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A B S T R A C T  

Welded thin-walled plate girders play an increasingly important role in steel 
structures. The provisions of modern codes with regard to design are restricted to 
the span region between supports. The design of the joint panel is still governed by 
the buckling load, thus making the application of costly stiffeners necessary. 
Experimental investigations on such joints have shown that their strength is well 
above this load, due to the development of a tension field action. To ensure an 
effective design, it is necessary to make allowance for the postbuckling reserve of 
strength and to identify possible collapse mechanisms. 

The present paper provides a method for calculating the carrying capacity and the 
deformation characteristics of the joints. Static and kinematic limit state models are 
presented which allow the ultimate strength to be determined from closed formulae. 
The predicted values are in reasonable agreement with experimental results. 

INTRODUCTION 

Welded thin-walled plate girders play an increasingly more important role 
in steel structures. The main reasons for this development are (a) the 
introduction of modern fabrication methods regarding the welding of 
plates, (b) the fact that the geometry of a plate girder with respect to the 
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thickness of the flanges and the web can be selected to fit best to the strain 
conditions of a structural element and (c) the results of intensive experi- 
mental and theoretical research enabled the design of girders for loads 
higher than the buckling loads. 

The provisions of all modern Codes regarding the design of thin-walled 
plate girders of class 4 webs are, however, restricted to the span region 
between supports. The design of the joint panel is still governed by the 
buckling load, thus making the application of costly diagonal stiffeners or 
backing plates necessary. In order to provide information on the postcriti- 
cal behaviour of such joints, tests have been performed at the Institute for 
Steel Structures in Braunschweig, Germany, which were reported by 
Scheer et  al. 1 Those tests supplied evidence that the joint panels exhibit a 
significant reserve strength beyond buckling. A design method for the 
joint, included in that report, is based on the tension field method for 
girders that are adequately adapted to the loading and boundary condi- 
tions of a joint. 

The behaviour of thin-walled joints can be directly related to the 
corresponding behaviour of joints of normal thickness, extensively inves- 
tigated for the postyielding range at Berkeley, USA. 2'a The reason for 
these investigations was to allow plastification of the web panel in order to 
participate in the dissipation of the seismic input energy. 

The tests of Braunschweig showed that the behaviour of the joint in the 
postbuckling range is largely controlled by the properties of the elements 
surrounding the panel. The tests at Berkeley indicated the same effect for 
the behaviour of the web panel in the postyielding range. 

Another characteristic that was investigated experimentally concerned 
the deformations of the joints. When the joints are designed beyond the 
linear (postbuckling or postyielding) range, it is important to include the 
deformations in the overall analysis of the frame, since its lateral sway may 
become critical due to P-A effects. Such information is provided only for 
joints with web panels of normal thickness. 2'4 For thin-walled webs, where 
these deformations are even more important, no information is available 
at the present. 

This paper deals with the postbuckling behaviour of joints with thin- 
walled web panels. Two limit state models, one 'static' and one 'kinematic', 
are presented which lead to dosed formulae for the determination of the 
ultimate limit strength of the joint. The results obtained by the proposed 
models as well as those of other available models are compared against 
existing experimental results, in order to investigate whether the methods 
used for thick webs also apply to thin ones. In addition, the proposed 
models supply information on the deformation characteristics of the joints. 
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This enables the inclusion of joint deformations in the overall analysis of 
the frames, e.g. according to the joint model proposed by Ermopoulos & 
Vayas. s 

The present models refer to square joints for which experimental results 
exist. They can, however, easily be extended to rectangular joints. 

