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Abstract

There are several generalizations of the classical theory of Sobolev spaces as

they are necessary for the applications to Carnot{Carath�eodory spaces, subel-

liptic equations, quasiconformal mappings on Carnot groups and more general

Loewner spaces, analysis on topological manifolds, potential theory on in�nite

graphs, analysis on fractals and the theory of Dirichlet forms.

The aim of this paper is to present a uni�ed approach to the theory of Sobolev

spaces that covers applications to many of those areas. The variety of di�erent

areas of applications forces a very general setting.

We are given a metric space X equipped with a doubling measure �. A

generalization of a Sobolev function and its gradient is a pair u 2 L1loc(X), 0 �

g 2 Lp(X) such that for every ball B � X the Poincar�e-type inequality

Z
B

ju� uBj d� � Cr

�Z
�B

gp d�

�1=p
holds, where r is the radius of B and � � 1, C > 0 are �xed constants. Working

in the above setting we show that basically all relevant results from the classical

theory have their counterparts in our general setting. These include Sobolev-

Poincar�e type embeddings, Rellich-Kondrachov compact embedding theorem,

and even a version of the Sobolev embedding theorem on spheres. The second

part of the paper is devoted to examples and applications in the above mentioned

areas.

This research was begun while P.H. was visiting the Universities of Helsinki and

Jyv�askyl�a in 1994, continued during his stay in the ICTP in Trieste in 1995 and �nished

in Max-Planck Institute (MIS) in Leipzig in 1998. He wishes to thank all the institutes

for their hospitality. P.H. was partially supported by KBN grant no. 2{PO3A{055{14,

P.K. by the Academy of Finland grant SA-34082 and by the NSF.

1991 Mathematical Subject Classi�cation: Primary 46E35.
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1 Introduction

The theory of Sobolev spaces is a central analytic tool in the study of various aspects of

partial di�erential equations and calculus of variations. However, the scope of its appli-

cations is much wider, including questions in di�erential geometry, algebraic topology,

complex analysis, and in probability theory.

Let us recall a de�nition of the Sobolev spaces. Let u 2 Lp(
), where 
 is an open

subset of IRn
; and 1 � p � 1. We say that u belongs to the Sobolev space W 1;p(
) if

the distributional derivatives of the �rst order belong to Lp(
). This de�nition easily

extends to the setting of Riemannian manifolds, as the gradient is well de�ned there.

The fundamental results in the theory of Sobolev spaces are the so-called Sobolev

embedding theorem and the Rellich{Kondrachov compact embedding theorem. The

�rst theorem states that, for 1 � p < n, W 1;p(
) � Lp
�

(
), where p� = np=(n � p),

provided the boundary of 
 is su�ciently nice. The second theorem states that for

every q < p� the embedding W 1;p(
) � Lq(
) is compact.

Since its introduction the theory and applications of Sobolev spaces have been under

intensive study. Recently there have been attempts to generalize Sobolev spaces to the

setting of metric spaces equipped with a measure. Let us indicate some of the problems

that suggest such a generalization.

1) Study of the Carnot{Carath�eodory metric generated by a family of vector �elds.

2) Theory of quasiconformal mappings on Carnot groups and more general Loewner

spaces. 3) Analysis on topological manifolds. 4) Potential theory on in�nite graphs. 5)

Analysis on fractals.

Let us briey discuss the above examples. The Carnot{Carath�eodory metric appears

in the study of hypoelliptic operators, see H�ormander [125], Fe�erman and Phong [67],

Jerison [130], Nagel, Stein and Wainger [199], Rotschild and Stein [213], S�anchez-Calle

[219].

The Sobolev inequality on balls in Carnot{Carath�eodory metric plays a crucial role

in the so-called Moser iteration technique, [197], used to obtain Harnack inequalities and

H�older continuity for solutions of various quasilinear degenerate equations. The proof

of the Harnack inequality by means of the Moser technique can be reduced to verifying

a suitable Sobolev inequality. Conversely, a parabolic Harnack inequality implies a

version of the Sobolev inequality as shown by Salo�-Coste, [216]. It seems that the

�rst to use the Moser technique in the setting of the Carnot{Carath�eodory metric were

Franchi and Lanconelli, [76]. The later work on related questions include the papers

by Biroli and Mosco, [8], [9], Buckley, Koskela and Lu, [19], Capogna, Danielli and

Garofalo, [26], [27], [28], [29], [30], Chernikov and Vodop'yanov, [37], Danielli, Garofalo,

Nhieu, [59], Franchi, [72], Franchi, Gallot and Wheeden, [73], Franchi, Guti�errez and

Wheeden, [74], Franchi and Lanconelli, [77], Franchi, Lu and Wheeden, [78], [79],
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Franchi and Serapioni, [81], Garofalo and Lanconelli, [88], Marchi [184].

The theory of Carnot{Carath�eodory metrics and related Sobolev inequalities can

be extended to the setting of Dirichlet forms, see Biroli and Mosco, [8], Garattini [87],

Sturm, [234].

For connections to the theory of harmonic maps see the papers Jost, [138], [139],

[140], [141], Jost and Xu, [142], Haj lasz and Strzelecki, [106].

The theory of quasiconformal mappings on Carnot Groups has been studied by

Margulis and Mostow, [185], Pansu, [205], Koranyi and Reimann, [155], Heinonen and

Koskela, [114], Vodop'yanov and Greshnov, [249]. Results on Sobolev spaces play an

important role in this theory. Very recently Heinonen and Koskela, [115], extended the

theory to the setting of metric spaces that support a type of a Sobolev inequality.

Semmes, [221], has shown that a large class of topological manifolds admit Sobolev

type inequalities, see Section 10. Sobolev type inequalities on a Riemannian manifold

are of fundamental importance for heat kernel estimates, see the survey article [54] of

Coulhon for a nice exposition.

Discretization of manifolds has lead one to de�ne the gradient on an in�nite graph

using �nite di�erences and then to investigate the related Sobolev inequalities, see

Kanai, [145], Auscher and Coulhon, [2], Coulhon [52], Coulhon and Grigor'yan, [55],

Delmotte, [63], Holopainen and Soardi, [123], [124]. These results have applications

to the classi�cation of Riemannian manifolds. Also the study of the geometry of

�nitely generated groups leads to Sobolev inequalities on associated Cayley graphs,

see Varopoulos, Salo�-Coste and Coulhon, [247], and Section 12 for references.

At last, but not least, the Brownian motion on fractals leads to an associated Laplace

operator and Sobolev type functions on fractals, see Barlow and Bass, [5], Jonsson [136],

Kozlov, [158], Kigami, [147], [148], [149], Kigami and Lapidus, [150], Lapidus, [163],

[164], Metz and Sturm, [192], Mosco, [196].

How does one then generalize the notion of Sobolev space to the setting of a metric

space? There are several possible approaches that we briey describe below.

In general, the concept of a partial derivative is meaningless on a metric space.

However, it is natural to call a measurable function g � 0 an upper gradient of a

function u if

ju(x)� u(y)j �
Z


g ds

holds for each pair x; y and all recti�able curves  joining x; y. Thus, in the Euclidean

setting, we consider the length of the gradient of a smooth function instead of the actual

gradient. The above de�nition is due to Heinonen and Koskela, [115].

Assume that the metric space is equipped with a measure �. Then we can ask if for
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every pair u, g, where u is continuous and g is an upper gradient of u, the weak version

�Z
B

ju� uBjq d�
�1=q
� Cr

�Z
�B

g
p
d�

�1=p
(1)

of the Sobolev-Poincar�e inequality holds with q > p � 1 whenever B is a ball of radius

r. Here C and � � 1 are �xed constants, barred integrals over a set A mean integral

averages, and uB is the average value of u over B.

If q = 1 we call (1) a p-Poincar�e inequality. It turns out that a p-Poincar�e inequality

implies a Sobolev-Poincar�e inequality, see Section 5.

This approach is however limited to metric spaces that are su�ciently regular. There

have to be su�ciently many recti�able curves, which excludes fractals and graphs. For

more information see Section 4, Section 10.2, Section 11.2, Bourdon and Pajot [15],

Cheeger [33], Franchi, Haj lasz and Koskela [75], Hanson and Heinonen [109], Heinonen

and Koskela [115], [116], Kallunki and Shanmugalingam [144], Laakso [160], Semmes

[221], Shanmugalingam [223], Tyson [240].

Recently Haj lasz, [100], introduced a notion of a Sobolev space in the setting of an

arbitrary metric space equipped with a Borel measure that we next describe.

One can prove that u 2 W 1;p(
), 1 < p � 1, where 
 � IRn is a bounded set

with su�ciently regular boundary if and only if u 2 Lp(
) and there is a non-negative

function g 2 Lp(
) such that

ju(x)� u(y)j � jx� yj(g(x) + g(y)): (2)

Since this characterization does not involve the notion of a derivative it can be used

to de�ne Sobolev space on an arbitrary metric space, see Haj lasz, [100]. These spaces

have been investigated or employed in Franchi, Haj lasz and Koskela [75], Franchi, Lu

and Wheeden, [79], Haj lasz [101], Haj lasz and Kinnunen, [102], Haj lasz and Martio

[105], Heinonen [113], Heinonen and Koskela [115], Ka lamajska [143], Kilpel�ainen, Kin-

nunen and Martio [152], Kinnunen and Martio [153], Koskela and MacManus [157],

Shanmugalingam [223].

Another approach is presented in the paper of Haj lasz and Koskela, [103], in which

also some of the results from our current work were announced. Given a metric space

equipped with a Borel measure we assume that a pair u and g, (g � 0), of locally

integrable functions satis�es the family (1) of Poincar�e inequalities with q = 1 and a

�xed p � 1 on every ball, that is

Z
B

ju� uBj d� � CP r

�Z
�B

g
p
d�

�1=p
: (3)

This family of inequalities is the only relationship between u and g. Then we can ask

for the properties of u that follow.
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Yet another approach to Sobolev inequalities on metric spaces is presented in the

paper [11] by Bobkov and Houdr�e. However it is much di�erent from the above men-

tioned setting and it will not be discussed here.

One of the purposes of this paper is to systematically develop the theory of Sobolev

spaces from inequality (3). This includes the study of the relationships between (1), (2),

and (3). We show that basically all relevant results from the classical theory have their

counterparts in our general setting. These include Sobolev-Poincar�e type embeddings,

Rellich-Kondrachov compact embedding theorem, and even a version of the Sobolev

embedding theorem on spheres.

We will work with metric spaces equipped with a doubling measure. Such spaces

are often called spaces of homogeneous type, but we will call them doubling spaces. The

reader may �nd many important examples of spaces of homogeneous type in Christ

[40], and Stein [229]. The class of such spaces is pretty large. For example Volberg and

Konyagin [251], [252], proved that every compact subset of IRn supports a doubling

measure; see also Wu [241], and Luukkainen and Saksman [177].

Starting from the work of Coifman and Weiss [47], [48], spaces of homogeneous

type have become a standard setting for the harmonic analysis related to singular inte-

grals and Hardy spaces, see, e.g., Gatto and Vagi [91], [92], Genebahsvili, Gogatishvili,

Kokilashvili and Krbec [93], Han, [107], Han and Sawyer, [108], Macias and Segovia

[178].

However it seems that till the last few years there was no development of the theory

of Sobolev spaces in such generality.

There are some papers on Sobolev inequalities on spaces of homogeneous type re-

lated to our work; see Franchi, Lu and Wheeden, [79], Franchi, P�erez and Wheeden,

[80], MacManus and P�erez, [179], [180]; the last three papers were motivated by our

approach. Also the paper of Garofalo and Nhieu [90], provides a similar approach in

the speial case of Carnot{Carath�eodory spaces.

The reader might wonder why we insist on studying the situation with a �xed

exponent p instead of assuming that (3) holds with p = 1: There is a simple reason

for this. Indeed, for each p > 1 one can construct examples of situations where (3)

holds for each smooth function u with g = jruj but where one cannot replace p by any

exponent q < p: Let us give an example to illustrate the dependence on p: Take two

three-dimensional planes in IR5 whose intersection is a line L, and let X be the union

of these two planes. The metrics and measures induced from the planes have natural

extensions to a metric and a measure on X: If u is a smooth function on X then we

de�ne g(x) to be jru(x)j whenever x does not belong to L, where ru is the usual

gradient of u in the appropriate plane, and de�ne g(x) to be the sum of the lengths

of the two gradients corresponding to the di�erent planes when x 2 L: One can then

check that (3) holds for p > 2 but fails for p � 2:
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As we said we want to develop the theory of Sobolev spaces assuming a family of

Poincar�e inequalities (3) and the doubling property. Such an approach has found many

applications in the literature in various areas of analysis and geometry. The applications

include the above mentioned Carnot{Carath�eodory spaces [59], [79], [89], [90], graphs

[62], [63], [124], Dirichlet forms [8], [9], [10], [234], quasiconformal mappings [115].

This approach has also found many important applications in Riemannian geometry.

The class of open Riemannian manifolds that satisfy both the doubling condition and

the p-Poincar�e inequality is under intensive investigation, see Colding and Minicozzi,

[49], [50], Grigor'yan, [97], Holopainen, [121], Holopainen and Rickman, [122], Li and

Wang, [167], Maheux and Salo�-Coste, [181], Rigoli, Salvatori and Vignati, [210], Salo�-

Coste, [216], [217], [218], Tam, [237], where some global properties of manifolds were

obtained under the assumption that the Riemannian manifold satis�es a p-Poincar�e

inequality and the doubling property.

In 1975 Yau, [256], proved that on open Riemannian manifolds with nonnegative

Ricci curvature bounded harmonic functions are constant. Some time later he conjec-

tured that for such manifolds space of harmonic functions with polynomial growth of

�xed rate is �nite dimensional.

Independently Grigor'yan, [97], and Salo�-Coste, [216], generalized Yau's theorem

by proving that bounded harmonic functions are constant provided the manifold satis-

�es the doubling property and the Poincar�e inequality (3) with g = jruj and p = 2. It

is known that manifolds with nonnegative Ricci curvature satisfy those two conditions,

see Section 10.1. Under the same assumptions the result of Yau has been extended to

harmonic mappings, see Li and Wang, [167], and Tam, [237].

Very recently Colding and Minicozzi, [49], [50], answered the conjecture of Yau in

the a�rmative. Again the assumptions were that the manifold is doubling and that

the 2-Poincar�e holds.

Many of the above Riemannian results have counterparts in the more general set-

tings of Carnot{Carath�eodory spaces, graphs or Dirichlet forms and again the main

common assumption is the same: doubling and Poincar�e.

This common feature was guiding us in our work. The �rst part of the paper is

devoted to general theory and the second part to examples and applications in the

areas mentioned above.

The paper is organized as follows. In Section 2 we present the setting in which

we later on develop the theory of Sobolev inequalities. In Section 3 we discuss the

equivalence of various approaches to Sobolev inequalities on metric spaces. Section 4 is

devoted to some basic examples and conditions that are necessarily satis�ed by spaces

that satisfy all p-Poincar�e inequalities (1) for pairs of a continuous functions and upper

gradients. In Section 5 we show that if a pair u, g satis�es a p-Poincar�e inequality (3),

then ju� uBj can be estimated by a generalized Riesz potential. This together with a
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generalization of the Fractional Integration Theorem implies a variant of the Sobolev-

Poincar�e embedding theorem. In Section 6 we impose the additional condition that

the space be connected and improve on one of the inequalities from Section 5, namely

we prove a variant of the Trudinger inequality. In Section 7 we prove an embedding

theorem for almost all spheres centered at a given point. In Section 8 we generalize

the classical Rellich-Kondrachov theorem to the setting of metric spaces. So far all

the results are local in nature. In Section 9 we introduce the class of John domains

and generalize previous results as global results in John domains. In Section 10 we

collect important examples of metric spaces where the theory developed in the paper is

applicable (including open Riemannian manifolds, topological manifolds and Loewner

spaces). In Section 11 we study the theory of Carnot{Carath�eodory spaces that are

associated with a family of vector �elds, from the point of view of Sobolev inequalities

on metric spaces. In Section 12 we discuss Sobolev inequalities on in�nite graphs.

Section 13 is devoted to applications of the theory to nonlinear potential theory and

degenerate elliptic equations. Section 14 is an appendix, where we collect all the results

about measure theory and maximal functions that are needed in the paper.

The exposition is self-contained and the background material needed is the abstract

measure theory in metric spaces, some real analysis related to maximal functions and

the basic theory of classical Sobolev spaces covered by each of the following references:

Evans and Gariepy, [64], Gilbarg and Trudinger, [94], Mal�y and Ziemer, [182], Ziemer,

[258].

Some examples and applications that illustrate the theory require slightly more. In

Section 11.3-4 some familiarity with Lie groups and commutators of vector �elds is

needed and in Section 13 we assume basic facts about quasilinear elliptic equations in

divergence form. One can, however, skip reading Sections 11.3-4 and 13 and it will not

a�ect understanding of the remaining parts of the paper.

We did make some e�ort to give comprehensive references to subjects related to our

work. We are however sure that many important references are still missing and we

want to apologize to those whose contribution is not mentioned.

Notation. Throughout the paper X will be a metric space with a metric d, and a

Borel measure �. The precise assumptions on � are collected in the appendix. If not

otherwise stated, � will be doubling which means that

�(2B) � Cd�(B) (4)

whenever B is a ball and 2B is the ball with the same center as B and with radius twice

that of B (in the same way we de�ne �B for � > 0). We will call such a metric measure

space X a doubling space and Cd a doubling constant. 
 � X will always denote an

open subset. Sometimes we will need the doubling property on a subset of X only; we

will say that the measure � is doubling on 
 if (4) holds whenever B = B(x; r), x 2 


and r � 5 diam 
. By writing v 2 L
q

loc(
), we designate that v belongs to the class

10



Lq(B) with respect to � for each ball B � 
. If 
 = X, we will simply write v 2 Lq

loc.

By Lip (X) we denote the class of Lipschitz functions on the metric space X.

