is subjected to a strain e. In the case that this strain is lower than 
the yield strain ey, the procedure as described above is followed. Accordingly, 
eqn (4) becomes 

(6) 

and eqn (5) is written as 

o- = x e E .  (7) 

In the case where E > ey (Fig. 4), if a bilinear o--E relationship for steel is 
assumed, the stress according to the material law is equal to 
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Fig. 4. Strain-oriented methodology: (a) tr-E characteristic; (b) buckling curve; (c) element 
response. 

OrO~--- [Ey + (E -- Ey)ET/E]E (8) 

where E and ET are the modulus of elasticity and the tangent modulus of 
elasticity of steel. 

The slenderness may be determined from 

~t • 1 ~  / [~"Ey "l- T~(E -- Ey,,--~IE (9)  
o'er 

where ~ and ~ are parameters to be determined according to the following con- 
siderations. 

Eqns (4) and (8) imply that r /should be taken equal to ET/E if X is directly 
connected to the stress, while eqn (6) indicates that 77 = 1 if it is directly 
connected to the strain. These expressions are identical as long as the material 
behaviour is elastic. This is no longer valid for strains larger than %. For such 
strains it is expected that the value of r / i s  between the two limits of ET/E 
and 1 of the elastic region. For its determination, extensive analyses with 
different expressions for r/ were carried out. It was shown by Vayas and 
Psycharis [6] that constant values of r /=  0.5 and ~ = 1.0 lead to results that 
compare well on average with the corresponding experimental ones. Wittem- 
ann [7] suggested the following expressions by comparison with rigid plas- 
tic analysis: 

ey < E ~-~ 6ey: ff = 1.0 r /=  0.5 

6•y < E ~ 20Ey: ~" = 3.5 r /=  0.2 

20Ey < E: ~ = 6.3 r /=  0.1. 

In the present work the initially mentioned values of 0.5 and 1.0 for ~/and 
will be applied for reasons of simplicity. 
Finally, after determination of the reduction factor, the response of the 

element is given by 
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o-= Xtro . (10) 

The above described procedure is adopted in order to analytically predict 
the response of various structural elements as shown subsequently. 

3 BEHAVIOUR OF PLATES 

The accurate simulation of the behaviour of an individual plate panel is a 
cornerstone of the analysis of steel sections, since it constitutes the basic 
element for more complicated cross-sections. For the analysis of plates, the 
method of the effective width has proven to be most advantageous. This 
method works with reduced, 'effective' widths and full stresses rather than 
with gross widths and reduced stresses. Accordingly, the reduction factor X 
as determined by the buckling curve is applied to the gross width b of the 
plate. An effective width is calculated from 

be= xb (11) 

and the final response of the plate panel is given by 

be 
= O-o. ( 1 2 )  

This procedure may be applied to plates subjected to both uniform and 
linearly varying strain along their edges (Fig. 5). Initially, the effective width 
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Fig. 5. Design methodology for plates: (a) strain distribution; (b) tr-~ characteristic; (c) buck- 
ling curve; (d) effective width. 



Stability and ductility of steel elements 31 

is distributed along the supported edges according to the relevant specifi- 
cations (e.g. Eurocode 3 [4]). Subsequently, the stresses are determined in 
accordance with the assumed o--e diagram, and the resulting axial force and 
bending moment of the plate panel may be evaluated by appropriate inte- 
gration of the stresses within the effective width. The application of eqns 
(6)-(12) requires the selection of relations for the determination of O'cr and X. 
Evidently, O'cr is equal to the critical plate buckling stress calculated from 

oc, = k,, 12( v 2) (13) 

where k,, is the buckling coefficient, v is Poisson's ratio, and b and t are the 
width and thickness of the plate panel. 

For plates, the Winter buckling curve given by 

1 0.22 
X - X X2 (14) 

is usually applied. Geometrical imperfections and residual stresses are here- 
with globally taken into account. Fig. 6 shows the application of the method 
to plates with different boundary conditions subjected to compression. This 
figure shows how stresses above the yield stress, depending on the b/t ratios 
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Fig. 6. Stress-strain diagrams of plates subjected to compression: (a) simple supported edges; 
(b) fixed edges. 
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and the supporting conditions, and how the response in the post-critical range 
may be evaluated. More specifically, Fig. 6(b) shows that, unlike the results 
of the conventional application of the effective width method, the limit stress 
may be achieved at strains larger than ey and may be due to strain hardening 
larger than the yield stress. 