A STATIC MODEL FOR THE FAILURE M E C H A N I S M  

The limit state model refers to a square joint as shown in Fig. 1. The joint 
is provided with horizontal stiffeners in order to avoid crippling the web 
panel due to the concentrated flange forces. The mechanism of failure may 
be adequately described from the Braunschweig test. 1 In those experi- 
ments all joints tested appeared to experience failure associated with the 
formation of plastic hinges, leading to the mechanism described schemati- 
cally in Fig. 2. The failure mechanism experiences the development of a 
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Fig. l. Geometry of the joint, notation. 
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Fig. 2. A failure mechanism for the joint. 
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strong shear tension field directed along the diagonal AC. The tension field 
may be assumed to extend between the plastic hinges formed on the sides 
of the external flanges AD and DC and a portion of the sides of the 
internal flanges. The mechanism is considered to be symmetric with 
respect to the diagonal BD of the joint, which implies symmetric loading 
conditions for the joint (N, = Q, in Fig. 1). This assumption may be kept 
for the general case of non-symmetric loading, since the behaviour of the 
joints is due to the usual geometric characteristics of the overall frames 
where beams with thin webs are applied (long spans, small shear ratios), 
primarily governed by moments and not by axial or shear forces. This 
observation has been confirmed by the test results. 

Using the properties of symmetry, a 'static' model is constructed in 
accordance with the failure mechanism of Fig. 1, as shown in Fig. 3. The 
tension field is considered to develop the full yield stresses ayw of the panel 
zone material, without accounting for any reduction of the shear stress ~, 
that develops prior to shear buckling. The effects of this assumption do 
compensate to some extent for the neglection of strain hardening, which is 
expected to develop at large rotations in the vicinity of the ultimate 
moment. Additionally, %r is difficult to determine accurately, given the 
uncertainty in defining the boundary conditions. 

The analysis of the ultimate moment of the joint at failure is based on 
the statics of the symmetric half of the joint after all plastic hinges have 
been formed. The tension field is simulated by its tension force resultants 
Tt and Tz on the two adjacent sides of point C. All plastic hinges are 
considered to develop equal plastic moments Mp, given by 

bft  (1) 
Mp = ~yr 4 
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Fig. 3. The static model .  
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where the effect of the axial forces on M v is ignored. Then, applying 
the equation of equilibrium described by the statics of the system in 
the elements DE, EC and BC successively and solving the resulting 
simultaneous equations, one obtains for the ultimate moment Mu of the 
joint: 

1 Mu=[Ad~ + B-~+C] (2) 

where 

A = trywtw ~ (3) 

B = 2~Mf (4) 

C:2Mp--{-Oywtw-~ ((x--~) (5) 

Differentiating eqn (2) with respect to the unknown distances dl and d2 
and equating the corresponding partial differentials to zero to minim- 
ize the ultimate moment Mu with respect to dl and d2, one finds the 
critical distances dx and d 2 for which the failure mechanism develops 
with the least energy. These differentiations yield the following rela- 
tionships for the distances dl and d2, normalized to the length of the 
panel: 

(6) 

d__~2 = 1 (7) a 

Substitution of eqns (3)-(7) into eqn (2) yields the following closed formula 
for the ultimate moment of the joint: 

a2tw°yw ~ 1 + (8) 
M~= ~ 4 
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A KINEMATIC MODEL OF THE FAILURE MECHANISM 

From measurements o n  the test specimens after failure, a second, more 
accurate (in relation to the geometric properties), failure mechanism may 
be derived (Fig. 4). The mechanism is constructed by subsequently 

Fig. 4(a) Joints at large rotations; 
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Fig. 4(b) Joint at fai lure for the kinematic model. 
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determining, for a given angle of rotation, the points C, C2, D, E and F 
according to the geometric relations or as intersections of two straight 
lines, as indicated in Fig. 4. The failure mechanism experiences the 
development of six plastic hinges and a tension field directed along the 
diagonal. All geometric properties of the failure mechanism may be 
determined as a function of the angle of rotation 0, making use of 
trigonometric relations. The angles are given by the expressions: 

n 0 
01 = ~ - ~  (9) 

tan 02 = sin(0 + 01) 
(3 - 2/cos 0) cos 01 - cos(0 + 01) (10) 

0 3 = 7 ~ - - 0 - - 0 1 - - 0 2  (11) 

The lengths are given by 

(co~ ) sin02 
ECI =2a - 1  sin(02-201) (12) 

and the elongation of the diagonal AC by 

6(AC) = 2a cos 01 - ax/~ (15) 

The analysis for the ultimate moment of the joint at failure is based on the 
expression of the work done by the external and internal forces and 
moments. The internal work is composed of two terms, one representing 
the work done by the panel zone web equal to 