The average value will be denoted by vA =
R
A
v d� = �(A)�1

R
A
v d�. If R > 0 and

v is a measurable function, MRv stands for the restricted Hardy-Littlewood maximal

function

MRv(x) = sup
0<r�R

Z
B(x;r)

jvj d�:

If R =1 we will simply write Mv. Another version of the maximal function is

M
v(x) = sup
r>0

1

�(B(x; r))

Z

\B(x;r)

juj d�;

which applies to v 2 L1
loc(
; �). It is also clear how to de�ne the restricted maximal

function M
;Rv.

By Hk we denote the k-dimensional Hausdor� measure. The symbol �E denotes

the characteristic function of a set E. We reserve B to always denote a ball. Observe

that according to the structure of the metric space it may happen that the center and

the radius of the ball are not uniquely de�ned. In what follows, when we write B we

assume that the center and the radius are �xed. Otherwise �B is not properly de�ned.

By C we will denote a general constant which can change even in a single string of

estimates. By writing C = C(p; q; �) we indicate that the constant C depends on p, q

and � only. We write u � v to state that there exist two positive constants C1, and C2

such that C1u � v � C2u.

Some further notation and commonly used results are collected in the appendix.

2 What are Poincar�e and Sobolev inequalities?

In this section we describe the general framework and give samples of problems which

are treated later on. Until the end of the section we assume that � is a Borel measure

on a metric space X, but we do not assume that � is doubling. As before 
 � X

denotes an open set.

De�nition. Assume that u 2 L1
loc(
) and a measurable function g � 0 satisfy the

inequality Z
B

ju� uBj d� � CP r

�Z
�B

g
p
d�

�1=p
; (5)

on each ball B with �B � 
, where r is the radius of B and p > 0, � � 1, CP > 0 are

�xed constants. We then say that the pair u; g satis�es a p-Poincar�e inequality in 
.

If 
 = X, we simply say that the pair u; g satis�es a p-Poincar�e inequality.
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Note that if u 2 Lip (IRn), g = jruj and p � 1, then (5) is a corollary of the classical

Poincar�e inequality�Z
B

ju� uBjp dx
�1=p
� C(n; p)r

�Z
B

jrujp dx
�1=p

: (6)

Quite often we will call an inequality weak if both sides involve a ball and the radius

of the ball on the right hand side is greater than the radius of the ball on the left hand

side, like in (5).

Unfortunately, it is easy to see that, in general, inequality (6) does not hold with

p < 1 (cf. [16, p. 224]). Nevertheless there are many important situations where the

p-Poincar�e inequalities (5) and (6) hold with p < 1. For example, they hold when u is

a solution to an elliptic equation of a certain type, see Section 13. For this reason we

include the case p < 1.

It is natural to regard a pair u; g that satis�es a p-Poincar�e inequality in 
 as a

Sobolev function and its gradient. In this sense we will develop the theory of Sobolev

functions on metric spaces with \gradient" in Lp for all p > 0.

In the classical approach, the Sobolev spaces are de�ned for p � 1 only. Moreover,

it was expected that there were no reasonable theory of Sobolev spaces for 0 < p < 1,

see Peetre, [206]. However, we obtain a rich theory of Sobolev spaces for all p > 0. In

the Euclidean setting, when p � 1; our approach is equivalent to the classical one.

In the literature there are a few papers that deal with the Sobolev inequalities for

p < 1, see Bakry, Coulhon, Ledoux and Salo�-Coste, [4], Buckley and Koskela, [16],

Buckley, Koskela and Lu, [19], Calder�on and Scott, [24], Haj lasz and Koskela, [103].

Let us assume that a pair u; g satis�es a p-Poincar�e inequality for p > 0 in an open

set 
 � X. We inquire for properties of u that follow from this assumption. A typical

question is whether the Sobolev embedding theorem holds i.e., whether the p-Poincar�e

inequality in 
 implies the global Sobolev-type inequality

inf
c2IR

�Z


ju� cjq d�

�1=q
� C

�Z


g
p
d�

�1=p
; (7)

with an exponent q > p. We suggest the reader to look at our earlier paper, [103],

where a result of this type was obtained by an elementary method. In the current

paper we obtain stronger results by more complicated methods.

Note that if �(
) <1 and q � 1, then the above inequality is equivalent to�Z


ju� u
jq d�

�1=q
� C

0

�Z


g
p
d�

�1=p
; (8)

as for q � 1 and �(
) <1 we have

inf
c2IR

�Z


ju� cjq d�

�1=q
�
�Z



ju� u
jq d�

�1=q
� 2 inf

c2IR

�Z


ju� cjq d�

�1=q
: (9)
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The classical gradient of a Lipschitz function has a very important property: if the

function is constant in a set E, then the gradient equals zero a.e. in E. To have a

counterpart of this property in the metric setting we introduce the truncation property.

Given a function v and 1 > t2 > t1 > 0, we set

v
t2
t1

= minfmaxf0; v � t1g; t2 � t1g:

De�nition. Let the pair u; g satisfy a p-Poincar�e inequality in 
. Assume that for

every b 2 IR, 1 > t2 > t1 > 0, and " 2 f�1; 1g, the pair v
t2
t1

, g�ft1<v�t2g, where

v = "(u � b), satis�es the p-Poincar�e inequality in 
 (with �xed constants CP , �).

Then we say that the pair u; g has the truncation property.

Let p � 1 and u 2 Lip (IRn). Since v = �(u � b) satis�es jrvt2t1 j = jruj�ft1<v�t2g
a.e., the pair u, jruj has the truncation property. More sophisticated examples are

given in Section 10.

We close the section with a result which shows that inequality (7) is equivalent to

a weaker inequality provided the pair u, g has the truncation property. The result will

be used in the sequel.

Theorem 2.1 Let 
 � X be an open set with �(
) <1. Fix1 > q � p > 0, CP > 0

and � � 1. Assume that every pair u, g, that satis�es a p-Poincar�e inequality in 


(with given CP and �) satis�es also the global Marcinkiewicz{Sobolev inequality

inf
c2IR

sup
t�0

�(fx 2 
 : ju(x)� cj > tg)tq � C1

�Z


g
p
d�

�q=p
: (10)

Then every pair that satis�es the p-Poincar�e inequality in 
 (with given CP and �) and

has the truncation property satis�es also the global Sobolev inequality

inf
c2IR

�Z


ju� cjq d�

�1=q
� C2

�Z


g
p
d�

�1=p
; (11)

with C2 = 8 � (4C1)
1=q.

Remarks. 1) We call (10) a Marcinkiewicz{Sobolev inequality, because it implies that

u belongs to the Marcinkiewicz space Lq

w
.

2) The result is surprising even in the Euclidean case: inequality (10) seems much

weaker than (11) as the inclusion Lq � Lq

w
is proper. Similar phenomena have been

discovered by V. G. Maz'ya, [189], (cf. [190, Section 2.3.1], [104, Theorem 1]), who

proved that a Sobolev embedding is equivalent to a capacitary estimate which is a

version of inequality (10). The main idea of Maz'ya was a truncation method which is

also the key argument in our proof. This method mimics the proof of the equivalence

of the Sobolev inequality with the isoperimetric inequality. Inequality (10) plays a role
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of the relative isoperimetric inequality and the truncation argument provides a discrete

counterpart of the co-area formula. The truncation method of Maz'ya has become

very useful in proving various versions of the Sobolev embedding theorem with sharp

exponents in the borderline case where interpolation arguments do not work. To see

how the argument works in the case of the classical Sobolev embedding theorem, we

refer the reader to the comments after the statement of Theorem 5.1. Recently the

truncation method has been employed and even rediscovered by many authors; see

Adams and Hedberg [1, Theorem 7.2.1], Bakry, Coulhon, Ledoux and Salo�-Coste, [4],

Biroli and Mosco, [8], [9], Capogna, Danielli and Garofalo, [28], Franchi, Gallot and

Wheeden, [74], Garofalo and Nhieu, [90], Heinonen and Koskela, [115], [116], Long and

Nie, [169], Maheux and Salo�-Coste, [181], Semmes, [221], and Tartar, [238].

Proof of Theorem 2.1. Let u, g be a pair which satis�es the p-Poincar�e inequality

in 
 and which has the truncation property. Choose b 2 IR such that

�(fu � bg) � �(
)

2
and �(fu � bg) � �(
)

2
:

Let v+ = maxfu � b; 0g, v� = �minfu � b; 0g. We will estimate kv+kLq and kv�kLq

separately. In what follows v will denote either v+ or v�.

Lemma 2.2 Let � be a �nite measure on a set Y . If w � 0 is a �-measurable function

such that �(fw = 0g) � �(Y )=2, then for every t > 0

�(fw > tg) � 2 inf
c2IR

�(fjw � cj > t

2
g):

The proof of the lemma is easy and left to the reader.

By the truncation property the pair v
t2
t1

, g�ft1<v�t2g satis�es the p-Poincar�e in-

equality and hence it satis�es (10). Moreover, the function v
t2
t1

has the property

�(fvt2t1 = 0g) � �(
)=2. Hence, applying the lemma, we conclude that

sup
t�0

�(fvt2
t1
> tg)tq � 2q+1 inf

c2IR
sup
t�0

�

��
jvt2
t1
� cj > t

2

���
t

2

�q
� 2q+1C1kg�ft1<v�t2gkqLp:

This yields Z


v
q
d� �

1X
k=�1

2kq�(f2k�1 < v � 2kg)

�
1X

k=�1

2kq�(fv � 2k�1g)

=
1X

k=�1

2kq�(fv2k�12k�2 � 2k�2g)
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� 23q+1C1

1X
k=�1

�Z


g
p
�f2k�2<v�2k�1g d�

�q=p

� 23q+1C1

0@ 1X
k=�1

Z


g
p
�f2k�2<v�2k�1g d�

1Aq=p

� 23q+1C1kgkqLp(
):

In the second to the last step we used the inequality q=p � 1. FinallyZ


ju� bjq =

Z


v
q

+ +

Z


v
q

� � 23q+2C1kgkqLp(
):

This completes the proof.

The following theorem is a modi�cation of the above result.

Theorem 2.3 Let 1 > q � p > 0, CP > 0 and � � 1. Assume that every pair u,

g that satis�es the p-Poincar�e inequality (with given CP and �) satis�es also the weak

Marcinkiewicz{Sobolev inequality

inf
c2IR

sup
t�0

�(fx 2 B : ju(x)� cj > tg)tq
�(B)

� C1r
q

�Z
�B

g
p
d�

�q=p
for every ball B, where r denotes the radius of B. Then every pair u, g that satis�es the

p-Poincar�e inequality (with given CP and �) and has the truncation property satis�es

also the weak Sobolev inequality

inf
c2IR

�Z
B

ju� cjq d�
�1=q
� C2r

�Z
�B

g
p
d�

�1=p
for every ball B with C2 = 8 � (4C1)

1=q.

The proof is essentially the same as that for Theorem 2.1 and we leave it to the reader.

3 Poincar�e inequalities, pointwise estimates, and

Sobolev classes

Our starting point to the theory of Sobolev spaces on metric spaces is to assume that

the pair u, g satis�es a p-Poincar�e inequality. There are however also other possible

approaches. Recently Haj lasz, [100], introduced a notion of a Sobolev space in the

setting of metric space equipped with a Borel measure. In this section we will compare

this approach to that based on Poincar�e inequalities (see Theorem 3.1). The proof

is based on pointwise inequalities which have their independent interest and which we
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state in a more general version than is needed for the sake of the proof (see Theorem 3.2

and Theorem 3.3). Finally we compare the class of Lp-pairs of u; g that satisfy a p-

Poincar�e inequality to the classical Sobolev space.

For a detailed study on the equivalence of various approaches to Sobolev inequalities

on metric spaces, see Franchi, Haj lasz and Koskela, [75], and Koskela and MacManus,

[157]. Results related to those of this section appear also in Franchi, Lu and Wheeden,

[79], Haj lasz and Kinnunen, [102], Heinonen and Koskela, [115], Shanmugalingam,

[223].

Given p > 0 and a triple (X; d; �), where (X; d) is a metric space and � is a

Borel measure (not necessarily doubling), Haj lasz, [100], de�nes the Sobolev space

M1;p(X; d; �) as the set of all u 2 Lp(X) for which there exists 0 � g 2 Lp(X) such

that

ju(x)� u(y)j � d(x; y)(g(x) + g(y)) a:e: (12)

When we say that an inequality like (12) holds a.e. we mean that there exists a set

E � X with �(E) = 0 such that inequality (12) holds for all x; y 2 X n E.

If p � 1, the space is equipped with a Banach norm kukM1;p = kukLp + infg kgkLp,

where the in�mum is taken over the set of all 0 � g 2 Lp(X) that satisfy (12).

The motivation for the above de�nition comes from the following result.

If 
 = IRn or if 
 � IRn is a bounded domain with su�ciently regular boundary,

j � j is the Euclidean metric, Hn the Lebesgue measure, and 1 < p � 1, then

W
1;p(
) = M

1;p(
; j � j; Hn) (13)

as sets and the norms are equivalent, see [100] and also [101], [105], [248]. Here W 1;p(
)

denotes the classical Sobolev space of Lp-integrable functions with generalized gradient

in Lp. If p = 1, the equivalence (13) fails, see [101] and also [75]. However, for any

open set 
 � IRn and 1 � p <1, M1;p(
; j � j; Hn) � W 1;p(
), see [101, Proposition 1],

and also [105, Lemma 6].

For the further development and applications of the above approach to Sobolev

spaces on metric space, see Franchi, Haj lasz and Koskela, [75], Franchi, Lu and Whee-

den, [79], Haj lasz and Kinnunen, [102] Haj lasz and Martio, [105], Heinonen, [113],

Heinonen and Koskela, [115], Ka lamajska, [143], Kilpel�ainen, Kinnunen and Martio,

[152], Kinnunen and Martio, [153], Koskela and MacManus, [157], Shanmugalingam,

[223].

Prior to the work of Haj lasz, Varopoulos, [246], de�ned a function space on a smooth

compact manifold, based on an inequality similar to (12). Recently and independently,

Vodop'yanov, [248], used inequality (12) to de�ne a Sobolev space on a Carnot group.

The following result compares the above de�nition of the Sobolev space with the

approach based on Poincar�e inequalities.
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Theorem 3.1 Let X be a doubling space. If 1 < p <1, then the following conditions

are equivalent.

1. u 2M1;p(X; d; �).

2. u 2 Lp(X) and there exist C > 0, � � 1, 0 � g 2 Lp(X), and 0 < q < p such

that the Poincar�e inequality

Z
B

ju� uBj d� � C r

�Z
�B

g
q
d�

�1=q
(14)

holds on every ball B of radius r.

Remarks. 1) In fact we prove the implication 2: ) 1: for any p > 0. 2) Under

much more restrictive assumptions about the measure Theorem 3.1 has been proved

by Franchi, Lu and Wheeden, [79], see also [75], [84], [102], [115], [157].

Proof of Theorem 3.1. Integrating inequality (12) over a ball with respect to x and

y we obtain Z
B

ju� uBj d� � Cr

Z
B

g d� ;

which proves the implication 1:) 2: The opposite implication follows from Theorem 3.2

and the Maximal Theorem 14.13.

Theorem 3.2 Let X be a doubling space. Assume that the pair u, g satis�es a p-

Poincar�e inequality (5), p > 0. Then

ju(x)� u(y)j � Cd(x; y)
�
(M2�d(x;y)g

p(x))1=p + (M2�d(x;y)g
p(y))1=p

�
(15)

for almost every x; y 2 X, where MRv(x) = sup0<r<R
R
B(x;r)jvj d�.

Before we prove Theorem 3.2 we show how to use it to complete the proof of the

implication 2:) 1: Assume that u; g 2 Lp(X) satisfy (14). Then inequality (15) holds

with p replaced by q. Note that

�
M2�d(x;y)g

q(x)
�1=q � (Mg

q(x))
1=q

:

Now, gq 2 Lp=q, p=q > 1, and so the Maximal Theorem 14.13 implies (Mgq)1=q 2 Lp

and hence the claim follows.

Proof of Theorem 3.2. Let x; y 2 X be Lebesgue points of u; by the Lebesgue

di�erentiation theorem (see Theorem 14.15) this is true for almost all points. Write

Bi(x) = B(x; ri) = B(x; 2�id(x; y)) for each nonnegative integer i: Then uBi(x) ! u(x)
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as i tends to in�nity. Using the triangle inequality, the doubling of � and the p-Poincar�e

inequality we conclude that

ju(x)� uB0(x)j �
1X
i=0

juBi(x) � uBi+1(x)j

�
1X
i=0

Z
Bi+1(x)

ju� uBi(x)j d�

� C

1X
i=0

Z
Bi(x)
ju� uBi(x)j d�

� C

1X
i=0

ri

 Z
�Bi(x)

g
p
d�

!1=p

� C

1X
i=0

ri(M�d(x;y)g
p(x))1=p

= Cd(x; y)(M�d(x;y)g
p(x))1=p: (16)

Similarly,

ju(y)� uB0(y)j � Cd(x; y)(M�d(x;y)g
p(y))1=p:

Moreover,

juB0(x) � uB0(y)j � juB0(x) � u2B0(x)j+ juB0(y) � u2B0(x)j
� C

Z
2B0(x)

ju� u2B0(x)j d�

� Cd(x; y)

 Z
2�B0(x)

g
p
d�

!1=p
� Cd(x; y)(M2�d(x;y)g

p(x))1=p:

The claim follows by combining the above three inequalities. This completes the proof

of Theorem 3.2 and hence that for Theorem 3.1.

It is interesting to observe that Theorem 3.2 can be converted, see also Heinonen

and Koskela, [115]. This is the content of the following result.