A more elaborate analysis is shown in Fig. 7, where geometrical imperfec- 
tions and residual stresses are explicitly taken into account and may be perfor- 
med by determination of the plate deflections at each loading level, a slight 
modification of the expression of the Winter curve, and consideration of the 
existing residual stresses over the plate width in the tr-e diagram of each plate 
fibre. For more details in connection with the method, its applications and the 
comparison with other experimental results, reference is made to Vayas and 
Psycharis [6]. 

4 BEHAVIOUR OF CROSS-SECTIONS 

A cross-section of any form may be thought of as consisting of individual 
plate panels supported along one or two edges (unstiffened or stiffened 
elements according to LRFD [3]). The behaviour of the section as expressed 
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Fig. 7. 
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Load-shortening curves for plates with imperfections according to (a) tests [8] and (b) 
the present method. 

by stress-strain (o--e) or moment-curvature (M-k) curves depends on whether 
it is subjected to pure compression or to bending, without or with axial force. 
In both cases a strain-oriented formulation, like for plates, is required. Accord- 
ingly, a linear varying strain distribution over the cross-section is assumed, 
since plane sections shall remain plane (Fig. 8). This results in a certain strain 
distribution along the individual plate panels. For these panels the effective 
widths and stresses are determined. The resulting forces and moments are 
found by appropriate integration. Moment-curvature diagrams of  cross-sec- 
tions are shown in Fig. 9. For a more accurate description of the cross-sec- 
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Fig. 9. Moment-curvature diagrams of sections with various flange slendernesses. 

tional behaviour, rigid zones at element intersections and the partial restraint 
of  flange buckling due to the web stiffness may be taken into account [9]. 

5 BEHAVIOUR OF BEAMS 

The behaviour of beams subjected to transverse loads may be derived from 
the relevant M - k  curves of the cross-section they are composed of. The pro- 
cedure is shown for a simply supported beam subjected to a concentrated 
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load at midspan (Fig. 10). This is a typical experimental arrangement for 
the determination of limiting b/t ratios for classification of cross-sections into 
categories, according to the relevant specifications (e.g. class 1, 2, 3 or 4 
according to EC 3). The structural behaviour is represented by means of 
moment-rotation or moment-deflection curves. In order to derive analytically 
such curves both prior to and after the attainment of the ultimate load, a strain- 
oriented procedure such as in experimental investigations has to be applied. 
Accordingly, a certain curvature k m a t  midspan is assumed. This corresponds, 
according to the M - k  curve of the cross-section, to a moment M m a t  midspan 
from which the moments, and hence the curvatures, over the entire beam may 
be calculated. The end rotation or midspan deflection of the beam are then 
determined by appropriate integration according to 

M 
0 = fM~' EI dx = fM~'k  dx (15) 

o r  

M 
8 = fM2'  ~ dx = fM2'k  dx (16) 

where M denotes moments due to the actual load conditions and M1' and M2' 
denote moments due to the virtual unit moments and forces. 
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Fig. 10. Determination of moment-rotation or moment-deflection curves of simply supported 
beams. 
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The procedure is repeated until k m = kma x, where the latter is the section 
curvature at maximum moment. Subsequently, the system becomes indetermi- 
nate since from one value of the applied moment two values of curvature, one 
smaller and one larger than kmax, may be determined. A solution is achieved if 
a plastification region at midspan, having a length lp equal to the plastic hinge 
length, is assumed. The beam curvatures within that region are larger, outside 
it smaller than kma x. The calculation of the curvatures outside lp becomes some- 
what cumbersome, since the beam sections in these regions are subjected to 
unloading when the beam ultimate moment is reached (Fig. 10). It is therefore 
required to store the moment and curvature values of all sections outside the 
plastic hinge region in order to evaluate the unloading curve for each of them. 
This is obviously significant only for cross-sections where plastification during 
loading occurs. Otherwise, loading and unloading curves are identical. Experi- 
mental vs theoretical results for test girders are shown in Fig. 11. More 
detailed information on the procedure may be found in Vayas and Psycharis 
[9]. The proposed procedure was extensively applied by Wittemann [7] for 
the determination of rotational capacities of cold-formed members. The author 
made the remark that "the application of the method for the derivation of a 
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Fig. l l .  Moment-rotat ion curves according to tests of  Luckey [10] and the present method. 
Test girders as in Fig. 9. 
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complete moment-deflection-curve required 20 minutes computational time 
on a PC 486, while the corresponding computational effort using the Finite 
Element method was with all restarts a total of more days on a work station 
of the computer center of the University (of Karlsruhe)". 