T J. U D/'-~_ 51/Ar~x 1 = 2 Dutrrwt, ,vt~! (16) 

and the other representing the work done by the plastic hinges. Assuming 
that all flanges have equal plastic moments, this work is equal to 

Ur2=MpIO+O+(O2--201)+(203-2)+(O2-201)+O]=4MpO (17) 

HG =ECx sin 01 (13) 

BH --- a sin 01 (14) 
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where Mp is given by eqn. (1). The work done by the external forces and 
moments according to Fig. 1 is equal to 

W r = - M ~ s i n O + ~ - a s i n O +  a(1-cosO) 

= - M [ s i n 0  a(1-cos2, 0)] (18) 

The ultimate limit moment Mu at failure may then be determined by 
setting equal the internal to the external work: 

W T= U]'+ U~ (19) 

according to 

- M u l s i n 0  a(1-cos 
2"~ O) 1 

1 
= ~(EC1 + a) sin 01trywt,,,(2a cos 01 - ax/~) + 4Mp0 (20) 

The value of Mu is expressed according to eqn (20) in terms of the angle of 
ration 0. This angle is, however, unknown and will be eliminated. This 
may be done by assuming its values to be small, so that eqn (20) then 
becomes 

- MuO = ~tl2tryw two + 4MpO (21) 

The ultimate limit moment may then be determined by substituting eqn (1) 
in eqn (21), which yields 

tr , , t ,a2( 3.45t 2 tr,, bf) (22) 
Mu= x/~ 0"65+ at------~ try,, 

The first term in eqn (22) represents the carrying capacity of the panel 
zone web, whereas the second one represents the carrying capacity of 
the surrounding frame. It must be noted that eqns (8) and (22) give 
the ultimate limit moment at the internal corner i of the joint, as shown in 
Fig. 1. 
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COMPARISON BETWEEN EXPERIMENTAL A N D  OTHER 
ANALYTICAL RESULTS 

As mentioned before, it is known that even for thick web panels the 
surrounding frame, composed of the column or beam flanges and any 
stiffeners, contributes to the carrying capacity beyond the yield moment of 
the web: 

M,=a2twayw/x/~ (23) 

Relative formulae are provided for stiffened joints by the Californian 
Earthquake Regulations 6 and the Swiss Code for Steel Structures ~ and for 
unstiffened joints by Tschemmernegg et al. 4 These formulae, written with 
the notation of Fig. 1 and expressed in terms of the ultimate moment, are 
given by 

a2twayw( 1"43t 2 bf) 
Mu= x~ ~ 1 + at, ~aa (24) 

according to Ref. 6, 

M u -  x/~ 0"7-q at,, ~ (25) 

according to Ref. 7 and 

_ a2twarwI0.66( 1 a ~ 5"25t2 bf ( 1 0"0~4tf)] 
+ 2 - ~ J +  ~ - - (26) Mu x/~ 2a 

according to Ref. 4. 
For joints with thin webs, a procedure for determining the ultimate 

moments similar to the tension field method for the shear capacity of 
beams with thin webs is proposed by Scheer et al. 1 The limit moment is 
determined as the sum of the critical moment and the moment due to 
tension field action. 

In the following the results of the five methods described above will be 
compared with the experimental results on joints with thin webs reported 
in Ref. 1. The comparison between the formulae for thick webs and the 
experimental results on thin webs has been made in order to find out 
whether the methods for thick webs apply qualitatively to thin ones. 
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Table 1 presents the main specimen data and the respective ultimate 
moments. For more information the reader is referred to Ref. 1. One test is 
excluded from the table since its results were largely influenced by 
extremely large imperfections, as reported in Ref. 1, so that it had to be 
repeated on another specimen. Figure 5 represents graphically the ratios 
between the experimental and the theoretical results. To determine the 
limit moments, eqns (24)-(26) had to be slightly modified to make 
allowance for the influence of the normal and shear forces Nr and Qr 
respectively on the corner moment, since these formulae do not apply to 

TABLE 1 
Test Specimen Data 

Number Specimen a tw br tf 0"Yw 2, 0"yf M~ ,p 
(mm) (mm) (mm) (mm) (Nmm / (Nmm 2) (kNm) 