Theorem 3.3 Let X be a doubling space and u 2 L1
loc(X; �), 0 � g 2 L

p

loc(X; �),

1 < p <1. Suppose that the pointwise inequality

ju(x)� u(y)j � Cd(x; y)
�
(M�d(x;y)g

p(x))1=p + (M�d(x;y)g
p(y))1=p

�
holds for almost all x; y 2 X with some �xed � � 1. Then the p-Poincar�e inequalityZ

B

ju� uBj d� � CP r

�Z
3�B

g
p
d�

�1=p
holds for all balls B. Here CP depends only on p; C; Cd:
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Proof. Fix a ball B with the radius r. Then for almost all x; y 2 B we have

ju(x)� u(y)j � Cd(x; y)
�
(M(gp�3�B)(x))1=p + (M(gp�3�B)(y))1=p

�
:

Fix t0 > 0. Taking an average with respect to x and y, applying Cavalieri's princi-

ple (see Theorem 14.10) and the weak type estimate for the maximal function (see

Theorem 14.13) we obtainZ
B

ju� uBj d� � Cr

Z
B

(M(gp�3�B))
1=p

d�

= Cr�(B)�1
Z
1

0
�(fx 2 B : M(gp�3�B) > t

pg) dt

� Cr�(B)�1
�Z

t0

0
�(B) dt +

Z
1

t0

�
C

tp

Z
3�B

g
p
d�

�
dt

�
= Cr�(B)�1

�
t0�(B) + Ct

1�p
0

Z
3�B

g
p
d�

�
:

The claim follows when we choose t0 = (�(B)�1
R
3�B g

p d�)1=p. The proof is complete.

Note that the argument used above is similar to that used in the proof of Theo-

rem 14.11.

Theorem 3.1 suggests the following question: Is it true that if a pair u; g 2 Lp(X),

1 < p < 1 satis�es a p-Poincar�e inequality in a doubling space X, then there exists

1 � q < p such that the pair u; g satis�es a q-Poincar�e inequality? This seems to be a

very delicate question, see the discussion in the remark in Section 4 below.

If the answer to the above question were a�rmative, Theorem 3.1 would imply a

stronger result: u 2M1;p, p > 1; if and only if u 2 Lp and there is 0 � g 2 Lp(X) such

that the pair u, g satis�es a p-Poincar�e inequality.

In the special case when X = IRn, d is the Euclidean metric and � is the Lebesgue

measure, the answer to the above question is in the positive due to the results of

Franchi, Haj lasz and Koskela, [75], and Koskela and MacManus, [157].

The following theorem was proved in [75]. The result is a generalization of some

results in [151], [157].

Theorem 3.4 Let u, g 2 Lp(IRn), g � 0, p � 1. Suppose that there exist � � 1 and C

such that Z
B

ju� uBj dx � Cr

�Z
�B

g
p
dx

�1=p
;

for all balls B � IRn. Then u 2 W 1;p(IRn) and jruj � C1g a.e. In particular,Z
B

ju� uBj dx � C2r

Z
B

g dx;

for all balls B � IRn.
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Note that it follows from the results in this section that if a pair u; g 2 Lp satis�es a

p-Poincar�e inequality, p > 1, then u 2 W
1;q
loc , for any 1 � q < p. Indeed, Theorem 3.2

together with the weak type estimate for the maximal function and the embedding

Lp

w
� L

q

loc for all q < p (see Theorem 14.11) imply that for some h 2 Lq

loc the inequality

ju(x)� u(u)j � jx� yj(h(x) + h(y)) holds a.e. Then the claim follows from (13). This

argument, however, does not guarantee that u 2 W 1;p(IRn).

For far reaching generalizations of Theorem 3.4, see [75] and [157] and also Sec-

tion 13.

4 Examples and necessary conditions

We �rst discuss three examples that indicate the dependence of the validity of p-

Poincar�e inequalities on the exponent p. Notice that if a pair u, g satis�es a p-Poincar�e

inequality, then it satis�es a q-Poincar�e inequality for all q > p by H�older's inequality.

The following examples show that this is not the case for q < p.

Example 4.1 Let X = R2 be equipped with the Euclidean metric and let � be the

measure generated by the density d�(x) = jx2jtdx; t > 0; where x2 denotes the second

coordinate of x: Then the Poincar�e inequality (5) holds for each Lipschitz function u

with g = jruj if and only if p > t + 1.

The Poincar�e inequality holds as � is an Ap-weight for the indicated values of p; see

[65], [38], [117, Theorem 15.26], [100]. On the other hand, the p-Poincar�e inequality

fails for p = 1 + t and hence for 1 � p � 1 + t. To see this, let B be the disk of radius

2 and with center (0; 1). Let us consider a sequence ui of Lipschitz functions that only

depend on x2 and such that ui = 1 if x 2 B and x2 � 2�i, ui = 0 if x 2 B and x2 � 1,

ui(x) = �i�1 log2(x2) if 2�i � x2 � 1. ThenZ
B

jruij1+t d� � 2(i log 2)�(1+t)
Z 1

2�i

ds

s

which tends to zero as i approaches in�nity. On the other hand, jui(x)�uiBj � 1=2 for

all x either in the part of B above the line x2 = 1 or in the part below the line x2 = 0:

Hence the integral of jui � uiBj over B is bounded away from zero independently of i;

and so the (1 + t)-Poincar�e inequality cannot hold for all Lipschitz functions. Using a

standard regularization argument we can then assume that functions ui in the above

example are C1 smooth, so the (1 + t)-Poincar�e inequality cannot hold for all C1

smooth functions either.

Example 4.2 Let X = f(x1; x2; : : : ; xn) 2 IRn : x21 + � � � + x2
n�1 � x2

n
g be equipped

with the Euclidean metric of IRn and with the Lebesgue measure. The set X consists

of two in�nite closed cones with a common vertex. Denote the upper cone by X+ and

the lower one by X�.
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We will prove that the p-Poincar�e inequality (5) holds in X for every pair u, g where

u is a continuous function and g an upper gradient of u if and only if p > n. (For more

information about upper gradients, see Section 10.2.)

First we prove that the inequality fails for p = n (and hence for p < n). Fix

" > 0. Since '(x) = log j log jxjj satis�es ' 2 W 1;n(Bn(0; 1=2)) and '(x) ! 1 as

x! 0, we can truncate the function and obtain a continuous function u" 2 W 1;n(X+)

such that u"(0) = 1, u"(x) = 0 for jxj � " and kru"kLn(X+) < ". We extend this

function to the lower cone as the constant 1. Fix a ball B centered at the origin. Then

kru"kLn(B) < " while ku" � u"BkL1(B) > C uniformly with respect to ", and thus the

n-Poincar�e inequality cannot hold.

It remains to prove the inequality for p > n. Since jruj � g for an upper gradient

of u (Proposition 10.1), it su�ces to prove the p-Poincar�e inequality for the pair u,

jruj. By Theorem 3.3 it su�ces to verify the pointwise estimate

ju(x)� u(y)j � Cjx� yj(M2jx�yjjrujp(x) + M2jx�yjjrujp(y))1=p:

We can assume that x and y belong to di�erent cones as the p-Poincar�e inequality

holds in each of those two cones. Then, by the triangle inequality, either ju(x)�u(0)j �
ju(x)�u(y)j=2 or ju(y)�u(0)j � ju(x)�u(y)j=2. Assume that the �rst inequality holds.

Let � = X+ \B(x; jxj). Then by the embedding into H�older continuous functions

ju(x)� u(0)j � Cjx� 0j1�n=p(
Z
�
jrujp)1=p � Cjx� yj(M2jx�yjjrujp(x))1=p:

This ends the proof of the claim.

Modifying the argument used above one can construct many other examples. Let

for example X be the union of two 3-dimensional planes in IR5 whose intersection is a

line. Equip X with the 3-dimensional Lebesgue measure and with the metric induced

by the Euclidean metrics of the planes. Then the p-Poincar�e inequality holds in X for

all pairs u, g, where u is a continuous function in X and g an upper gradient of u; if

and only if p > 2.

A much more general result that allows one to build similar examples in the setting

of metric spaces was proven by Heinonen and Koskela, [115, Theorem 6.15].

Example 4.3 For each 1 < p � n there is an open set X � IRn equipped with the

Euclidean metric and the the Lebesgue measure, such that the p-Poincar�e inequality

(5) holds for each smooth function u with g = jruj but no Poincar�e inequality holds

for smaller exponents for all smooth functions.

Such an example was constructed by Koskela, [156]. We will recall the idea of the

example following [156]. Let E � IRn be a compact set such that W 1;p(IRn n E) =

W 1;p(IRn), and W 1;q(IRn) is a proper subset of W 1;q(IRn nE) for all 1 � q < p. In other

words the set E is W 1;p-removable but it is not W 1;q-removable for any 1 � q < p.

Such sets were explicitly constructed in [156]. In fact there is a smooth function u in
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IRnnE such that jruj 2 Lq(IRn), for all q < p, but the pair u, jruj does not satisfy a q-

Poincar�e inequality in IRnnE for any q < p. The pair satis�es the p-Poincar�e inequality

but jruj 62 Lp(IRn n E) as otherwise we would have u 2 W 1;p(IRn n E) = W 1;p(IRn)

and hence it would even satisfy the 1-Poincar�e inequality. Thus this example does not

solve the question posed after Theorem 3.3.

Remark. The last example shows that it may happen that a p-Poincar�e inequality holds

for all smooth pairs u, jruj in X and there is a smooth function u in X such that no

q-Poincar�e inequality holds for any q < p for the pair u, jruj. However, in this example

jruj 62 Lp(X) and hence we do not know if a p-Poincar�e inequality for the pair u, g

with g 2 Lp(X) implies a q-Poincar�e inequality for some q < p. As Example 4.1 shows,

a q-Poincar�e inequality cannot hold for all q < p in general, but we do not know if it

can hold for some q < p su�ciently close to p.

Let us next describe some necessary geometric conditions for the validity of Poincar�e

inequalities.

De�nition. We say that X is weakly locally quasiconvex if X is path connected and,

for each x 2 X; there is a neighborhood U and a continuous function � with �(0) = 0

such that any pair x1; x2 of points in U can be joined in X with a curve  of length

no more than �(d(x1; x2)): If any pair x1; x2 of points in X can be joined by a curve

whose length is no more than Cd(x1; x2); we say that X is quasiconvex.

Proposition 4.4 Suppose that X is weakly locally quasiconvex and doubling. Let p �
1: If for each pair u; g of a continuous function and its upper gradient we have a p-

Poincar�e inequality (with �xed CP ), then X is quasiconvex.

Proof. Given a point x0 2 X; de�ne u(x) = infx l(x); where the in�mum is taken over

all recti�able curves  joining x; x0: As X is weakly locally quasiconvex, u is continuous.

Moreover, it is easy to see that the constant function g = 1 is an upper gradient of u:

Thus by Theorem 3.2 we have

ju(x)� u(y)j � Cd(x; y)(M2�d(x;y)g
p(x) + M2�d(x;y)g

p(y))1=p = 2Cd(x; y):

The claim follows from this inequality.

Thus the validity of a p-Poincar�e inequality guarantees the existence of short curves.

If the doubling measure � behaves as the Euclidean volume and the exponent p is no

more than the growth order of the volume, then X cannot have narrow parts. This

conclusion is a consequence of Proposition 4.5 below. Under the additional assumption

that each closed ball in X be compact, this result can be deduced from the results in

[115].

Proposition 4.5 Suppose that X is weakly locally quasiconvex and that �(B(x; r)) �
rs with s > 1 for each x and all r: Assume that for each pair u; g of a continuous
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function and its upper gradient we have an s-Poincar�e inequality (with �xed �, CP ).

If x0 2 X; r > 0; and x1; x2 2 B(x0; r) n B(x0; r=2); then x1; x2 can be joined in

B(x0; Cr) nB(x0; r=C) by a curve whose length does not exceed Cd(x1; x2):

Notice that the claim of the proposition would still be true if we replaced the s-

Poincar�e inequality by a p-Poincar�e inequality, p < s, as a p-Poincar�e inequality implies

an s-Poincar�e inequality, by means of the H�older inequality. However we cannot replace

the s-Poincar�e inequality by a p-Poincar�e for any p > s as follows from Example 4.2.

Proof. The proof is very similar to the arguments used in the proof of [115, Corol-

lary 5.8] and in the proof of Proposition 4.4. Throughout C � 1 denotes a constant

whose value can change from line to line but that only depends on the given data.

By Proposition 4.4 we may assume that d(x1; x2) � C�1r: Suppose that x1; x2 cannot

be joined in B(x0; Cr) n B(x0; r=C) with C � 5: By Proposition 4.4 we then obtain

recti�able curves F1; F2 � B(x0; 2r) n B(x0; r=4), both of length no more than Cr but

at least C�1r and so that d(F1; F2) � C�1r: It su�ces to show that F1; F2 can be joined

by a curve of length less than Cr inside B(x0; Cr) nB(x0; r=C):

If follows from the s-Poincar�e inequality and from the volume growth condition thatZ
B(x0;Cr)

g
s
d� � C

�1 (17)

for any upper gradient g of any continuous function u that takes on the constant value

0 in F1 and takes on a value greater or equal to 1 at each point of F2. Indeed, assume

�rst that juB(x0;r)j � 1=2. Then slightly modifying the proof of (16) we get for all

x 2 F2
1

2
� ju(x)� uB(x0;r)j � Cr

1=s sup
R<2�r

 
R
�1
Z
B(x;R)

g
s
d�

!1=s
:

Thus for some Rx < 2�r

C
�1
Rx=r �

Z
B(x;Rx)

g
s
d� :

Now inequality (17) follows from the covering lemma (Theorem 14.12) and the fact that

if F2 �
S
Bi(ri), then

P
i ri � C�1r. If juB(x0;r)j � 1=2, then inequality (17) follows by

a symmetric argument. The proof of (17) is complete.

Now set g1(x) = (log(C
4

))�1d(x; x0)
�1 in B(x0; Cr) n B(x0; C

�1r) and extend g1 as

zero to the rest of X: Suppose that F1; F2 cannot be joined in B(x0; Cr) nB(x0; C
�1r)

by a recti�able curve. De�ne u1(x) = infx
R
x
g1 ds where the in�mum is taken over all

recti�able curves that join x to F1. Then g1 is an upper gradient of u1, the restriction

of u to F1 is zero and u(x) � 1 at each point of F2: By the preceding paragraph,

we see that the integral of gs1 over B(x0; Cr) is bounded away from zero, and hence a

computation using the volume growth condition bounds the constant C in the de�nition

of g1 from above. Thus we can �x C so that F1; F2 can be joined by a recti�able curve

in B(x0; Cr) nB(x0; C
�1r).
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Set a = inf l(); where the in�mum is taken over all recti�able curves that join

F1 to F2 in B(x0; Cr) n B(x0; C
�1r): We de�ne a function u2 similarly as we de�ned

u1 above using g1 + g2; where g2(x) = a�1�U(x); and �U is the characteristic function

of B(x0; Cr) n B(x0; C
�1r): As we can make the integral of gs1 as small as we wish by

choosing the constant C in the de�nition of g1 large enough, the reasoning used in the

preceding paragraph shows that the integral of gs2 over B(x0; Cr) must be bounded

away from zero, and thus the volume growth condition implies that a � Cr; as desired.

5 Sobolev type inequalities by means of Riesz po-

tentials

As it was pointed out in Section 2, one of the aims of this paper is to prove a global

Sobolev inequality

inf
c2IR

�Z


ju� cjq d�

�1=q
� C

�Z


g
p
d�

�1=p
; (18)

where q > p, or at least a weak local Sobolev inequality

inf
c2IR

�Z
B

ju� cjq d�
�1=q
� Cr

�Z
5�B

g
p
d�

�1=p
; (19)

where � � 1, and B is any ball of radius r, assuming that the pair u, g satis�es a

p-Poincar�e inequality only.

Inequality (18) requires some additional information on 
, while (19) turns out to

be true in a very general setting.

Another question we deal with is how to determine the best possible Sobolev expo-

nent q in the above inequalities (18) and (19).

In the remaining part of the section we will be concerned with inequalities of the

type (19). The case of the global Sobolev inequality (18) will be treated in Section 9.

Let X be a doubling space. Beside the doubling condition we will sometimes require

that
�(B)

�(B0)
� Cb

�
r

r0

�s
(20)

whenever B0 is an arbitrary ball of radius r0 and B = B(x; r), x 2 B0, r � r0.

Notice that the doubling condition on � always implies (20) for some exponent s

that only depends on the doubling constant of �: This follows by a standard iteration

of the doubling condition, see Lemma 14.6 in the appendix. Inequality (20) could well

hold with exponents smaller than the one following from the doubling condition and in

the following results s refers to any exponent for which (20) is valid.
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Theorem 5.1 Assume that the pair u, g satis�es a p-Poincar�e inequality (5), p > 0;

in a doubling space X. Assume that the measure � satis�es condition (20).

1. If p < s; then

�(fx 2 B : ju(x)� uBj > tg)tp�

�(B)
� Cr

p�
�Z

5�B
g
p
d�

�1=p
;

where p� = sp=(s� p) and B is any ball of radius r. Hence for every 0 < h < p�

�Z
B

ju� uBjh d�
�1=h

� Cr

�Z
5�B

g
p
d�

�1=p
:

Moreover for every q such that p < q < s�Z
B

ju� uBjq
�

d�

�1=q�
� Cr

�Z
5�B

g
q
d�

�1=q
;

where q� = sq=(s� q) and B is any ball of radius r. If, in addition, the pair u, g

has the truncation property, then�Z
B

ju� uBjp
�

d�

�1=p�
� Cr

�Z
5�B

g
p
d�

�1=p
: (21)

2. If p = s; then Z
B

exp

 
C1�(B)1=sju� uBj

rkgkLs(5�B)

!
d� � C2: (22)

3. If p > s; then u (after rede�nition in a set of measure zero) is locally H�older

continuous and

sup
x2B

ju(x)� uBj � Cr

�Z
5�B

g
p
d�

�1=p
: (23)

In particular

ju(x)� u(y)j � Cr
s=p

0 d(x; y)1�s=p
�Z

5�B0

g
p
d�

�1=p
(24)

for all x; y 2 B0, where B0 is an arbitrary ball of radius r0.

The constants in the theorem depend on p, q, h, s, Cd, �, CP , and Cb only.