6 BEHAVIOUR OF COLUMNS 

Axially compressed columns usually fail by global flexural buckling, local 
buckling or a combination of these buckling modes (rotation of the cross- 
sections restricted). Such columns may be treated, similarly to plates, by 
appropriate application of the strain-oriented method. According to the con- 
ventional design methods, local buckling is taken into account by calculating 
the columns with slender cross-section on the basis of the effective area, while 
for compact sections the gross area is used. The present method treats all 
classes of cross-sections equally, since local buckling may occur as stated 
before even in a compact section if it is subjected to large strains (eqns (6) 
and (9)). Accordingly, the column is supposed to be subjected to a specific 
axial strain • for which the effective cross-section is determined by the pro- 
cedures described in previous sections. Global buckling is then accounted for 
by determination of (a) the column slenderness according to eqn (6) or (9), 
where O'cr is the Euler column stress, and (b) a reduction factor X in accordance 
with the relevant column buckling curve (flexural, lateral torsional, etc.). More 
specifically, if a European buckling curve may be used, the relevant expression 
for the reduction factor is 

X = + "Jr ~/(~2 __ ,~2 (17)  

where 

~b = 0.511 + a(X - 0.2) + X 2] (18) 

and a is the imperfection factor given as a function of the equivalent geo- 
metric imperfection. 

Obviously the procedure is the same if any other expression of the reduction 
factor according to other codes is used. 

The validity of the proposed method will be verified by comparison of its 
results with corresponding experimental ones. For that purpose the experi- 
mental investigations of Rieman et al. [ 11] will be used. The test specimen 
consist of a 7 mm plate panel longitudinally stiffened by four stiffeners (Fig. 
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12). The stiffeners have bulbed flat cross-section of type HP 140 × 7 (height 
140 mm, thickness 7 mm, area 12.6 cm 2) according to the relevant German 
specifications. The parameters of the tests were the global column slenderness 
I/i (l = colunm length, i = radius of gyration of the gross cross-section) and 
the local plate slenderness b/t. The  specimens were fabricated and thermally 
treated in a way to ensure that practically no geometrical imperfections or 
residual stresses were present, and are therefore considered as perfect. The 
notation of the specimen includes one letter and two figures. The letter indi- 
cates the type of imperfections - A stands for perfect models - while the 
figures indicate the values of the global and the local plate slendernesses 
(Table 1). Actually, these tests were intended to provide experimental data on 
the behaviour of axially loaded stiffened plates acting as flanges of bridge 
deck sections. However, due to the lack of longitudinal support, the models 
may be treated like compressed struts. This corresponds to densely stiffened 
flange plates where the actually existing longitudinal support has practically 
no influence on the carrying capacity. At this stage it should be clarified that 
the specific experiments, like those used in the following chapters, were selec- 
ted as references for the proposed analytical method, since it was considered 
that they constitute the most complex cases of columns and beam columns, 
where various parameters interact very differently resulting in a large spectrum 
of different element behaviour and failure modes. It was therefore thought 
that an analytical method that is able to accurately predict the response of 
these tests is possibly suited for design purposes. 

For the analytical simulation of the column behaviour, the general strain- 
oriented procedure described above was applied with the following specific 
features. 