1 A-10-10-2 200 1"0 150 10"1 217 299 -6"7 
2 A-07-10-1 200 1-1 150 7-3 211 279 - 6 ' 3  
3 A-07-13-2 200 1'25 150 7'35 226 259 -7"1 
4 A-07-15-1 200 1"5 150 7"2 206 259 - 7 ' 4  
5 A-05-10-1 200 1"1 150 5"4 211 366 -4"7 
6 A-05-10-2 200 1"0 150 5"1 220 359 - 5 ' 2  
7 A-05-10-3 200 1-0 150 5'1 220 359 -5"1 
8 B-07-10-1 300 1-0 150 7"35 217 259 -8"9 
9 B-07-10-2 300 1"0 150 7"35 217 259 -9"4 

Test No. 1,0 
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the corner moment. The comparison shows that the predictions of all three 
methods for thin webs and the method of Tschemmernegg et al. are 
relatively close to the experimental results. As expected, eqn (24) predicts a 
far too large moment, whereas eqn (25) is far on the unsafe side. However, 
the results of all methods correlate well with the experimental results, 
suggesting that they might be used for design after a certain numerical 
manipulation. The design moment is equal to 

Md= Mu/~m (27) 

where the partial safety factor for the resistance may be determined 
according to the procedure described in Ref. 8. If this is applied to the 
formula of the 'kinematic' model, which is recommended here, a value of 
)'m = 1"24 is found. 

Obviously the applicability of this formula is restricted to an experimen- 
tally verified range of geometric and loading parameters. An extrapolation 
of the formula to rectangular joints with dimensions a x b might be written 
a s  

trywtwab( 3.45t2 tryf bf) 
M . =  x/~ 0"654- at----~ a, 2-b (28) 

but requires experimental verification. 

DEFORMABILITY OF THE JOINT 

If the joints are allowed to be stressed beyond the linear range, information 
must be provided for their deformation. Inclusion of the joint deformations 
is required for reasons of safety and is of major importance for the global 
behaviour of the overall frame. This applies especially in the case of sway 
frames subjected to lateral loads, where the additional deformations due to 
joint rotation may adversely affect the overall stability. In the following 
section two methods for the estimation of the joint limit rotation 0 will be 
presented that correspond to the previously described models. 

The kinematics of the failure mechanism on which the static model is 
based are shown in Fig. 6. Equating the external and internal works of the 
system yields 

2 M p( q~ + O) = M , O + Tl ~ - - ~  t l -- sin O - cos ~o ) -- T2 S ~ a  sin O (29) 
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~ 1 ~  ~' '  , 

Fig. 6. The static model on the deformed state. 

The kinematics of the model of Fig. 6 allow a quick, however gross, 
estimation of the rotation 0 to be made. Indeed, the geometric compatibil- 
ity of the failure mechanism requires that 

sin ~0 = ~ ( s i n  0+cos ~0- 1) (30) 

Let us assume that the failure mechanism proceeds by allowing the 
rotation 0 to increase progressively, following a corresponding increase of 
the rotation ~0. At some point, under the constraint imposed by the 
geometry of the mechanism, the rotation reaches its maximum value. Then 
for any further increase of q~, the rotation of 0 begins to decrease (assuming 
that, except for the plastic hinges which allow for free rotation, the frame 
behaves elastically). We may consider that the maximum value of 0 
respresents the rotation at which the mechanism reaches its maximum 
capacity (since Mu becomes a minimum, requiring the least energy for the 
maximum value of 0; eqn (29)). Differentiation of eqn (30) with respect to q~ 
suggests that 0 reaches its maximum value when tp=45 °, with the 
corresponding maximum value of 0 given by 

o=sin-L +- f- (31) 

The values of 0 calculated by eqn (31) compare well with the experimental 
values, as will be shown later, suggesting that eqn (31) gives a reasonable 
estimation of the rotations. A point that needs clarification here concerns 
the rotation q~. As may be revealed from the pictures of the joints tested 
experimentally, 1 the rotation tp is actually much smaller than 45 °, being 
somewhere in the order of magnitude of 0. This is due to the fact that the 
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frame does not elongate elastically, as assumed in this analysis, but yields 
along its top flange, elongating plastically to some extent and undergoing 
a smaller than 45 ° rotation ~0. This explains why the static model appears 
to be relatively stiff, in terms of the calculated ultimate moment M,, as 
compared with the results of the experiments. Indeed, calculating the 
ultimate moments M, by means of eqn (29), based on the assumption that 
~o=0 and with 0 given by eqn (31}, one obtains values for M~ closer to the 
experimental results. Note that the maximum value of 0, as estimated by 
eqn (31), should not be affected significantly by the assumption that the 
angle ~0 is allowed to decrease, following a corresponding axial yield of the 
top flange. 