Remarks. 1) Inequality (21) holds also for functions on graphs, see Theorem 12.2.

2) Assuming that the space is connected we can improve on inequality (22); see Sec-

tion 6.

3) Instead of assuming that X be doubling we could assume, for instance, that the

doubling condition holds on all balls with radii bounded from above by r0, (such a
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situation occurs for example on Riemannian manifolds with a lower bound on the Ricci

curvature, see Section 10) or that it holds on a given open set. Then the inequalities of

the theorem would hold on balls with radii bounded from above or on small balls cen-

tered at the open set. We leave it to the reader to check that the proof of Theorem 5.1

gives such a statement.

4) A modi�cation of the proof shows that the ball 5�B can be replaced by (1 + ")�B;

the details are left to the reader.

5) We present only one of the possible proofs of the above theorem. The proof can also

be based on the embedding theorem for Sobolev spaces on metric spaces from Haj lasz,

[100]. This approach uses the observation that a family of Poincar�e inequalities leads

to pointwise inequalities (15); we do not provide the details here.

Since the proof of the theorem is rather complicated, we begin with some comments

that will explain the idea.

In one of the proofs of the classical Sobolev embedding W 1;p(B) � Lp�(B), where

1 � p < n, p� = np=(n� p); and B is an n-dimensional Euclidean ball, one �rst proves

the inequality

ju(x)� uBj � CI
B

1 jruj(x); (25)

where IB1 g(x) =
R
B
g(z)jx� zj1�n dz and then applies the Fractional Integration Theo-

rem which states that

I
B

1 : Lp(B) �! L
p
�

(B) (26)

is a bounded operator for 1 < p < n. If p = 1 one only gets a weak type estimate

jfx 2 B : IB1 g(x) > tgjt n

n�1 � C

�Z
B

jg(z)j dz
�n�1

n

in place of (26), which, in turn, leads to the embedding W 1;1(B) � Ln=(n�1)
w

(B). Then

the embedding W 1;1(B) � Ln=(n�1)(B) follows from Theorem 2.1.

The main idea of our proof of inequalities like (18) or (19) is to mimic the above

argument. Thus the proof splits into two steps.

Assume that a pair u, g satis�es a p-Poincar�e inequality in a given doubling space.

In the �rst step we prove the inequality

ju� uBj � CJ
�;B

1;p g; (27)

where J
�;B

1;p is a suitable generalization of the Riesz potential IB1 and then, in the second

step, we prove a version of the Fractional Integration Theorem for the operator J
�;B

1;p .

This will complete the proof of (19). The proof of (18) will require a more sophisticated

version of the inequality (27); the details will be completed in Section 9 where we

introduce an appropriate class of domains 
 for the Sobolev-Poincar�e embedding (18).

Any inequality of the type (27) will be called a representation formula.
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Before we de�ne J�;B
�;p

we start with a discussion on Riesz potentials to explain the

motivation. The classical Riesz potential is de�ned as

I�g(x) = �;n

Z
IRn

g(y)

jx� yjn�� dy; (28)

where 0 < � < n and �;n is a suitable constant. In this paper the exact value of the

constant �;n is irrelevant to us. Moreover, for our purposes, any operator J such that

C1I�g � Jg � C2I�g for g � 0 (29)

is as good as I�.

A natural generalization of the Riesz potential to the setting of doubling spaces is

I�g(x) =

Z
X

g(y)d�(x; y)

�(B(x; d(x; y)))
d�(y) ;

or its local version

I


�
g(x) =

Z



g(y)d�(x; y)

�(B(x; d(x; y)))
d�(y) : (30)

We would like to estimate ju�uBj by CI
1 g, but, in general, this is not possible. Instead

of that we have to consider a potential which is strictly larger than I
1 g.

Observe that the potential de�ned by

eI

�
g(x) =

1X
i=�1

2i�
 
�(Bi(x))�1

Z
Ai(x)\


jg(y)j d�(y)

!
; (31)

where Ai(x) = Bi(x) nBi�1(x) = B(x; 2i) nB(x; 2i�1), is equivalent to I

�
g in the sense

of (29). Note that if 2i�1 > diam 
, then Ai(x) \ 
 = ;, so all the summands in (31)

for 2i > 2diam 
 vanish. Thus, replacing the integral over Ai(x) \ 
 by the integral

over Bi(x) and then taking the sum over 2i � 2diam 
, we obtain the new potential

J


�
g(x) =

X
2i�2diam


2i�
 Z

Bi(x)
jgj d�

!
;

which satis�es eI

�
g � J


�
g. Now we de�ne

J
�;

�;p

g(x) =
X

2i�2�diam


2i�
 Z

Bi(x)
jgjp d�

!1=p
;

where � � 1, p > 0 and � > 0 are �xed constants.

The other generalization is

I


�;p
g(x) =

1X
i=�1

 Z
Ai(x)\


jg(y)jpd�p(x; y)

�(B(x; d(x; y)))
d�(y)

!1=p
:
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Observe that I

�;1g = I


�
jgj, and I


�;p
g � CJ1;


�;p
g a.e. Thus once we prove the fractional

integration theorem for J�;

�;p

g it is true for I

�;p
g as well.

In Section 9 we will obtain a version of the representation formula (27) with IB1;pg

in place of J
�;B

1;p ; see Theorem 9.10.

Theorem 5.2 Let the pair u, g satisfy a p-Poincar�e inequality in a doubling space X.

Then for every ball B � X the representation formula

ju(x)� uBj � CJ
�;B

1;p g(x) (32)

holds almost everywhere in B.

This representation formula together with a suitable Fractional Integration Theorem

(see Theorem 5.3) will lead to embedding (19).

Proof. The argument is very similar to that used in the proof of inequality (16).

Let x 2 B be a Lebesgue point of u. Put Di(x) = B(x; 2i��1). Let i0 be the least

integer such that 2i0 � �diamB. Then B � Di0
(x). Since uDi(x) ! u(x) as i ! �1

we obtain

ju(x)� uBj � juB � uDi0
(x)j+

i0X
i=�1

juDi(x) � uDi�1(x)j

� C

i0X
i=�1

�
�12i

 Z
�Di(x)

g
p
d�

!1=p
� CJ

�;B

1;p g(x):

Theorem 5.3 Let 
 � X be an open and bounded set and let 0 < p <1, 1 � � <1.

Assume that the measure � is doubling on V = fx 2 X : dist (x;
) < 2�diam 
g.
Moreover, assume that for some constants Cb; s > 0

�(B(x; r)) � Cb

�
r

diam 


�s
�(
)

whenever x 2 
 and r � �diam 
 and that g 2 Lp(V; �):

1. If �p < s; then J�;

�;p

g 2 Lp�

w
(
) where p� = sp=(s� �p). Moreover

�(fx 2 
 : J�;

�;p

g > tg) � C1t
�p�(diam 
)�p

�

�(
)1�p
�=pkgkp�

Lp(V;�) (33)

for t > 0, and hence for every 0 < r < p�

kJ�;

�;p

gkLr(
;�) � C2(diam 
)��(
)1=r�1=pkgkLp(V;�): (34)

Here the constants C1 and C2 depend on �, �, p, Cb, s and Cd only.
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2. If p < q and �q < s; then

kJ�;

�;p

gkLq�(
;�) � C(diam 
)��(
)��=skgkLq(V;�); (35)

where q� = sq=(s� �q) and C = C(�; �; p; q; b; s; Cd).

3. If �p = s, then Z



exp

 
C1�(B)1=sJ�;


�;p
g

(diam 
)�kgkLs(V )

!
d� � C2;

where Ci = C(�; �; p; b; s; Cd); i = 1; 2:

4. If �p > s, then J�;

�;p
2 L1(
; �) and

kJ�;

�;p

gkL1(
;�) � C(diam 
)��(
)�1=pkgkLp(V;�);

where C = C(�; �; p; b; s; Cd).

Proof of Theorem 5.3. We modify a standard proof for the usual Riesz potentials.

All the constants C appearing in the proof depend on �, �, p, q, b, s, and Cd only.

Case �p < s. Take arbitrary q � p such that �q < s. Fix 0 < r � 2�diam 
.

Decompose the sum which de�nes J�;

�;p

g into Jrg + Jrg, where Jrg =
P

2i�r and Jrg =P
r<2i�2�diam
. For x 2 
 we have

Jrg(x) �
0@X
2i�r

2i�

1A (MV jgjp(x))1=p � r
� (MV jgjp(x))

1=p
:

Here MV h denotes the maximal function relative to the open set V .

To estimate Jrg, we apply the lower bound on �

J
r
g(x) =

X
r<2i�2�diam


2i�
 Z

Bi(x)
jgjp d�

!1=p

�
X

r<2i�2�diam


2i��(Bi(x))�1=q
 Z

Bi(x)
jgjq d�

!1=q

� C
X

r<2i�2�diam


2i(��s=q)(diam 
)s=q�(
)�1=q
�Z

V

jgjq d�
�1=q

� Cr
(��s=q)(diam 
)s=q�(
)�1=q

�Z
V

jgjq d�
�1=q

:

In the last step we used the fact � � s=q < 0 to estimate the sum of the series by its

�rst summand. Now

J
�;

�;p

g(x) � C

 
r
� (MV jgjp)1=p + r

(��s=q)(diam 
)s=q�(
)�1=q
�Z

V

jgjq d�
�1=q!

:
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Note that

r
� (MV jgjp)1=p � r

(��s=q)(diam 
)s=q�(
)�1=q
�Z

V

jgjq d�
�1=q

if and only if

r � (diam 
)�(
)�1=s
�
kgkLq(V )=(MV jgjp)1=p

�q=s
: (36)

If the RHS in (36) does not exceed �diam 
, then we take r equal to the RHS. In this

case we get

J
�;

�;p

g(x) � C(diam 
)��(
)��=skgk�q=s
Lq(V )(MV jgjp(x))(s��q)=sp; (37)

and hence

J
�;

�;p

g(x)sp=(s��q) � C(diam 
)�sp=(s��q)�(
)��p=(s��q)kgk�qp=(s��q)
Lq(V ) MV jgjp(x): (38)

If the RHS in (36) is greater than �diam 
, then we take r = �diam 
. Then

J
�;

�;p

g(x) � C(diam 
)��(
)�1=qkgkLq(V ): (39)

Let A1 denote the set of points in 
 for which (37) holds and let A2 consist of those

points in 
 that satisfy (39). Write 
t = fx 2 
 : J�;

�;p

g > tg. Then

�(
t) � �(A1 \ 
t) + �(A2 \ 
t): (40)

If we take q = p, then inequality (33) follows from estimates (38), (39), and (40):

the weak type estimate for the maximal function MV jgjp (see Theorem 14.13) gives

�(A1 \ 
t) � �(CDkgk�p2=(s��p)
Lp(V ) MV jgjp > t

sp=(s��p))

� CDt
�p�kgk�p2=(s��p)

Lp(V ) kgkp
Lp(V ) = CDt

�p�kgkp�
Lp(V )

with D = (diam 
)�sp=(s��p)�(
)��p=(s��p), and from (39) we obtain A2 \
t = ; when

t � C(diam 
)��(
)�1=pkgkLp(V ) and for all smaller t

�(A2 \ 
t) � �(
) � C(diam 
)�p
�

�(
)1�p
�
=p
t
�p�kgkp�

Lq(
):

This completes the proof of inequality (33). Inequality (34) follows from Theorem 14.11.

To prove inequality (35) we take Lq=p norm on the both sides of inequalities (38)

and (39) and then we apply Maximal Theorem 14.13; we use the fact that q=p > 1.

Case �p = s. Notice �rst that

exp(t) =
X
k�0

tk

k!
:
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Secondly, (34) and the H�older inequality give for each integer k � 1

kJ�;

�;p

gkLk(
;�) � C(diam 
)��(
)1=k�1=skgkLs(V;�):

By keeping good track of the constants appearing in the proof of (34), one can check

that C = C0(�; s; b; Cd)k: The desired inequality follows by summing over k: We leave

the details to the reader as we prove a better estimate in the next section under slightly

stronger assumptions.

Case �p > s. The lower bound on � gives

J
�;

�;p

g(x) =
X

2i�2�diam


2i��(Bi(x))�1=p
 Z

Bi(x)
jgjp d�

!1=p
� C

X
2i�2� diam


2i(��s=p)(diam 
)s=p�(
)�1=pkgkLp(V )

� C(diam 
)��(
)�1=pkgkLp(V ):

The proof of Theorem 5.3 is complete.

Proof of Theorem 5.1. All the inequalities but (21) and (24) follow directly from

Theorem 5.2 and Theorem 5.3. The H�older continuity estimate (24) follows from (23)

and the lower bound (20). If p� < 1 then inequality (21) is trivial as it is weaker than

the p-Poincar�e inequality. If p� � 1 it follows from Theorem 2.3 and from the �rst

inequality in Theorem (5.1). The proof is complete.

6 Trudinger inequality

When X = Rn and u belongs to the Sobolev class W 1;n(
) for a ball 
; one has the

following Trudinger inequality [236]:

Z



exp

 
C1ju� u
j
jjrujjLn(
)

!n=(n�1)
dx � C2:

Here C1 and C2 depend only on the dimension n: As in case of the Poincar�e inequality,

the exact value of u
 is not crucial. In fact, it is easy to see that we may replace it by

the average of u over some �xed ball B �� 
. In the previous section we observed that

an s-Poincar�e inequality with s not exceeding the lower order of the doubling measure

results in exponential integrability. We do not know if one could get an analog of the

Trudinger inequality in such a general setting but we doubt it.

In this section we verify an analog of the Trudinger inequality for connected doubling

spaces. Thus the only assumption we need to add is that X be connected. For related

results, see Buckley and O'Shea, [21], and MacManus and P�erez, [180]
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Theorem 6.1 Assume that X is a connected doubling space and that the measure �

satis�es condition (20) with s > 1. Suppose that the pair u; g satis�es an s-Poincar�e

inequality. Then there are constants C1 and C2 such that

Z
B

exp

 
C1�(B)1=sju� uBj
diam (B)kgkLs(5�B)

!s=(s�1)
dx � C2 (41)

for any ball B � X.

Remarks. 1) It is easy to see that as the space is connected the condition (20) cannot

hold with s < 1. We leave the details to the reader. 2) The argument employed in the

proof actually shows that the inequality holds with 5�B replaced by (1 + ")B.

For the proof of this theorem we need a chain condition, a version of which will also

be used later on.

We say that X satis�es a chain condition if for every � � 1 there is a constant M

such that for each x 2 X and all 0 < r < R < diam (X)=4 there is a sequence of balls

B0, B1, B2; : : : ; Bk for some integer k with

1. B0 � X nB(x;R) and Bk � B(x; r),

2. M�1diam (Bi) � dist (x;Bi) �Mdiam (Bi) for i = 0; 1; 2; : : : ; k,

3. there is a ball Ri � Bi \ Bi+1, such that Bi [ Bi+1 �MRi for i = 0; 1; 2; : : : ; k,

4. no point of X belongs to more than M balls �Bi.

The sequence fBig will be called a chain associated with x; r; R.

The existence of a doubling measure on X does not guarantee a chain condition. In

fact, such a space can be badly disconnected, whereas a space with a chain condition

cannot have \large gaps".

Let us show that each connected doubling space satis�es a chain condition. Fix ":

Write Aj(x) = B(x; 2j) n B(x; 2j�1) for r=4 � 2j � 2R: As � is doubling we can cover

each annulus Aj(x) by at most N balls of radii equal to "2j with N independent of x; j.

Naturally, N depends on "; and the smaller the "; the larger the number N: Consider

the collection of all these balls when r=4 � 2j � 2R. When " is su�ciently small,

depending only on �; the balls 2�B with B corresponding to Aj(x) and 2�B0 with B0

corresponding to Ai(x) do not intersect provided ji�jj � 2: The balls B corresponding

to the annuli Aj(x) together with B(x; r=2); X n B(x; 2R) form on open cover of X:

As X is connected and contains a point inside B(x; r=2) and another point outside

B(x; 2R), we can pick a chain of these balls B that joins B(x; r=2) to X n B(x; 2R):

The required chain is then obtained as the collection of the balls 2B from the balls B

di�erent from B(x; r=2) in this chain.
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Lemma 6.2 Assume that X satis�es a chain condition and suppose that a pair u; g

satis�es an s-Poincar�e inequality for all balls in X: Then the following holds for almost

every x. Let 0 < R < diam (X)=4: There is r and a chain (Bi) corresponding to x; r; R

with � = �; such that

ju(x)� uB0
j � C

kX
i=0

ri

�Z
�Bi

g
s
d�

�1=s
: (42)

Proof. As � is �xed, conditions 1 and 2 of the de�nition of the chain and the Lebesgue

di�erentiation theorem (see Theorem 14.15) guarantee that uBk
! u(x) for almost all

x when r tends to zero (here k = kr:) For such a point we have for appropriate r and

corresponding k

ju(x)� uB0
j � 2

kX
i=0

juBi
� uBi+1

j

� 2
kX
i=0

(juBi
� uRi

j+ juBi+1
� uRi

j)

� 2
kX
i=0

�Z
Ri

ju� uBi
j d�+

Z
Ri

ju� uBi+1
j d�

�

� C

kX
i=0

Z
Bi

ju� uBi
j d�

� C

kX
i=0

ri

�Z
�Bi

g
s
d�

�1=s
:

The proof is complete.

Proof of Theorem 6.1. By the discussion preceding the previous lemma we know

that X satis�es a chain condition. Thus we may assume that the pointwise inequality

(42) holds for a given point x: Write r for the radius of the �xed ball B: We may assume

that diamB0 � r=C and that Bi � 5B, �Bi � 5�B for each i:

Fix q > maxfs; s=(s� 1)g. For 0 < " < q�1 we have

ju(x)� uB0
j � C

kX
i=0

ri

�Z
�Bi

g
s
d�

�1=s

= C
X
i

r
1�"
i

�(�Bi)
1=q�1=s

�
r
q"

i

Z
�Bi

g
s
d�

�1=q �Z
�Bi

g
s
d�

�1=s�1=q
:

As (s� 1)=s+ 1=q + (1=s� 1=q) = 1, we can use H�older's inequality to estimate

ju(x)� uB0
j � C

 X
i

�
r
1�"
i

�(�Bi)
1=q�1=s

� s

s�1

! s�1

s

 X
i

r
q"

i M5�Bg
s(x)

!1=q

kgk1�s=q
Ls(5�B);
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here we replaced
R
�Bi

gs d� by CM5�Bg
s(x) and used the bounded overlap of the balls

�Bi to replace the sum of the integrals of gs over these balls by the integral of gs over

5�B.