(1) Local buckling of the plate panels was taken into account by consider- 
ation of the Winter curve as buckling curve. 

(2) Local buckling of the stiffeners was taken into account by application 

1;~+ L 

++ 

m 
++I il 7 

20. 140 =,20 
]" 1 8 7 " [  

Fig. 12. Test specimen for colunms and beam columns. 
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TABLE 1 
Data for the Test  Specimen 

39 

All models A models D models E models 

b/t l/i l [mm] B [mm] fv" e,,~ ~b e,,~, fyb emo:, 
[MPa] [ram] [MPa] [ram] [MPa] [ram] 

25-20  25 20 870 700 300 0 250 18.7 250 - 13.3 
25 -70  25 70 770 1400 298 0 254 16.4 249 - 13.6 
25 -100  25 100 680 2100 292 0 254 24.9 248 - 23.0 
50 -20  50 20 3530 700 309 0 248 16.7 249 - 16.5 
50 -70  50 70 3180 1400 306 0 256 18.1 248 - 14.5 
50-100  50 100 2860 2100 259 0 256 26.6 248 - 21.3 
75 -20  75 20 5130 700 313 0 248 16.7 248 - 13.7 
7 5 - 7 0  75 70 4630 1400 276 0 256 17.7 249 - 10.8 
7 5 - 1 0 0  75 100 4170 2100 310 0 248 22.5 248 - 13.8 

a The values of  the table are weighted mean values, taking into account  the relative areas of 
the plate panels and stiffeners. The individual  values are as follows: stiffener web fy = 2 6 8 -  
282 MPa;  stiffener bulb  fy = 265-275 MPa;  plate panel  fy = 258-328  MPa. 
b The same applies as for a, the corresponding individual values are: stiffener web fy = 
260 MPa;  stiffener bulb  fy = 278 MPa;  plate panel  fy = 246-257 MPa. 

of the European buckling curve 'c' for lateral torsional buckling, as 
described in the following sections. 

(3) Global buckling was taken into account by application of a European 
buckling curve (eqn (17)) with a value of the imperfection parameter 
a = 0, since the nine models under consideration were theoretically free 
from imperfections. However, as extensive geometric measurements on 
the models showed, it was not possible to fabricate a specimen of such 
dimensions without any geometric imperfections. The initial bow, e.g. 
under the four stiffeners, was generally different (Fig. 13(a)). The A 
models were therefore considered as free from imperfections in the 
sense of a 'mean' value (Table 1). 

(4) The analysis was performed with measured mean values of the geo- 
metrical properties of the models (e.g. thickness of plate panels and 
stiffeners that generally differed from the nominal value of 7 mm). For 
steel, the upper and static yield stresses of the plate panels, the bulb 
and the web of the stiffeners for both tension and compression were 
available from measurements. For the analysis the measured weighted 
mean value of the upper tensile yield stress was used (Table 1). 

The experimental vs theoretical results are shown in Fig. 14. The experi- 
mental ultimate loads and stresses are summarized in Table 2. Although the 
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Fig. 13. Actual initial imperfections for (a) model A 75-70 and (b) model D 50-70. 

general characteristics of all specimen are similar, the real structural behaviour 
is very different for the various models depending on the geometrical proper- 
ties. The models with b / t  = 25 have a compact cross-section so that global 
buckling is the governing failure mode. On the other side, models with b/ t  = 
75 have a slender cross-section and fail primarily in the plate buckling mode. 
Models with l / i  = 100 constitute slender struts where global buckling prevails, 
unlike the stocky models with I/i = 20 for which global buckling plays a 
secondary role. Regarding combinations of these parameters, it may be 
observed that model A 25-20 is a large coupon specimen, model A 25-100 
fails in a pure global buckling mode, while model A 75-20 fails in a pure 
local plate buckling mode. 