From the kinematic model presented in Fig. 4, the rotation may be 
determined as the intersection between the M-O curve, according to eqn 
(20) in connection with eqns (17)-(19), and the horizontal line through M,, 
evaluated from eqn (22), as shown in Fig. 7. A comparison of these values 
of 0 with those obtained experimentally suggests that the assumed failure 
mechanism of Fig. 4 is very close to the experimental one. 

Once the pair (M,-O,) has been determined (we recommend that eqn 
(22) should be used to determine M. and eqn (31) to determine 0, 
respectively, due to their relative simplicity, although the results when 0, is 
determined by the kinematic model are much closer to the experimental 
ones) the complete moment-rotation behaviour can be approximated by a 
bilinear elastoplastic curve. A better approximation is achieved if a further 
point on the M-O curve is determined. The experimental results indicate 
that the linear range extends beyond the critical buckling moment M, ,  
which corresponds to shear stresses equal to the critical buckling stress of 
the panel zone Zcr, under the assumption of simple supporting conditions. 
It is therefore possible to limit the linear range of the M-O curve by the 
moment 

Mcr-- a2twTcr (32) 

M [kN] 

••--• test no. 

5 

| ~u 
5 o 10 ̀o 15" 20 o 25 ° 

Fig. 7. Determination of 0. in the kinematic model. 
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and the rotation by 

0er = Tcr/G ( 33 )  

The rotation 0c, may approximately be set to 0 since its values for thin web 
panels are small, therefore implying that if the buckling moment is used as 
the design moment the joint could be numerically treated as stiff. The final 
curve can be completed by setting a parabola between the two points 
(Mu-O.) and (M~,-0). In analytic terms the complete curve is expressed by 
the relations: 

0 = 0 for M ~< Mcr (34a) 

M=Mc,+(M.-Mcr) for Mcr < M < M.  (34b) 

M = M.  for M > M.  (34c) 

Figure 8 shows the results of some tests compared to the analytic curve 
given by eqns (34). 

"~10.0 
Z 

~-8.0 
E 
o 
E-F~O 

-4,0 

-2.0 

/ f• . .-- ~--~"~-- 

f / 
A - 0 7 - 1 0 -  1 

t o 

0 0 ~ 16.0 15"0 20"0 2S'O 
rototion [degl 

/ f  J r  
- 3 . 6 ¢ / / f  

-2.~/ __ ) 

_1.21 
0+ , , -, , 

0 4.0 8"0 12.0 16.0 20"0 
rototion [deg] 

experimentol 

~ioe~ 

~-B.O 

E-6. 0 

- 4.0 

-2. 

0 
0 

i 

-~0. 

"~u from kinemotic 

A-07-13 - 1 

-4.0 

-2"0 

0 
0 

J 

6o i~o 16o 2o~' 220 
rotolion [deg) 

/ 
/ 

B-07-10-1  

31o 6Lo 

- - - - -  iheorelic.ol 

9~0 12.0 15-0 
rototion [deg] 

Fig. 8. Experimental vs theoretical M-0 curves. 



Behaviour of thin-walled steel fiame joints 119 

C O N C L U S I O N  

Two different limit state models have been presented for the description of 
the carrying capacity of steel framed joints with slender web panels. Both 
models supply closed formulae for the determination of the ultimate limit 
moment of the joint. The theoretical results are in good agreement with 
corresponding experimental ones. Apart from the values of the moments,  it 
is possible to predict the limit joint rotations that correspond to the above 
moments and to derive moment - ro t a t ion  curves. These curves may be 
used as input data for the design of the overall frame. The curves agree 
well with the experimental ones. Application of the proposed models is 
restricted to the geometric conditions that have been examined experimen- 
tally. 
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