To estimate the second term in the product, we sum over the balls Bi that corre-

spond to an annulus Aj; let us write Ii;j for the set of indices i corresponding to Aj.

By the construction of the chain we know that we have at most N balls for each �xed

j. Moreover the radii of balls corresponding to di�erent Aj form a geometric sequence

and henceX
i

r
q"

i M5�Bg
s(x) = M5�Bg

s(x)
X
j

X
Ii;j

r
q"

i

� CM5�Bg
s(x)

rq"

1� 2�q"
� C(q")�1rq"M5�Bg

s(x);

where C is independent of q; ": In the last inequality we employed the fact that q" < 1.

For the �rst term, we use the lower bound on �(Bi) and argue as aboveX
i

�
r
1�"
i

�(�Bi)
1=q�1=s

�s=(s�1) � C(r1�s=q�(B)1=q�1=s)s=(s�1)
X
i

r
(s=q�")s=(s�1)
i

� Cq(s� "q)�1
�
r
1�"

�(B)1=q�1=s
�s=(s�1)

;

where C is an absolute constant.

If we let " = sq�2; then q(s� "q)�1 = q(s� s=q)�1 � q; as q � s=(s� 1): Hence

ju(x)� uB0
j � Ckgk1�s=q

Ls(5�B)�(B)1=q�1=sq1=q+(s�1)=sr (M5�Bg
s(x))

1=q
;

here C is an absolute constant.

We proceed to estimate the integrals of ju� uBj: By the triangle inequality

ju� uBj � ju� uB0
j+ juB0

� uBj :

By controlling the second term by the Poincar�e inequality and using the above pointwise

estimate for the �rst term we arrive atZ
B

ju� uBjq=2 d� � C
q
q
1=2+(s�1)q=2s

�(B)1=2�q=2skgkq=2�s=2
Ls(5�B)r

q=2
Z
B

(M5�Bg
s)
1=2

d�

+ C
q
r
q=2
�(B)1�q=2skgkq=2

Ls(5�B) :

By the Maximal Theorem (see Theorem 14.13) and Theorem 14.11 in the appendixZ
B

(M�rg
s)
1=2

d� � C

�
�(B)

Z
5�B

g
s
d�

�1=2
and hence we conclude thatZ

B

ju� uBjq=2 d� � C
q
q
1=2+(s�1)q=2s

�
r
s

Z
5�B

g
s
d�

�q=2s
;
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where C does not depend on q: Notice that this estimate holds as well for q �
maxfs; s=(s� 1)g by Theorem 5.1.

Now

exp (tju(x)� uBj)s=(s�1) =
X
k�0

(tju(x)� uBj)ks=(s�1)
k!

:

Integrating over B and using the above estimate we obtainZ
B

exp (tju(x)� uBj)s=(s�1) d� � 1 +
X
k>0

(Ck)1=2+k
�
tr�(5�B)�1=skgkLs(5�B)

�ks=(s�1)
=k!

This series converges when tr�(5�B)�1=skgkLs(5�B) � C0, where C0 depends only on

C; s; and the claim follows.

7 A version of the Sobolev embedding theorem on

spheres

In order to state our version of the Sobolev embedding theorem on spheres we �rst

have to deal with the problem that u is only de�ned almost everywhere. To take care

of this matter we de�ne u(x) everywhere by the formula

u(x) := lim sup
r!0

Z
B(x;r)

u(z) d�(z): (43)

As almost every point is a Lebesgue point, we have only modi�ed u in a set of

measure zero. This rede�nition of u essentially corresponds to picking a representative

of u with nice continuity properties; for related results see Haj lasz and Kinnunen, [102],

and Kinnunen and Martio, [153].

We again assume that X is a doubling space and

�(B(x; r)) � Cb�(B0)

�
r

r0

�s
whenever B(x; r) � B0 = B(x0; r0): Recall that such an estimate follows from the

doubling condition.

Theorem 7.1 Suppose that the pair u; g satis�es a p-Poincar�e inequality and that

p > s � 1: Then the restriction of u to the set fx : d(x; x0) = rg is uniformly H�older

continuous with exponent 1� (s�1)=p for almost every 0 < r < r0: In particular, there

is a constant C1 and a radius r0=2 < r < r0 such that

ju(x)� u(y)j � C1d(x; y)1�(s�1)=pr
(s�1)=p
0 (

Z
5�B0

g
p
d�)1=p

whenever d(x; x0) = d(y; x0) = r: The constant C1 only depends on p; s; CP ; Cb; Cd:
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In the case of Carnot groups a related result has been independently obtained by

Vodop'yanov, [248].

The usual Sobolev embedding theorem on spheres (cf. [182, Lemma 2.10]) is based

on showing that the trace of a Sobolev function belongs to a Sobolev class on almost all

spheres. One then uses the Sobolev embedding on the sphere that is lower dimensional

than the ball. In our situation a sphere can be very wild and this approach cannot be

used. We prove the above result using a maximal function argument.

The reader may wonder why the integration is taken over all of 5�B0 and not over

an annulus. The reason for this is that points on the sphere cannot necessarily be joined

inside an annulus centered at x0: For a trivial example, let X be the real axis. If we

assume that X has reasonable connectivity properties, we obtain a stronger conclusion.

Theorem 7.2 Suppose that the pair u; g satis�es a p-Poincar�e inequality and that

p > s � 1: Assume that any pair of points in B0 n 1
2
B0 can be joined by a continuum

F in CB0 n C�1B0 with diamF � Cd(x; y): Then there is a constant C1 and a radius

r0=2 < r < r0 such that

ju(x)� u(y)j � C1d(x; y)1�(s�1)=pr
(s�1)=p
0 (

Z
C1B0nC

�1

1
B0

g
p
d�)1=p

whenever d(x; x0) = d(y; x0) = r: The constant C1 only depends on p; s; C; CP ; Cb; Cd:

By combining Proposition 4.5 and Theorem 7.2 we obtain the following corollary (recall

that a p-Poincar�e inequality guarantees a q-Poincar�e inequality when q > p).

Corollary 7.3 Suppose that X is weakly locally quasiconvex and that C�1rs �
�(B(x; r)) � Crs with s > 1 for each x and all r: Let s � 1 < p � s: Assume that

for each pair u; g of a function and its upper gradient we have a p-Poincar�e inequality.

Then there is a constant C1 and a radius r0=2 < r < r0 such that

ju(x)� u(y)j � C1d(x; y)1�(s�1)=pr
(s�1)=p
0 (

Z
C1B0nC

�1

1
B0

g
p
d�)1=p

whenever d(x; x0) = d(y; x0) = r: The constant C1 only depends on p; s; C; CP :

In the preceding corollary we assumed that s > 1 and that p � s. Both of these

assumptions are necessary. Indeed, the 1-Poincar�e inequality holds for the real axis,

but one needs to integrate over balls instead of annuli. The union of the two closed

cones in IRn with a common vertex of Example 4.2 supports a p-Poincar�e inequality for

all p > n and �(B(x; r)) � rn for each x and all r: One again needs to integrate over

balls instead of annuli.
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Before proceeding with the proofs of Theorems 7.1 and 7.2 let us discuss one more

application. We say that u is monotone if

sup
y;w2B(x;r)

ju(x)� u(y)j � supfju(y)� u(w)j : d(x; y) = d(x; w) = rg

for each ball B(x; r): Suppose that u is monotone, u has an upper gradient in Ls and

the assumptions of the previous corollary hold. Then u is continuous and

ju(x)� u(y)j � C

 
log

C1M

d(x; y)

!�1=s
kgks;B(x;C1M)

for all x; y with d(x; y) �M: This estimate is commonly used in the Euclidean setting.

We leave it to the reader to deduce this conclusion from the above corollary.

Proof of Theorem 7.1. Fix x; y 2 X and 0 � � < 1. Set B0 = B(x; d(x; y)); and

de�ne Bi = B(x; 2id(x; y)) when i � 1 and Bi = B(y; 2�id(x; y)) when i > 1:

Then, using the Poincar�e inequality and the triangle inequality as in the proof of

Theorem 3.2, we have

ju(x)� u(y)j � C

1X
i=�1

Z
Bi

ju� uBi
j d�

� C

1X
i=�1

ri

�Z
2�Bi

g
p

�1=p

= C

1X
i=�1

r
1��
i

r
�

i

�Z
2�Bi

g
p

�1=p
� Cd(x; y)1��

�
M2�d(x;y);p;�g(x) + M2�d(x;y);p;�g(y)

�
;

where

MR;p;�g(x) = sup
r<R

r
�

 Z
B(x;r)

g
p
d�

!1=p
:

Observe that according to (43) the above inequality holds everywhere (cf. [102]).

Write Gt = fx 2 B0 : M4�r0;p;�g(x) < tg: Then

ju(x)� u(y)j � Ctd(x; y)1�� (44)

for all x; y 2 Gt:

By the covering Lemma 14.12 and the lower bound on �(B(x; r))

H
s��p

1
(B0 nGt) � Ct

�p
r
s

0

Z
5�B0

g
p
d� :

Recall that the Hausdor� content H

1
(E),  � 0, is de�ned as the in�mum of

P
i r



i ,

where the in�mum is taken over the set of all countable coverings of the set E by balls

with radii ri.
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De�ne v : B0 ! [0; r0) by the formula v(x) = d(x; x0): Then v is Lipschitz continu-

ous with constant 1, and hence, for each set E � B0;

H
s��p

1
(v(E)) � H

s��p

1
(E):

Let � = (s� 1)=p. Then

H
1
1

(v(B0 nGt)) � Ct
�p
r
s

0

Z
5�B0

g
p
d� :

This implies that the length of the set v(B0nGt) � [0; r0) goes to 0 as t goes to1. Now

the theorem follows from the observation that for r 2 [0; r0) n v(B0 nGt) the \sphere"

fx : d(x; x0) = rg is contained in Gt and hence inequality (44) applies. The proof is

complete.

Proof of Theorem 7.2. Join the points x; y by a continuum F in A = CB0 n B0=C

with diam (F ) � Cd(x; y): Let r = (100C�)�1d(x; y); and consider the collection of

all balls B(w; r) with w 2 A \ B(x; 2Cd(x; y)). As � is doubling we �nd a cover of

A \ B(x; 2Cd(x; y)) consisting of k of these balls with k depending only on C;Cd; �:

Pick those balls from this cover that intersect F and order them into a chain. That

is, denoting the balls by Vi; Vi \ Vi+1 6= ; for i = 1; :::; l � 1, and x 2 V1; y 2 Vl,

assuming that we have l balls. The claim of Theorem 7.2 follows repeating the proof

of Theorem 7.1 with the following modi�cation: we de�ne Bi = Vi for i = 1; :::; l;

Bi = B(x; 2i(100C�)�1d(x; y)) for i < 0 and Bi = B(y; 2�i+l(100C�)�1d(x; y)) for

i > l: It is helpful to notice here that the balls Bi, for 1 � i � l, have uniformly

bounded overlap as l � k.

8 Rellich-Kondrachov

The classical Rellich{Kondrachov embedding theorem states that, given a bounded

domain 
 � IRn with smooth boundary, the Sobolev space W 1;p(
), 1 � p < 1; is

compactly embedded into Lq(
), where q � 1 is any �nite exponent when p � n and

any exponent strictly less that np=(n � p) when p < n. Of course, here, the Sobolev

space W 1;p(
) is de�ned in the classical way.

In the case of Sobolev spaces associated with vector �elds, some compact embedding

theorems have been obtained by Danielli, [58], Franchi, Serapioni and Serra Cassano,

[83], Garofalo and Lanconelli, [88], Garofalo and Nhieu, [90], Lu, [173], Manfredini,

[183], Rothschild and Stein, [213].

In this section we extend the Rellich{Kondrachov theorem to the setting of metric

spaces. As we will see in Section 11, Sobolev inequalities for vector �elds are special

cases of Sobolev inequalities on metric spaces. Hence our result covers many of the

above results. It extends also an earlier result of Haj lasz and Koskela, [104], from the
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Euclidean setting. In the case of Sobolev spaces on metric spaces introduced by Haj lasz,

[100], a related compactness theorem has been proved independently by Ka lamajska,

[143].

Let � be a Borel measure on X, doubling on 
. As usual, 
 � X denotes an

open subset of a metric space. In order to prove the compactness theorem for Sobolev

functions on 
, we need to assume that a kind of embedding theorem holds on 
. Thus,

until the end of the section, we make the following assumption:

The open set 
 � X satis�es �(
) <1 and there exist exponents p > 0 and q > 1

such that every pair u, g which satis�es a p-Poincar�e inequality (5) in 
 (with given

constants CP ; �) satis�es also the global Sobolev inequality

�Z


jujq d�

�1=q
� C

 Z


juj d�+

�Z


g
p
d�

�1=p!
: (45)

Observe that (45) follows form the Sobolev{Poincar�e inequality (7).

Theorem 8.1 Let X, 
, �, p > 0 and q > 1 be as above. Let fui; gig be a sequence of

pairs, all of which satisfy the p-Poincar�e inequality (5) in 
 with given constants CP ; �:

If the sequence kuikL1(
) + kgikLp(
) is bounded, then fuig contains a subsequence that

converges in Lw(
) for any 1 � w < q to some u 2 Lq(
).

Proof. Let fui; gig be a sequence satisfying the assumptions of the theorem. Since the

sequence fuig is bounded in Lq(
), we can select a subsequence (still denoted by fuig)
weakly convergent in Lq(
) to some u 2 Lq(
). It remains to prove that this sequence

converges to u in the norm of Lw(
) for every 1 � w < q.

Lemma 8.2 Let Y be a set equipped with a �nite measure �. Assume that fvig �
Lq(Y ), 1 < q < 1; is a bounded sequence. If vi converges in measure to v 2 Lq(Y ),

then vi converges to v in the norm of Lw(Y ) for every 1 � w < q.

The lemma is a variant of Proposition 14.9. We postpone the proof of the lemma for a

moment and we show how to use it to complete the proof of the theorem. According

to the lemma it remains to prove that the functions ui converge to u in measure.

Assume that 
c 6= ;; otherwise the proof is even simpler. For t > 0 set 
t = fx 2

 : dist (x;
c) > tg. Fix " > 0 and t > 0. For h < t=� (recall that � appears in (5))

and x 2 
t we set

uh(x) =

Z
B(x;h)

u d� and ui;h(x) =

Z
B(x;h)

ui d�:
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We have

�(fx 2 
t : jui � uj > "g) � �(fx 2 
t : jui � ui;hj > "=3g)
+ �(fx 2 
t : jui;h � uhj > "=3g)
+ �(fx 2 
t : ju� uhj > "=3g)
= Ai;h + Bi;h + Ch:

Note �rst that

jui(x)� ui;h(x)j � Ch (M�hg
p

i (x))
1=p � Ch (M
g

p

i (x))
1=p

by (16) for almost every x 2 
t. Thus the maximal theorem (see Theorem 14.13) gives

Ai;h � �

��
M
g

p

i > C

�
"

h

�p��
� C

 
h

"

!p Z


g
p

i d�
h!0�! 0:

This convergence is uniform with respect to i as the sequence kgikLp(
) is bounded.

It follows from the de�nition of the weak convergence in Lq(
) that for every x 2 
,

ui;h(x) ! uh(x) as i ! 1, so Bi;h ! 0 as i ! 1. Finally Ch ! 0 by the Lebesgue

di�erentiation theorem (see Theorem 14.15). Now it easily follows that ui ! u in

measure. Thus the proof is completed provided we prove the lemma.

Proof of the lemma. Fix 1 � w < q. It su�ces to prove that every subsequence

of fvig contains a subsequence convergent to v in Lw(Y ). In what follows all the

subsequences of fvig will be simply denoted by fvig. Take an arbitrary subsequence of

fvig. The convergence in measure implies that this subsequence contains a subsequence

which is convergent almost everywhere. Then by Egorov's theorem, for any " > 0 there

exists a measurable set E � Y with the property that �(Y n E) < " and vi converges

to v uniformly on E. Hence

�Z
Y

jvk � vjjw d�
�1=w

� �(Y n E)1=w�1=q
 Z

Y nE

jvk � vjjq d�
!1=q

+

�Z
E

jvk � vjjw d�
�1=w

� C"
1=w�1=q +

�Z
E

jvk � vjjw d�
�1=w

;

which gives lim sup
j;k!1 kvk � vjkLw(Y ) � C"1=w�1=q. Since " > 0 was arbitrary, the

subsequence fvig is a Cauchy sequence in Lw(Y ) and hence the lemma follows. This

completes also the proof of the theorem.

Below we state another version of the compactness theorem. The proof follows by

some obvious modi�cations to the above proof.

Theorem 8.3 Let X be a doubling space and let s be the lower decay order of the

measure from (20). Suppose that all the pairs ui; gi satisfy a p-Poincar�e inequality in
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X (with �xed constants CP , �). Fix a ball B and assume that the sequence kuikL1(B) +

kgikLp(5�B) is bounded. Then there is a subsequence of fuig that converges in Lq(B) for

each 1 � q < ps=(s� p), when p < s and for each q � 1 when p � s.

Notice that this theorem gives compactness in the entire space provided the space has

�nite diameter.

We would like to thank Agnieszka Ka lamajska for an argument that simpli�ed our

original proof of the compactness theorem.