The general behaviour of all models as determined experimentally and 
theoretically is very much the same. The models behave linearly up to the 
attainment of the limit load due to the lack of imperfections. The failure is 
nonductile, even for the models (like A 75-20) that primarily fail in the plate 
buckling mode. In these models, however, the resistance is stabilized at large 
strains. Concerning the degree of approximation between analytical and 
experimental results, the following considerations shall be taken into account. 
In the present paper no proposal was made for a new resistance formula for 
members. This requires, as discussed before, extensive statistical evaluations 
with test results. The paper's intention is the description of the member behav- 
iour beyond the limit load, adopting resistance formulae from design codes. 
These formulae were derived from such statistical evaluation of hundreds of 
tests. It is therefore expected that deviations between analytical and experi- 
mental results for the specific models examined occur here. Additional reasons 
for such discrepancies are discussed in the corresponding sections. For the 
present models it is observed that the analytically determined ultimate loads 
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Fig. 14. L o a d - s h o r t e n i n g  cu rves  for  A models :  (a) bit = 25;  (b)  bit = 50; (c) b/t = 75. 
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TABLE 2 
Experimental Ultimate Loads and Ultimate Stresses 

A models D models E models 

Pmo~ [kNl ~rmo~ [MPa] Pm~ [kNl ~m~ [MPa] Pmo~ lkNl ~ ,~  [MPa] 

25-20 2808 276 1936 191 1880 185 
25-70 2623 257 1430 141 1256 123 
25-100 1756 174 972 96 836 82 
50-20 4222 282 2131 143 2249 151 
50-70 3264 219 1628 109 1447 96 
50-100 2882 196 1182 79 985 66 
75-20 4342 218 2491 126 2862 145 
75-70 3495 174 1735 88 1591 80 
75-100 3523 181 1309 66 1237 62 

for the short models (l/i = 20) with large b/t (50 or 75) values are somewhat 
smaller than the corresponding experimental ones. This is due to the fact that 
the Winter curve was used for plate buckling. This curve is valid, as stated 
before, for plates with medium imperfections and is accordingly not able to 
accurately predict the response of the perfect plate panels considered here. 

7 BEHAVIOUR OF BEAM COLUMNS 

Stiffened plates like those examined in the previous section may generally 
fail in two possible modes of failure: 

- plate failure caused by plate buckling, where the deformations at fail- 
ure consist of a global, overall deflection towards the stiffener and 
local buckling of the plate panel between the stiffeners (Fig. 15(a)); 
and 

- stiffener failure caused by lateral torsional buckling of the stiffeners, 
where the deformations at failure consist of a global, overall deflection 
towards the plate and local buckling of the stiffeners (Fig. 15(b)). 

For the study of the behaviour of imperfect stiffened plates, further tests 
on two series of models having the same overall dimensions as presented 
before, but with imposed imperfections, were carried out [12]. Models D had 
global and local geometrical imperfections that led to plate failure, while the 
imperfections of models E led to stiffener failure. The values of these imper- 
fections corresponded nominally to four times the values prescribed by the 
MERRISON Report [13]. The actual values of the global imperfections for 
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Fig. 15. Failure modes and deformations at failure of stiffened plates: (a) plate and (b) stiffener 
failure. 

the two test series, which as will be seen later are taken explicitly into account 
in the calculations, are shown in Table 1. In addition to the global imperfec- 
tions, local imperfections were imposed on the specimen. Models D had local 
plate imperfections in a checkerboard, or 'hungry horse ' ,  pattern with a half- 
wavelength equal to the distance b of the stiffeners and an amplitude fp~ (Fig. 
13(b) and 15(a)). Models E had local stiffener imperfections with a half-wave- 
length equal to 290 m m  and an amplitude at the bulb equal tofst (Fig. 15(b)). 
The imperfections were imposed only in the central part of the models where 
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failure was expected to occur. The actual mean and maximal values of  the 
local imperfections as well as the number of  half-waves in the longitudinal 
direction are summarized in Table 3. In both series, residual welding stresses 
were also present. In order to accurately simulate the experimental behaviour, 
two separate types of  analysis in correspondence to the two modes of  failure 
were needed. 

7.1 Interaction of global buckling with plate buckling 

The present analysis refers to the simulation of  the behaviour of  models D 
whose imperfections lead to plate failure. In principle, two alternative design 
methods may be applied. The models may be analytically treated: 

- a s  axially compressed columns with a geometrical overall imperfec- 
tion; or 

- as beam columns subjected to axial compression and transverse bend- 
ing. 