9 Sobolev classes in John domains

In the p-Poincar�e inequality (5) we have allowed g to be integrated over a larger ball

than u is integrated over. One cannot, in general, reduce the radii of the balls on the

right hand side. To see this consider the following example: let 
 = (0; 1)[(2; 3)[(4; 5)

and u � 0 on (0; 1), u � 1 on (2; 3) [ (4; 5), g � 0 on (0; 1) [ (2; 3) and g � const. is

very large on (4; 5). The details are left to the reader.

Hence in the Sobolev type inequalities like Theorem 5.1 or Theorem 6.1 we have to

integrate g over a larger ball as well.

We show in this section that one can use balls of the same size provided the geometry

of balls is su�ciently nice. This leads us to de�ne John domains.

The �rst subsection is devoted to study of the geometry of John domains and in

the second subsection we study Sobolev inequalities in John domains.

9.1 John domains

When dealing with Sobolev type inequalities in domains in IRn one usually assumes

that the domain is \nice" in the sense that its boundary is locally a graph of a Lipschitz

function. This notion of being \nice" is not appropriate for the setting of metric spaces

and so one has to de�ne a \nice" domain using only its interior properties. This leads

to John domains.

De�nition. A bounded open subset 
 of a metric space is called a John domain

provided it satis�es the following \twisted cone" condition: There exist a distinguished

point x0 2 
 and a constant C > 0 such that, for every x 2 
, there is a curve

 : [0; l]! 
 parametrized by the arclength and such that (0) = x, (l) = x0 and

dist ((t);
c) � Ct: (46)

(The length l depends on x.)
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Notice that every recti�able curve in a metric space can be parametrized by ar-

clength, see Busemann, [22], or V�ais�al�a, [242].

John domains in IRn were introduced by Martio and Sarvas, [187]. They are named

after F. John who considered similar domains in [134].

The class of John domains in IRn is much larger than the class of domains with the

interior cone condition. In general, the Hausdor� dimension of the boundary of a John

domain can be strictly larger than n� 1.

The above de�nition of John domain is still not appropriate for many metric spaces,

as points in an arc-wise connected metric space may not be joinable by recti�able curves.

For example, if � � IR2 is the von Koch snowake curve and 
 � � is a nontrivial

subcurve, then 
 is not a John domain. However, we would like to include at least

some of the metric spaces that lack recti�able curves in the class of John domains; see

Example 9.1. The following de�nition seems to give a proper generalization of John

domains.

De�nition. A bounded open subset 
 of a metric space (X; d) is called a weak John

domain provided there is a distinguished point x0 2 
 and a constant 1 � CJ > 0 such

that for every x 2 
 there exists a curve  : [0; 1] ! 
 such that (0) = x, (1) = x0

and for every t 2 [0; 1]

dist ((t);
c) � CJd(x; (t)): (47)

We call such a curve a weak John curve. If 
c = ;; then we set dist ((t);
c) = +1
and hence (47) is always satis�ed.

Notice that this de�nition can be also used in the setting of quasimetric spaces (i.e.,

when the triangle inequality is replaced by �(x; y) � K(�(x; z) + �(z; y)), K � 1). In

general, it can happen that even a very nice metric space does not contain nontrivial

recti�able curves. With the metric �(x; y) = jx� yj1=2 on the real axis, any interval is

of in�nite length.

Example 9.1 If f : S2 ! S2 is a quasiconformal mapping and  � S2 is any smooth

Jordan curve, then any connected part of � = f() is a weak John domain. This

includes the class of Jordan curves � � S2 such that both components of S2 n � are

John domains, see N�akki and V�ais�al�a, [200].

There are also many other fractal sets whose \nice" subsets are weak John domains,

while they cannot be John domains because of the lack of recti�able curves.

Example 9.2 Let X be a bounded arc-wise connected metric space. If we take 
 = X,

then 
 is weak John domain, since (47) is satis�ed for any curve joining x and x0.

The reader may �nd the preceding example somewhat arti�cial. Let us briey

clarify the issue. Our aim is to deduce a p-Poincar�e inequality for 
 whenever such an

inequality holds for all balls in 
; that is, B(x; r) � 
: If we are given an underlying

space X; then we consider the balls of the space X that are contained in 
: Otherwise,
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the collection of the balls can be fairly large. For example, let 
 be a bounded domain

in IRn so that 
 equipped with the restrictions of the Euclidean distance and volume

is a doubling space. If we neglect IRn
; and consider 
 as our entire doubling space, we

shall obtain a Poincar�e inequality for 
; provided we assume a Poincar�e inequality for

the pair u; g for all balls of 
: These balls consist of the intersections of all Euclidean

balls centered in 
 with 
, see Corollary 9.9.

It is known that in the Euclidean case X = IRn the class of weak John domains

coincides with the class of John domains, see V�ais�al�a, [243, Theorem 2.18]. In a metric

space this is no longer true. Clearly every John domain is a weak John domain, but the

converse implication may fail. However, we generalize the result by proving that under

a mild additional condition on the space X, the above two de�nitions are equivalent,

see Proposition 9.6.

The crucial property of John domains for us is that they satisfy a chain condition

that is essential in order to e�ectively use the Poincar�e inequality on the balls contained

in the domain.

Let us slightly modify the chain condition we employed in connection with the

Trudinger inequality.

De�nition. We say that 
 satis�es a C(�;M) condition, where �; M � 1; if there is

a \central" ball B0 � 
 such that to every x 2 
 and every r > 0 there is a sequence

of balls B0, B1, B2; : : : ; Bk; (B0 is �xed and k may depend on x; r) with the following

properties

1. �Bi � 
 for i = 0; 1; 2; : : : ; k and Bk � B(x; r);

2. M�1ri � dist (x; �Bi) �Mri for i = 1; 2; : : :,

3. there is a ball Ri � Bi \ Bi+1, such that Bi [ Bi+1 �MRi for i = 0; 1; 2; : : :,

4. no point of 
 belongs to more than M balls �Bi.

A variant of the above chain condition was employed in Haj lasz and Koskela, [103],

[104].

Theorem 9.3 Assume that X is a metric space which is doubling on 
 � X. If


 � X is a weak John domain, then 
 satis�es the C(�;M) condition for any � � 1

with some M depending on �, CJ and doubling constant only.

Proof. Assume �rst that 
 6= X: Let B0 = B(x0; dist (x0;

c)=(4�)): Assume that x is

far away from B0. Say x 2 
 n 2B0. Let  be a weak John curve. First we de�ne a

sequence of balls B0

i
as follows. The centers xi of all balls B0

i
lie on . Let B0

0 = 1
2
B0.

Assume that we have already de�ned B0
i
. Then we trace along , starting from the
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center xi towards x, until we leave B0

i
for the last time. We let this point be the center

xi+1 of B0

i+1 and we de�ne

r
0

i+1 =
CJ

4�
d(x; xi+1) : (48)

Now we de�ne Bi = 2B0

i
. Properties 1. and 2. are evidently satis�ed provided we

choose k large enough. Property 3. follows from the fact that consecutive balls have

comparable radii and xi+1 lies on the boundary of B0

i+1 (ball Ri is centered at xi+1 and

of radius equal to minimum of r0
i
, r0

i+1). For property 4. assume that y 2 �Bi1
\�Bi2

\
: : :\�Bil

. It follows from the construction that the radii of the balls �Bij
, j = 1; 2; : : : ; l

and the distances between centers of the balls are all comparable to d(x; y). Indeed, the

radii are comparable and the distance of the centers times 2� are no less than the radii.

Thus there exists a constant t > 0 such that tBi1
, tBi2

,. . . , tBil
are pairwise disjoint

and all these balls are contained in a ball centered at y and having radius comparable

to d(x; y), so the doubling condition implies the upper bound for l.

The case when x 2 2B0 is similar. If x 2 
nB0; we de�ne B1 = 1
4
B0 and the rest of

the argument goes as above. Otherwise, we consider the union of two curves: the weak

John curve for x and the weak John curve for some point y with d(y; x0) = 1
2
dist (x0;


c):

This curve, traced �rst from x to x0 and then from x0 to y, is easily seen to be a John

curve with a new distinguished point y and a new John constant only depending on

CJ : One can then de�ne desired chain by �rst replacing the role of x0 in the above

argument by y and then adding a chain joining y to x0: We leave the details to the

reader.

Suppose �nally that 
 = X: Then X is bounded. We �x x0 2 
 and de�ne

B0 = B(x0; diam (X)=4): The rest of the argument is the same as in the case X 6= 


except that in (48) we replace CJ by 1. The proof is complete.

Lemma 9.4 Let (X; d) be an arcwise connected metric space such that bounded and

closed sets in X are compact. Assume that the metric d has the property that for

every two points a; b 2 X the distance d(a; b) is equal to the in�mum of the lengths

of curves that join a and b: Then there exists a shortest curve  from a to b with

d(a; b) = d(a; z) + d(z; b), for every z 2 .

Remark. Observe that the compactness of the sets that are bounded and closed is a

stronger assumption than the space being locally compact. The two conditions are

equivalent if the space is complete.

This lemma is due to Busemann, [22, page 25], (cf. [74, page 592]). The idea of the

proof is the following. Let fkg1k=1 be a sequence of recti�able curves joining a with b

and such that the length of k converges to d(a; b). Parametrize each k by arclength.

Scaling the arclength parametrizations we may assume that all curves are de�ned on the

interval [0; 1]. Now it easily follows that the family fkg is equicontinuous (because of

the good parametrization). By a standard diagonal method we can �nd a subsequence
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of fkg which converges on a dense subset of [0; 1]. The equicontinuity implies the

uniform convergence on the whole interval. It is easy to prove that the length of the

limiting curve is d(a; b). For a detailed proof, see [22, page 25].

Corollary 9.5 Let the metric space (X; d) satisfy the assumptions of the above lemma.

Then each ball B � X is a John domain with a universal constant C:

This corollary shows that balls in a Carnot{Carath�eodory metric (see Section 11) are

John domains.

The chain condition is closely connected to the concept of a John domain as the

following proposition shows. Analogs of this result can be found in Buckley, Koskela

and Lu, [20], and in Garofalo and Nhieu, [90], where the authors employ a Boman chain

condition that is di�erent from ours.

Proposition 9.6 Let X be a metric space which is doubling on 
 � X: Assume that 


has the following local connectivity property: there exists a constant � � 1 such that for

every ball B with �B � 
, every two points x; y 2 B can be connected by a recti�able

curve contained in �B and of length less than or equal to �d(x; y). Then the following

three conditions are equivalent

1. 
 is a John domain,

2. 
 is a weak John domain,

3. 
 is a C(�;M)-domain for each � � 2� and for some M:

Proof. The implications 1 ) 2 ) 3 hold without any local connectivity assumptions

on 
: the �rst implication is immediate from the de�nitions and the second one follows

from Theorem 9.3. We prove the implication 3 ) 1. Fix x 2 
 and let fBigk0 be an

associated chain, for � = 2� and r = d(x;
c)=�. We de�ne Bk+1 = B(x; d(x;
c)=2):

If the radii of the balls Bi were to increase geometrically when i decreases we would

obtain the John curve simply by joining the centers of the balls in our chain by curves

obtained from the local connectivity condition. However, this need not be the case.

This di�culty can be recti�ed as follows.

If the entire chain is contained in B(x; Cd(x;
c)); the bounded overlap condition

for the chain and the doubling property imply that the length of the subchain (i.e., the

number of balls) joining the boundary of Bk+1 to x0 does not exceed a uniform constant

that depends on the doubling constant, the constants in the chain condition and on

C. The above connect-the-dots argument applies in this case. Otherwise, we consider

the subchain joining Bk+1 to @B(x; Cd(x;
c)): Again, the length of this subchain is

bounded by a uniform constant and the radii are bounded from below by a multiple

of d(x;
c): Pick a point y1 with d(y1; x) = Cd(x;
c) that is contained in one of the
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balls of the subchain. If the constant C is su�ciently large, then d(y1;

c) � 2d(x;
c):

Consider a chain joining y1 to x0: We now repeat the above argument for the subchain

joining y1 to @B(x; C2d(x;
c)): By continuing inductively we obtain a new chain with

the appropriate geometric behavior. We leave it to the reader to provide the details.

9.2 Sobolev type inequalities

In the main theorem of this section (Theorem 9.7) we show how the claims of Theo-

rem 5.1 and Theorem 6.1 extend to the setting of John domains.

The study of the Sobolev type inequalities in John domains in IRn originated in the

papers of Boman, [13], Bojarski, [12], Goldshtein and Reshetnyak, [95], Hurri, [127],

Iwaniec and Nolder, [129], Kohn, [154], and Martio, [186]. It was then generalized to the

Carnot{Carath�eodory spaces by Jerison, [130], and then to more general situations by

Franchi, Guti�errez and Wheeden, [74], Garofalo and Nhieu, [90], Haj lasz and Koskela,

[103], Lu [171], [172]. Other related references include Buckley and Koskela, [16], [17],

[18], Buckley, Koskela and Lu, [19], [20], Chen and Li, [36], Chua, [41], Hurri-Syrj�anen,

[128], Haj lasz and Koskela, [104], Franchi, [72], Maheux and Salo�-Coste, [181], Salo�-

Coste, [216], Smith and Stegenga, [226], [227].

Buckley and Koskela, [17], [18], showed that the class of John domains is nearly the

largest one for which one can prove the Sobolev-Poincar�e embedding theorem.

Theorem 9.7 Let X be a metric space equipped with a measure which is doubling on

a weak John domain 
 � X. Assume that the measure � satis�es the condition

�(B(x; r)) � Cb

�
r

diam 


�s
�(
) ;

whenever x 2 
 and r � diam 
. If the pair u, g satis�es a p-Poincar�e inequality (5),

p > 0, in 
, then all the claims of Theorem 5.1 hold with B and 5�B replaced by 
.

For example, we get that if 0 < p < s and the pair u, g has the truncation property,

then

inf
c2IR

�Z


ju� cjp� d�

�1=p�
� C(diam 
)

�Z


g
p
d�

�1=p
; (49)

where p� = sp=(s� p).

If in addition the space is connected and p = s > 1, then the Trudinger inequality

holds in 
, i.e., Z



exp

 
C1j
j1=sju� u
j
diam 
 kgkLs(
)

!s=(s�1)
d� � C2 :

The constants C, C1, C2 depend on p, s, �, CP , Cd, Cb and CJ only.
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Remarks. 1) As follows from the proof, the above theorem actually holds for any

open set that satis�es the C(�;M) condition. 2) We have stated explicitly only a

generalization of one part of Theorem 5.1, inequality (49). It is left to the reader to

formulate generalizations of the other cases. 3) Observe that ju � u
j is replaced by

ju� cj and in�mum over c 2 IR is taken. This is necessary if p� < 1 as then we cannot

apply inequality (9).

Proof. By Theorem 9.3 the domain 
 satis�es the chain condition for any given

� = �. Thus we obtain inequality (42) with balls Bi as in the chain condition; in

particular with �Bi � B. The proofs of Theorem 5.3 and Theorem 6.1 give the claim.

Corollary 9.8 Let X be a doubling space satisfying the assumptions of Lemma 9.4.

Suppose that the measure � satis�es condition (20). Then all the claims of Theorem 5.1

hold with the integrals of g taken over B instead of 5�B. If in addition the space is

connected and s > 1, then the Trudinger inequality (41) holds with the integral of g

taken over B.

Remark. This corollary applies to the Carnot{Carath�eodory spaces, see Proposi-

tion 11.5.

Proof. By Corollary 9.5 every ball is a John domain with a universal constant C

and hence we may apply Theorem 9.7. The proof is complete.

We have already mentioned that any bounded arc-wise connected set 
 = X is a

weak John domain. To illustrate this issue we state the following special case of the

above results.

Corollary 9.9 Let 
 � IRn be an arbitrary bounded domain. Assume that jB(x; r) \

j � Crn, whenever x 2 
 and r � diam 
. Assume that u 2 W 1;p(
), 1 � p < n;

satis�es Z

\B
ju� uBj dx � Cr

Z
2B\


jruj dx ;

whenever B = B(x; r), x 2 
 and r � diam 
. Then the global Sobolev inequality�Z


ju� u
jp

�

dx

�1=p�
� C(diam 
)

�Z


jrujp dx

�1=p
holds, where p� = np=(n� p).

Proof. Take X = 
. The condition jB(x; r) \ 
j � Crn means that the space X

equipped with the Lebesgue measure and the Euclidean metric is doubling. Since

X = 
, we conclude that 
 is a weak John domain and hence the claim follows from

Theorem 9.7. The proof is complete.

As the last application of the chain method we improve the so called representation

formula (32). The result below is a generalization and a simpli�cation of earlier results
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due to Capogna, Danielli and Garofalo, [29], Franchi, Lu and Wheeden, [78], [79], and

Franchi and Wheeden, [84].

Theorem 9.10 Assume that X is a metric space which is doubling on a weak John

domain 
 � X. If the pair u, g satis�es a p-Poincar�e inequality (5), p > 0, in 
, then

for almost every x 2 
 we have the inequality

ju(x)� uB0
j � C

1X
j=�1

 Z
Aj(x)\


g(y)pd(x; y)p

�(B(x; d(x; y)))
d�(y)

!1=p
;

where Aj(x) = B(x; 2j) n B(x; 2j�1) and B0 = B(x0; dist (x0;

c)=(4�)), x0 2 
; is a

�xed ball.

In particular when p = 1 we get

ju(x)� uB0
j � C

Z



g(y)d(x; y)

�(B(x; d(x; y)))
d�(y) :

Proof of Theorem 9.10. By Theorem 9.3 the domain satis�es the C(�;M) condition

with � = �. Then we have

ju(x)� uB0
j � 2

kX
i=0

juBi
� uBi+1

j

� C

kX
i=0

ri

�Z
�Bi

g
p
d�

�1=p
:

Each ball �Bi is covered by a �nite number, say no more than l, of the annuli Aj(x).

Hence if �Bi \ Aj(x) 6= ; we get

rj

�Z
�Bi

g
p
d�

�1=p
� C

j+lX
�=j�l

 Z
A�(x)\


gp(y)d(x; y)p

�(B(x; d(x; y)))
d�(y)

!1=p
:

Now observe that the doubling condition and the bounded overlapping of the balls �Bi

implies that the number of balls �Bi with �Bi \ Aj(x) 6= ; is bounded by a constant

not depending on j. This easily implies the claim.

There are several related results when p = 1. For the Euclidean case see Goldshtein

and Reshetnyak, [95], Martio, [186] and Haj lasz and Koskela, [104]; for the Carnot{

Carath�eodory case see Franchi, Lu and Wheeden, [78], Capogna, Danielli and Garofalo,

[29], and for the case of doubling spaces see Franchi, Lu and Wheeden, [79], Franchi

and Wheeden, [84].
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10 Poincar�e inequality: examples

The purpose of this section is to illustrate the results obtained up to now in the paper:

we collect basic examples of pairs that satisfy p-Poincar�e inequalities.

We will pay particular attention to the validity of the truncation property. Recall

that this property is used to prove the Sobolev embedding in the borderline case with

the sharp exponent.

Two classes of examples, Carnot{Carath�eodory spaces and graphs, require a longer

presentation, and so we discuss them in Sections 11 and 12.

10.1 Riemannian manifolds.

The pair u, jruj, where u 2 Lip (IRn), satis�es the 1-Poincar�e inequality and hence all

the p-Poincar�e inequalities for 1 � p < 1. Obviously the pair u, jruj also has the

truncation property.

This result extends to those Riemannian manifolds whose Ricci curvature is bounded

from below. Let M be a complete Riemannian manifold of dimension n, and let g denote

the Riemannian metric tensor. Denote the canonical measure on M by �. Assume that

the Ricci curvature is bounded from below i.e. Ric � �Kg for some K � 0. Then the

Bishop{Gromov comparison theorem implies that

�(B(x; 2r)) � 2n exp(
q

(n� 1)K2r)�(B(x; r));

see Cheeger, Gromov and Taylor, [34]. Moreover Buser's inequality, [23], implies thatZ
B

ju� uBj d� � C(n) exp(
p
Kr)r

Z
B

jruj d�:

This shows that for any R > 0 both the doubling property and the 1-Poincar�e inequality

hold on all balls with radii less than R. If we assume that the Ricci curvature is

nonnegative (i.e. K = 0), then we can take R =1. Obviously, the pair of a Lipschitz

function and the length of its gradient has the truncation property in this setting as

well.

Thus the results of our paper imply that in the above setting, the Sobolev-Poincar�e

inequality holds, see Maheux and Salo�-Coste, [181] and also Haj lasz and Koskela,

[103].

An excellent introduction to the Buser inequality and the comparison theorems can

be found in Chavel's book, [32].

For related and earlier works on Poincar�e and Sobolev inequalities on manifolds

with a bound on the Ricci curvature see Chen and Li, [36], Gallot, [86], Kusuoka and

Stroock, [159], Li and Schoen, [166], Li and Yau, [168], Salo�-Coste, [215], [216].
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10.2 Upper gradients.

Let (X; d; �) be a metric space with a Borel measure, not necessarily doubling.

De�nition. We say that a Borel function g : 
! [0;1] is an upper gradient on 
 of

another Borel function u : 
! IR, if for every 1-Lipschitz curve  : [a; b]! 
 we have

ju((b))� u((a))j �
Z

b

a

g((t)) dt: (50)

Note that g � 1 is an upper gradient of any Borel function u.

De�nition. We say that the space supports a p-Poincar�e inequality inequality on 
,

1 � p <1; if every pair u; g of a continuous function u and its upper gradient g on 


satis�es the p-Poincar�e inequality (5) in 
 (with some �xed constants CP > 0, � � 1).

If we say that the space supports a p-Poincar�e inequality, then we mean that above


 = X.

Since every recti�able curve admits an arc-length parametrization that makes the

curve 1-Lipschitz, the class of 1-Lipschitz curves coincides with the class of recti�able

curves modulo a parameter change.

It is necessary to assume that the function g is de�ned everywhere, as we require

the condition (50) for all recti�able curves. We refer the reader to Busemann, [22], or

V�ais�al�a, [242, Chapter 1], for more information on integration over recti�able curves.

The notions of an upper gradient and a space supporting a p-Poincar�e inequality

were introduced by Heinonen and Koskela, [115], and then applied and further devel-

oped by Bourdon and Pajot, [15], Cheeger, [33], Franchi, Haj lasz and Koskela, [75],

Heinonen and Koskela, [116], Kallunki and Shanmugalingam, [144], Koskela and Mac-

Manus, [157], Laakso, [160], Semmes, [221], Tyson, [240], and Shanmugalingam, [223].

Notice that above we required the p-Poincar�e inequality for continuous functions

and their upper gradients. If X is su�ciently nice, say quasiconvex and each closed ball

in X is compact, then the p-Poincar�e inequality follows for any measurable function and

its upper gradient. In fact, it would in such a setting su�ce to assume the p-Poincar�e

inequality for Lipschitz functions and their upper gradients. For this see [116].

Proposition 10.1 If u is a Lipschitz function on a Riemannian manifoldM , then any

measurable function g such that g � jruj everywhere is an upper gradient of u. On the

other hand, if g 2 Lp(M) is an upper gradient of u 2 Lp(M), then u 2 W 1;p(M) and

g � jruj almost everywhere.

Proof. The �rst part of the proposition is immediate; the second one follows from

the ACL characterization of the Sobolev space, see for example Ziemer, [258, Theo-

rem 2.1.4].
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Remark. It is not true, in general, that any upper gradient g of u 2 C1(M)

satis�es g � jruj a.e., unless we assume that g is locally integrable. As an example

take u(x) � x on [0; 1]. Let E � [0; 1] be a Cantor set with positive length and set

g(x) = 0 if x 2 E, g(x) = 1 if x 62 E. One can then improve this example and even

obtain g <1 everywhere.

Proposition 10.2 If u is a locally Lipschitz function de�ned on an open subset of a

metric space X, then the function jr+uj(x) = lim sup
y!x
ju(x) � u(y)j=d(x; y) is an

upper gradient of u.

Remark. The proposition is no longer true if we only assume that u is continuous.

Indeed, if u is the familiar nondecreasing continuous function u : [0; 1] ! [0; 1] such

that u(0) = 0, u(1) = 1 and u is constant on connected components of the complement

of the Cantor set, then jr+u(x)j = 0 a.e. in [0; 1].

Proof of the proposition. Let  : [a; b] ! 
 be 1-Lipschitz. The function u �  is

Lipschitz and hence di�erentiable a.e. It easily follows that j(u � )0(t)j � jr+u((t))j
whenever u �  is di�erentiable at t. Hence

ju((b))� u((a))j �
Z

b

a

j(u � )0(t)j dt �
Z

b

a

jr+
u((t))j dt:

The proof is complete.

Theorem 10.3 Assume that the space X supports a p-Poincar�e inequality on 
. Then

any pair u; g of a continuous function and its upper gradient on 
 has the truncation

property.

Proof. Let g be an upper gradient of a continuous function u. We have to prove a

family of p-Poincar�e inequalities for all the pairs vt2t1 , g�ft1<v�t2g, where v = "(u � b)

(see the de�nition of the truncation property). Since g is an upper gradient of each of

the functions v, we can assume that u = v. Thus it remains to prove the inequality

Z
B

jut2
t1
� u

t2
t1B
j d� � Cr

�Z
�B

g
p
�ft1<u�t2g d�

�1=p
: (51)

The following lemma is due to Semmes, [221, Lemma C.19]. For reader's convenience

we recall the proof.

Lemma 10.4 Let g be an upper gradient of a continuous function u. Let 0 < t1 <

t2 <1, and let V be an arbitrary open set such that ft1 � u � t2g � V . Then g�V is

an upper gradient of ut2t1.
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Proof. Let  be a curve as in the de�nition of the upper gradient. We have to prove

the analog of (50) for ut2t1 and g�V . If either  is contained in V or  is contained in

X n ft1 � u � t2g, the claim is very easy. In the general case the curve  splits into a

�nite number of parts, each of which is contained in V or in X n ft1 � u � t2g and the

lemma follows by applying the preceding special cases to those pieces of .

Now we can complete the proof of the theorem. Take t1 < s1 < s2 < t2. Then

fs1 � u � s2g � V , where V = ft1 < u < t2g. Applying the p-Poincar�e inequality to

the pair us2
s1

, g�V and passing to the limit as s1 & t1, s2 % t2 we obtain the desired

inequality. This completes the proof.

Theorem 10.3 is interesting provided we can �nd su�ciently many examples of non-

smooth metric spaces that support a p-Poincar�e inequality. The rest of Section 10 is

devoted to the discussion of such examples.

10.3 Topological manifolds.

De�nition. A metric space X is called Q-regular, Q > 0 if it is complete metric space

and there is a measure � on X so that C1r
Q � �(B(x; r)) � C2r

Q whenever x 2 X and

r � diamX.

It is well known that one can replace � in the above de�nition by the Q-dimensional

Hausdor� measure, see for example [221, Lemma C.3].

Semmes, [221], proved a p-Poincar�e inequality on a large class of Q-regular metric

spaces including some topological manifolds.

The following result is a direct consequence of a more general result of Semmes,

[221].

Theorem 10.5 Let X be a connected Q-regular metric space that is also orientable

topological Q-dimensional manifold, Q � 2, integer. Assume that X satis�es the local

linear contractibility condition: there is C � 1 so that, for each x 2 X and R �
C�1diamX, the ball B(x;R) can be contracted to a point inside B(x; CR). Then the

space supports a 1-Poincar�e inequality.

For related inequalities also see, David and Semmes, [60], and Semmes, [222].

10.4 Gluing and related constructions.

Heinonen and Koskela, [115, Theorem 6.15], proved that gluing two spaces that support

a p-Poincar�e inequality along a su�ciently large common part results in a new space

that also supports a p-Poincar�e inequality. For example, one can glue two copies of the
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unit ball of IR2 along the usual 1
3
-Cantor set and the resulting doubling space supports

a p-Poincar�e inequality for all p > 2� log 2

log 3
: This procedure allows one to build plethora

of examples. Hanson and Heinonen, [109], used this type of a construction recently to

build a space that supports the 1-Poincar�e inequality but has no manifold points.

Laakso, [160], constructed recently for each Q > 1 a Q-regular metric space that

supports the 1-Poincar�e inequality. Notice that here Q need not be an integer. These

spaces do not admit bi-Lipschitz imbeddings into any Euclidean space. They are ob-

tained as quotients by �nite to one maps of products of intervals with Cantor sets.

The �rst authors to �nd non-integer dimensional Q-regular spaces that support a

Poincar�e inequality were Bourdon and Pajot, [15]. Their examples are boundaries of

certain hyperbolic buildings.

10.5 Further examples.

A huge class of examples of spaces that support p-Poincar�e inequalities is contained

in the class of so-called Carnot{Carath�eodory spaces that are discussed in Section 11.

This class includes the Carnot groups that have been mentioned above.

One can also investigate p-Poincar�e inequalities on graphs, see Section 12. Here the

situation is however di�erent. Since the space is disconnected, the notion of an upper

gradient is absurd. Moreover, the truncation property does not hold and it has to be

modi�ed.

There are also many other examples that will not be discussed in the paper. The

main class of such examples is given by Poincar�e inequalities on Dirichlet spaces.

Roughly speaking we are given a pair u; g satisfying a p-Poincar�e inequality on a dou-

bling space and in addition g is related to u in terms of a Dirichlet form, see Biroli

and Mosco, [8], [9], [10], Jost, [139], [140], [141], Sturm, [231], [232], [233], [234]. Thus

this example �ts precisely into the setting of our paper. However, the presence of the

Dirichlet form gives additional structure that may lead to results not under the scope

of our more general setting.

The analysis of Dirichlet forms is closely related to the analysis on fractals and

especially with the spectral theory of the Laplace operators, see, e.g., Barlow and Bass,

[5], Jonsson, [136], Kozlov, [158], Kigami, [147], [148], [149], Kigami and Lapidus, [150],

Lapidus, [163], [164], Metz and Sturm, [192], Mosco, [196]. As it follows form a recent

work of Jonsson, [136], the spectral theory of the Laplace operators on fractals is also

related to the theory of function spaces on fractal subsets of IRn developed by Jonsson

and Wallin, [135], [137], see also Triebel, [239]. Some connections with the theory

presented in this paper seem evident, but a better understanding of those connections

is still lacking.
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11 Carnot{Carath�eodory spaces

In this section we give an introduction to the analysis of vector �elds | one of the

main areas where the theory of Sobolev spaces on metric spaces is applicable.

In the �rst subsection we de�ne the so called Carnot{Carath�eodory metric associ-

ated with a family of vector �elds X = (X1; : : : ; Xk). Then, in the second subsection,

we prove that with respect to this metric the \gradient" jXuj associated with the given

family of vector �elds becomes the smallest upper gradient of u. We also deal with

Poincar�e inequalities and Sobolev spaces associated with the given system of vector

�elds.

The main novelty in our approach is that we develop the analysis on Carnot{

Carath�eodory spaces from the point of view of upper gradients. The prime results

of the section are Theorem 11.7 and Theorem 11.12.

In the last three subsections we consider Carnot groups and vector �elds satisfy-

ing H�ormander's condition | both are examples where pairs u, jXuj satisfy such a

Poincar�e inequality. We also discuss some other classes of vector �elds that do not

satisfy H�ormander's condition, but still support Poincar�e inequalities.

11.1 Carnot{Carath�eodory metric.

Let 
 � IRn be an open and connected set and let X1, X2,. . . ,Xk be vector �elds

de�ned in 
, with real locally Lipschitz continuous coe�cients. We identify the Xj's

with the �rst order di�erential operators that act on u 2 Lip (
) by the formula

Xju(x) = hXj(x);ru(x)i; j = 1; 2; : : : ; k:

We set Xu = (X1u; : : : ; Xku), and hence

jXu(x)j =
0@ kX
j=1

jXju(x)j2
1A1=2

:

With such a family of vector �elds one can associate a suitable degenerate elliptic

operator, like for example L = �Pk

j=1X
�

j
Xj, where X�

j
is the formal adjoint of Xj in

L2 i.e.,
R
Xju v =

R
uX�

j
v for all u; v 2 C1

0 . Both the Poincar�e and Sobolev inequalities

for the pair u, jXuj are crucial then for the Harnack inequality for positive solutions

to Lu = 0 via Moser's iteration. Since the Poincar�e inequality implies the Sobolev

inequality, one needs only check the validity of a Poincar�e inequality. Of course this

requires strong restrictions on the class of vector �elds.

Even if one is concerned with degenerate elliptic equations of the divergence form

Lu(x) = div (A(x)ru(x)) (52)
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with a symmetric, nonnegative semi-de�nite matrix A with smooth coe�cients, it is,

in general, necessary to deal with vector �elds that have only Lipschitz coe�cients as

they arise in the factorization L = �PjX
�

j
Xj, see Oleinik and Radkevic, [203].

For more applications to PDE and references, see Section 13.

How does one prove a Poincar�e inequality for the pair u, jXuj? The natural approach

is to bound u by integrals of jXuj along curves and then average the resulting one-

dimensional integrals to obtain the desired Poincar�e inequality.

In order to have such bounds for u in terms of integrals of jXuj, one would like to

know that jXuj is an upper gradient of u. Unfortunately this is rarely the case.

For example, if we have only the single vector �eld X1 = @=@x1 and (t) = (0; t),

u(x1; x2) = x2 in IR2, then ju((1)) � u((0))j = 1, while jXuj � 0, and so jXuj is

not an upper gradient of u. It is not an upper gradient even up to a constant factor.

Roughly speaking, the problem is caused by the fact that _ is not spanned by the Xj's.

There is a brilliant idea that allows one to avoid this problem by introducing a new

metric (that is described below) in 
 that makes jXuj an upper gradient of u on a new

metric space. The metric is such that it restricts the class of 1-Lipschitz curves to those

for which _ is a linear combination of the Xj's. To be more precise, it is not always a

metric as it allows the distance to be in�nite.

We say that an absolutely continuous curve  : [a; b] ! 
 is admissible if there

exist measurable functions cj(t), a � t � b; satisfying
P

k

j=1 cj(t)
2 � 1 and _(t) =P

k

j=1 cj(t)Xj((t)).

Note that if the vector �elds are not linearly independent at a point, then the

coe�cients cj are not unique.

Then we de�ne the distance �(x; y) between x; y 2 
 as the in�mum of those T > 0

such that there exists an admissible curve  : [0; T ]! 
 with (0) = x and (T ) = y.

If there is no admissible curve that joins x and y, then we set �(x; y) =1.

Note that the space (
; �) splits into a (possibly in�nite) family of metric spaces


 =
S
i2I Ai, where x; y 2 Ai if and only if x and y can be connected by an admissible

curve. Obviously (Ai; �) is a metric space and the distance between distinct Ai's is

in�nite.

If we only have the single vector �eld X1 = @=@x1 in IR2, then �(x; y) = jx� yj if x
and y lie on a line parallel to the x1 axis; otherwise �(x; y) = 1. On the other hand,

if Xj = @=@xj for j = 1; 2; : : : ; n in IRn
; then � is the Euclidean metric.

The distance function � is given many names in the literature. We will use the

name Carnot{Carath�eodory distance. A space equipped with the Carnot{Carath�eodory

distance is called a Carnot{Carath�eodory space.
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There are several other equivalent de�nitions for the Carnot{Carath�eodory distance,

see, e.g., Jerison and Sanchez-Calle, [133] and Nagel, Stein and Wainger, [199]. The

Carnot{Carath�eodory distance can also be de�ned for Dirichlet forms, see Sturm, [233].

It has already been mentioned that Lipschitz vector �elds arise in connection with

degenerate elliptic equations of the divergence form (52). It seems that Fe�erman and

Phong, [67], where the �rst to realize that many important properties of the operator

can be read o� from the properties of the associated Carnot{Carath�eodory metric.