Both idealizations will be presented and discussed subsequently. If the mod- 
els are treated as axially compressed columns with a global geometrical imper- 
fection, the design formulae that have already been presented for columns 
(eqns (17) and (18)) are to be applied. The imperfection factor a may be 
calculated from the global geometrical imperfection. The relevant relation pro- 
posed by Eurocode 3 is written as 

a ( X  - 0 . 2 ) W / A  = e (19) 

TABLE 3 
Actual Values and Number of Local Imperfections in Longitudinal Direction 

D models E models 

fpt [mm] fpt [ram] N f~, [mm] f~, [mm] N 
mean max mean max 

25-20 4.3 5.3 4 3.2 3.7 1 
25-70 4.4 5.6 7 3.2 4.5 9 
25-100 3.9 7.2 7 3.3 5.9 15 
50-20 8.8 9.7 1 3.1 3.4 1 
50-70 9.2 14.7 5 3.4 4.2 9 
50-100 8.7 12.1 7 3.3 5.2 13 
75-20 10.4 15.5 1 2.7 3.7 1 
75-70 13.3 15.9 3 5.5 6.2 7 
75-100 12.3 15.9 5 5.4 7.2 11 
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where W is the section modulus, A is the cross-sectional area, and e is the 
value of the global imperfection. 

The application of this procedure did not lead to satisfactory results, 
especially where the post-ultimate behaviour of the short models was con- 
cerned, for reasons to be explained later. The treatment of the models as beam 
columns therefore seemed more appropriate. For that purpose the limit state 
equation of a torsionally restrained column subjected to axial forces and bend- 
ing moments shall be taken into account. Such an equation can be adopted 
from any design code. In the context of the present paper the relevant 
expression of Eurocode 3 is considered: 

Nsd kMsd 
- -  + - 1 ( 2 0 )  
XAfy Wfy 

where Nsd = applied axial load, Msd = bending moment due to imperfection 
and shift of the neutral axis, X = reduction factor for column buckling (eqn 
(17)). 

~Nsd 
k =  1 - - - <  1.5 (21) 

XAfy 

/2 = Jr(2/3 - 4) + (O~pl - 1) ~ 0.9 (22) 

where apl = shape factor for the cross-section,/3 = 1.3 for the bending moment 
distribution under consideration, A, W = area and modulus of cross-section 
appropriately reduced due to local buckling. 

As in the previous sections, a strain-oriented procedure has to be applied 
requiring a reformulation of the limit state equation (20), in order to investi- 
gate the element behaviour beyond the limit load. For that purpose a compress- 
ive strain E is applied and the reduction factors for local plate buckling (eqn 
(14)), referring to the plate panel that is primarily in the compression zone, 
and global buckling (eqn (17)) are calculated. The structural response is found 
from the expression 

(1 
fy + (23) 

where X is the reduction factor for global buckling according to eqn (17) with 
ot = 0 since global imperfections are explicitly taken into account by the limit 
state equation 
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n = Aeoo/Afy 

where A and Ae are the gross and effective area of the cross-section, tro is the 
stress that corresponds to the applied strain E according to the material law, 
We is the modulus of the effective cross-section, and k = 1 - ( lalx)n <- 1.5. 

The experimental vs theoretical results are shown in Fig. 16. The analytical 
results are generally in good agreement with the experimental ones, especially 
in the post-ultimate range taking into account the complexity of the problem 
and the large number of influencing factors. It should be emphasized that for 
a more accurate description of the experimental behaviour the complete set 
of mechanical and geometrical properties of the test specimen should be 
included. This would require more elaborate analysis, like the application of 
finite elements. The efficiency of a design model such as the one proposed 
here should, however, be checked against experimental results in the sense 
described in the Introduction of the present paper. The most remarkable dis- 
crepancy between experimental and theoretical results is observed in the initial 
stiffness of the models. The experimental curves provide, due to the large 
local geometrical imperfections, lower initial stiffness than that corresponding 
to the slope of the elastic line or = eE. This 'accordion' effect is, however, not 
included in the analysis, where local buckling is globally taken into account by 
the Winter curve which yields elastic behaviour at small strains. 

The model response is influenced by three factors, i.e. bending, local buck- 
ling and global buckling. Bending and local plate buckling provide ductile 
modes of failure, while failure due to global buckling is rather brittle as shown 
in the previous section. The overall behaviour of the D models is very ductile, 
which shows that bending and local plate buckling have a dominating influ- 
ence on the failure mechanism. This explains that short models (I/i = 20), in 
which global buckling plays an inferior role, have the most ductile behaviour. 
For a correct prediction of the structural behaviour, all modes of failure should 
be explicitly included in the limit state equation. From the two alternative 
procedures presented at the beginning of the section, only the second includes 
explicitly the three influencing factors. The first procedure includes the effects 
of bending indirectly through the imperfection parameter a, so that it possesses 
the main features of global buckling where the type of failure is concerned. 
This is the reason why the corresponding results were not satisfactory, 
especially beyond the limit load, and the method was withdrawn. Finally, it 
may be observed that the ultimate loads of the D models are lower than the 
corresponding loads of the perfect A models. At higher strains, however, D 
models possess higher strength than perfect A models. This observation may 
be useful for the definition of alternative design criteria in future codes. 
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Fig. 16. Load- shor t en ing  curves  for  D models :  (a) b/t = 25; (b) bit = 50; (c) b/t = 75. 
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7.2 Interaction of global buckling with lateral torsional buckling 

The current analysis refers to the simulation of the E models whose imperfec- 
tions lead to stiffener failure as explained before. The values of the maximum 
imperfections at midspan and the material properties are shown in Table 1. 
The analytical treatment of these models is similar to that of the D models. 
The limit state expression is the same as before (eqn (23)). The two analyses 
differ, however, in the determination of the effective area of the cross-section, 
i.e. the way in which local buckling is accounted for. The stiffeners in the E 
models are in the compression zone and fail by lateral torsional buckling since 
they rotate around the plate. This is taken into account by using the buckling 
curve for lateral torsional buckling in the computation of the effective area 
of the stiffener, while the effective area of the plate panel is determined on 
the basis of lower stress as a result of the global imperfection. According to 
the provisions of Eurocode 3, the buckling curve for lateral torsional buckling 
is identical with the global buckling curve (eqn (17)) with the exception that 
it starts to decrease at values of slenderness X > 0.4 (Fig. 12). 

The experimental vs theoretical results are shown in Fig. 17. Again, a good 
agreement between experimental and theoretical results in all ranges of behav- 
iour is achieved. The failure mechanism is in this case nonductile. The reason 
is that in these models local buckling, which is caused by lateral torsional 
buckling, leads in combination with global buckling to brittle types of failure. 
This is expressed analytically by the use of a global buckling curve for the 
case of lateral torsional buckling, which is rapidly decreasing for increasing 
slenderness leading therefore to nonductile failure. 

8 CONCLUSIONS 

A design model for the simulation of the behaviour of steel structural elements 
beyond their ultimate load was presented. The method is based on a strain- 
oriented formulation of the expressions used for the solution of stability prob- 
lems. It may equally be applied to various problems that are associated with 
different types of instability. A wide range of applications where failure is 
initiated by local plate buckling, global column buckling or lateral torsional 
buckling was shown. The applications include individual compressed plate 
panels, beams subjected to transverse bending, columns subjected to axial 
compression, and beam columns in the form of compressed stiffened plates 
with imperfections. The analytical results were compared with corresponding 
experimental ones. The comparisons showed that the proposed method is well 
suited for application to stability problems. For the elements investigated, sev- 
eral types of failure with different characteristics with respect to ductility were 
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detected. Failure is ductile if bending or local plate buckling are the prevailing 
failure modes, while global column buckling or lateral torsional buckling lead 
to nonductile failure. The proposed method may serve as a basis for direct 
ductility evaluations of  steel structural elements. This might enable a reformul- 
ation of  the relevant criteria included in the present design codes through a 
direct comparison between required and available ductility. 
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