Roughly speaking, they proved that, locally, subellipticity of (52) is equivalent to the

estimate �(x; y) � Cjx� yj" for some " > 0.

Other connections with degenerate elliptic equations will be discussed later on

in Section 13. We want to emphasize that the scope of applications of the Carnot{

Carath�eodory geometry goes far beyond degenerate elliptic equations and it includes

control theory, CR geometry, and more recently quasiconformal mappings. We refer the

reader to the collection [235] of papers for a comprehensive introduction to the Carnot{

Carath�eodory geometry. Other important references include: Franchi, [72], Franchi and

Lanconelli, [76], Garofalo and Nhieu, [90], [89], Gole and Karidi, [96], Karidi, [146], Liu

and Sussman, [170], Nagel, Stein and Wainger, [199], Pansu, [205], Salo�-Coste, [216],

[218], Strichartz, [230], Varopoulos, Salo�-Coste and Coulhon, [247], to name a few.

Lemma 11.1 Let B(x;R) �� 
 and let supB(x;R) jXj = M . If  : [0; T ] ! 
,

T < R=M , is an admissible curve with (0) = x, then ([0; T ]) � B(x;R).

Proof. Assume by contradiction that the image of � is not contained in the ball B(x;R).

Then there is the smallest t0 2 (0; T ] such that jx � (t0)j = R. Note that by the

Schwartz inequality j _(t)j � jX((t))j. Hence

R = jx� (t0)j =
����Z t0

0
_(t) dt

���� � Z t0

0
jX((t))j dt �MT;

which contradicts the assumption T < R=M . The proof is complete.

As as a corollary we obtain the following well known result.

Proposition 11.2 Let G �� 
. Then there is a constant C > 0 such that

�(x; y) � Cjx� yj;

for all x; y 2 G.

Proof. Let x; y 2 G and let  : [0; T ]! 
, (0) = x, (T ) = y; be any admissible curve.

Fix " > 0 such that G" = fx 2 IRn : dist (x;G) < "g �� 
 and set M = sup
G" jXj.

Obviously B(x;R) � G", when R = minfjx � yj; "g; and hence Lemma 11.1 implies

that T � R=M � minfM�1; "(MdiamG)�1gjx� yj. This completes the proof.
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If �(x; y) < 1 for all x; y 2 
, then � is a true metric (called the Carnot{

Carath�eodory metric). Proposition 11.2 implies that id : (
; �)! (
; j � j) is continuous.

However, it need not be a homeomorphism as the simple example of the two vector

�elds @x and x+@y in IR2 shows.

In order to avoid such pathological situations, it is often assumed in the literature

that

id : (
; �)! (
; j � j) is a homeomorphism. (53)

Fortunately, (53) is true for a large class of vector �elds satisfying the so-called

H�ormander condition which includes Carnot groups (see the following subsections),

and the case of Grushin type vector �elds like those in Franchi, [72], Franchi, Guti�errez

and Wheeden, [74], and Franchi and Lanconelli, [76].

To keep the generality we do not assume (53) unless it is explicitly stated.

By a Lipschitz function on 
 we mean Lipschitz continuity with respect to the

Euclidean metric in 
, but when we say that a function is Lipschitz on (
; �) we mean

Lipschitz with respect to the distance �. The same convention extends to functions

with values in 
 or in (
; �). Functions that are Lipschitz with respect to � will be also

called metric Lipschitz. Balls with respect to � will be called metric balls and denoted

by eB.

Lemma 11.3 Every admissible curve  : [0; T ]! 
 is Lipschitz.

Proof. Use the Schwartz inequality.

Proposition 11.4 A mapping  : [0; T ]! (
; �) is an admissible curve if and only if

it is 1-Lipschitz i.e., �((b); (a)) � jb� aj for all a; b.

Proof. ). This implication directly follows from the de�nition of �.

(. Let  : [0; T ] ! (
; �) be a 1-Lipschitz curve. By Lemma 11.3 it is Lipschitz

with respect to the Euclidean metric on 
 and hence it is di�erentiable a.e. We have to

prove that  is admissible. Let t0 2 (0; T ) be any point where  is di�erentiable. Since

�((t0 + "); (t0)) � " for " > 0, there exists an admissible curve � : [0; " + �] ! 
,

�(0) = (t0), �("+ �) = (t0 + ") for any � > 0. We haveZ
"+�

0
_�(t) dt = (t0 + ")� (t0) = _(t0)" + o("):

By the de�nition of an admissible curve there are measurable functions cj(t) such thatP
j cj(t)

2 � 1 and

_�(t) =
kX

j=1

cj(t)Xj((t0)) +
kX

j=1

cj(t)
�
Xj(�(t))�Xj(�(0)

�
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=
kX

j=1

cj(t)Xj((t0)) + a(t):

Note that, by Proposition 11.2, Cj�(t)� �(0)j � �(�(t); �(0)) � t, provided " and � are

su�ciently small. Hence ja(t)j � jX(�(t)) � X(�(0))j � Ct, as the vector �elds have

locally Lipschitz coe�cients. Thus we conclude that

_(t0) = "
�1
Z

"+�

0
_�(t) dt +

o(")

"

=
" + �

"

kX
j=1

 Z
"+�

0
cj(t) dt

!
Xj((t0)) + "

�1
Z

"+�

0
a(t) dt +

o(")

"
:

Selecting suitable sequences "l ! 0 and �l ! 0 we conclude that _(t0) =
P

j bjXj((t0)),P
j b

2
j
� 1. This completes the proof.

It is well known that any recti�able curve in a metric space admits an arc-

length parametrization, see [22] or [242, Chapter 1]. This also holds for the Carnot{

Carath�eodory distance as a Carnot{Carath�eodory space splits into a family of metric

spaces such that each recti�able curve is entirely contained in one of these metric spaces.

Note also that the arc-length parametrization makes the curve 1-Lipschitz and hence

admissible. This observation implies the following result.

Proposition 11.5 The Carnot{Carath�eodory distance between any two points equals

the in�mum of lengths (with respect to �) of curves that join those two points. If the

points cannot be connected by a recti�able curve, then their distance is in�nite.

11.2 Upper gradients and Sobolev spaces.

The following two results generalize Proposition 10.1.

Proposition 11.6 jXuj is an upper gradient of u 2 C1(
) on the space (
; �).

Proof. Let  : [a; b]! (
; �) be a 1-Lipschitz curve. By Lemma 11.3, u �  is Lipschitz

and hence

ju((b))� u((a))j =
�����
Z

b

a

hru((t)); _(t)i dt
����� �

Z
b

a

jXu((t))j dt:

The inequality follows from the fact that  is admissible by Lemma 11.4 and from the

Schwartz inequality. The proof is complete.

Theorem 11.7 Let 0 � g 2 L1
loc(
) be an upper gradient of a continuous function u

on (
; �). Then the distributional derivatives Xju, j = 1; 2; : : : ; k, are locally integrable

and jXuj � g a.e.
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The proof of the theorem is rather complicated and thus we �rst make some comments

and give applications and postpone the proof until the end of the subsection.

The proof is particularly easy if u 2 C1(
) and the vector �elds have C1 smooth

coe�cients. We present it now as it may help to understand the proof for the general

case.

Since u is smooth, we do not have to worry about distributional derivatives and we

simply prove that g � jXuj a.e.

The set of the points where jXu(x)j > 0 is open. Since the desired inequality

holds trivially outside this set, we can assume that jXuj > 0 everywhere in 
. Let

aj(x) = Xju(x)=jXu(x)j and let  be any integral curve of the vector �eld Y =
P

j ajXj

i.e.,  : (�T; T )! 
, _(t) =
P

j aj((t))Xj((t)). Obviously  is an admissible curve.

Thus  : (�T; T )! (
; �) is 1-Lipschitz and hence

ju((t2))� u((t1))j �
Z

t2

t1

g((t)) dt;

for any �T < t1 < t2 < T . On the other hand

ju((t2))� u((t1))j =
����Z t2

t1

hru((t)); _(t)i dt
���� =

Z
t2

t1

jXu((t))j dt:

This yields Z
t2

t1

jXu((t))j dt �
Z

t2

t1

g((t)) dt: (54)

If the vector �eld Y were parallel to one of the coordinate axes, then (54) would imply

that g � jXuj a.e. on almost every line parallel to that axis and hence g � jXuj a.e.

in 
. The general case can be reduced to the case of a vector �eld of parallel directions

by the recti�cation theorem. This is obvious if the vector �eld is C1-smooth as it is

the usual requirement in the recti�cation theorem, see Arnold, [3]. However the same

argument can be also used in the general Lipschitz case. A construction of the Lipschitz

recti�cation is provided in the proof of Theorem 11.7 (look for � : G! 
).

Now we give two applications of the theorem.

Note that if u is metric L-Lipschitz, then the constant function L is an upper

gradient of u. However, the function u need not be continuous with respect to the

Euclidean metric, even if the Carnot{Carath�eodory distance is a metric. This is easily

seen in the previously discussed example of @x and x+@y in IR2. Thus, in order to

apply Theorem 11.7 to a metric L-Lipschitz function, we need to assume either that

the function is continuous with respect to the Euclidean metric or simply that (53)

holds.

The following special case of Theorem 11.7 was proved by Franchi, Haj lasz and

Koskela, [75], and in a slightly weaker form earlier by Chernikov and Vodop'yanov,

[37], Franchi, Serapioni and Serra Cassano, [83], and Garofalo and Nhieu, [89].
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Corollary 11.8 Assume that (53) holds. If u is metric L-Lipschitz, then the distri-

butional derivatives Xju, j = 1; 2; : : : ; k, are represented by bounded functions and

jXuj � L a.e.

The following version of Meyers{Serrin's theorem was discovered in its local form by

Friedrichs, [85], (cf. [209, Lemma 11.27]), and later by Chernikov and Vodop'yanov,

[37, Lemma 1.2], Franchi, Serapioni and Serra Cassano, [82, Proposition 1.2.2], [83,

p. 90], and Garofalo and Nhieu, [90, Lemma 7.6].

Since later on we will need estimates from the proof, rather than the statement

alone, we recall the proof following Friedrich's argument.

Theorem 11.9 Let X = (X1; X2; : : : ; Xk) be a system of vector �elds with locally

Lipschitz coe�cients in 
 � IRn and let 1 � p < 1. If u 2 Lp(
) and (the distri-

butional derivative) Xu 2 Lp(
), then there exists a sequence uk 2 C1(
) such that

kuk � ukLp(
) + kXuk �XukLp(
) ! 0 as k !1.

Proof. We will prove that if u has the compact support in 
, then the standard molli�er

approximation is a desired approximating sequence. The general case follows then by

a partition of unity argument.

Let Y (x) =
P

n

j=1 cj(x)@=@xj , where the functions cj are locally Lipschitz, denote

one of Xj's. Let '"(x) = "�n'(x="), 0 � ' 2 C1

0 (Bn(0; 1)),
R
' = 1; be a standard

molli�er kernel. For a locally integrable function u we have

Y (u � '")(x) =
nX
j=1

Z
cj(x� y)

@u

@xj
(x� y)'"(y) dy

+
nX
j=1

Z
(cj(x)� cj(x� y))

@u

@xj
(x� y)'"(y) dy

= (Y u) � '"(x)

+
nX
j=1

Z
(u(x� y)� u(x))

@

@yj

�
(cj(x)� cj(x� y))'"(y)

�
dy

= (Y u) � '"(x) + A"u(x); (55)

where the integrals are understood in the sense of distributions. Note that����� @@yj
�
(cj(x)� cj(x� y))'"(y)

������ � CL(x; ")"�n�Bn(0;"); a.e.;

where L(x; ") is the Lipschitz constant of all cj's on Bn(x; "). Hence

jA"u(x)j � CL(x; ")

Z
Bn(x;")

ju(y)� u(x)j dy: (56)
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If u 2 Lp(
) has compact support in 
, then it easily follows that kA"ukLp(
) ! 0

as " ! 0. Indeed, it is obvious if u is continuous and in the general case we can

approximate u by compactly supported continuous functions in the Lp norm. If in

addition Y u 2 Lp(
), then (Y u)�'"! Y u in Lp(
) and hence by (55), Y (u�'")! Y u

in Lp(
). The proof is complete.

The following result is a corollary of the above proof.

Proposition 11.10 Assume that (53) holds. Let u be metric L-Lipschitz in 
. Then

the standard molli�er approximation converges to u uniformly on compact subsets of 


and

jX(u � '")(x)j � L + jA"u(x)j;
where jA"uj ! 0 as " ! 0 uniformly on compact subsets of 
. The above inequality

holds for all x 2 
 of distance at least " to the boundary.

Proof. Condition (53) is used to guarantee that u is continuous with respect to the

Euclidean metric, which in turn together with (56) implies that jA"u(x)j converges

to zero uniformly on compact sets. By Corollary 11.8, jY uj � '" � L, for any Y =P
k

j=1 cjXj with
P

j c
2
j
� 1. The desired inequality then results using (55) with the

following choice of the coe�cients. Fix an arbitrary point x0 2 
. If jX(u�'")(x0)j = 0,

then we are done; otherwise we take cj = Xj(u � '")(x0)=jX(u � '")(x0)j. The proof is

complete.

The theorem below shows that, in a certain sense, the analysis of vector �elds

is determined by the associated Carnot{Carath�eodory metric. The result is also an

a�rmative answer to a question posed by Bruno Franchi.

Theorem 11.11 Let X and Y be two families of vector �elds with locally Lipschitz

coe�cients in 
 and such that (53) holds for the induced Carnot{Carath�eodory metrics

�X and �Y . Then the following conditions are equivalent.

1. There exists a constant C � 1 such that C�1�X � �Y � C�X .

2. There exists a constant C � 1 such that C�1jXuj � jY uj � CjXuj for all

u 2 C1(
).

Proof. 1: ) 2: Note that if g is an upper gradient of u 2 C1(
) on (
; �X), then

the equivalence of the metrics implies that Cg is an upper gradient of u on (
; �Y ).

This fact, Proposition 11.6, and Theorem 11.7 imply that jY uj � CjXuj. The opposite

inequality follows by the same argument.

2: ) 1: Fix x; y 2 
, and let u(z) = �X(x; z). Let  : [0; T ] ! (
; �Y ) be an

arbitrary 1-Lipschitz curve such that (0) = x, (T ) = y.
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Let u" = u�'" be the standard molli�er approximation. By Proposition 11.6, jY u"j
is an upper gradient of u" on (
; �Y ), and hence, invoking Proposition 11.10, we get

�X(x; y)
"!0 � ju"((T ))� u"((0))j �

Z
T

0
jY u"((t))j dt

� C

Z
T

0
jXu"((t))j dt � CT + C

Z
T

0
jA"u((t))j dt "!0�! CT:

Now it follows from the de�nition of �Y that �X � C�Y . The opposite inequality follows

by the same argument. The proof is complete.

Let us come back to the question posed at the beginning of the section. How does

one prove a Poincar�e inequality for the pair u, jXuj? The natural approach is to

bound the oscillation of u by integrals of jXuj over admissible curves | this can be

done as jXuj is an upper gradient of u. Then the Poincar�e inequality should follow by

averaging the resulting line integrals. Unfortunately, in general, this program is very

di�cult to handle, and it turns out that many additional assumptions on the vector

�elds are needed. One such a proof of a Poincar�e inequality will be presented later on

(see Theorem 11.17). Anyhow, if one succeeds in proving a Poincar�e inequality using

the above idea, the resulting inequality holds on metric balls.

Thus the Poincar�e inequality we should expect is

Z
eB ju� ueBj dx � CPr

�Z
� eB jXujp dx

�1=p
; (57)

whenever � eB � 
 and u 2 C1(� eB). Here CP > 0, � � 1, 1 � p < 1; are �xed

constants and, as usual, eB denotes a ball with respect to the Carnot{Carath�eodory

metric �.

Even if proving inequalities like (57) requires many assumptions on X, there are

su�ciently many important examples where (57) holds. Some of them will be discussed

in the following subsections.

Theorem 11.12 Assume that a system of locally Lipschitz vector �elds is such that

condition (53) is satis�ed. Fix � � 1, CP > 0, and 1 � p < 1. Then the space

(
; �;Hn) supports a p-Poincar�e inequality (with given � and CP ) if and only if in-

equality (57) holds whenever � eB � 
 and u 2 C1(� eB).

Proof. The left-to-right implication is easy to obtain as the function jXuj is an upper

gradient of u; for u 2 C1(
). If u 2 C1(� eB), then we can extend u from the ball

(1� ")� eB to a continuous function on 
; next extending jXuj from the same ball to 


by1 gives an upper gradient on 
 of the extension of u. Now applying the p-Poincar�e

inequality on (1 � ") eB to the extended pair and passing to the limit as " ! 0 yields

(57).
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For the right-to-left implication we have to prove that, whenever g is an upper

gradient of a continuous function u, then

Z
eB ju� ueBj dx � CP r

�Z
� eB gp dx

�1=p
; (58)

for all � eB � 
. Fix a ball eB. We may assume that g 2 Lp(� eB); otherwise the

inequality is obvious.

Since g is an upper gradient of u on (� eB; �), Theorem 11.7 implies that jXuj � g

a.e. in � eB. Then, by Theorem 11.9, there is a sequence of functions uk 2 C1(� eB)

such that kuk � uk
Lp(� eB) + kXuk � Xuk

Lp(� eB) ! 0. Thus, if we pass to the limit in

the inequality (57) applied to uk's, we obtain the p-Poincar�e inequality for the pair u,

jXuj. This together with the estimate jXuj � g yields (58). The proof is complete.

There is an obvious way to de�ne a Sobolev space associated with a system of vector

�elds. Namely, we de�ne W
1;p
X

(
), 1 � p � 1; as the set of those u 2 Lp(
) such that

jXuj 2 Lp(
), where Xu is de�ned in the sense of distributions, and we equip the space

with the norm kukLp(
) + kXukLp(
) under which W
1;p
X

(
) becomes a Banach space.

According to Theorem 11.9, when 1 � p <1; one can equivalently de�ne the space

as the completion of C1(
) in the above norm.

We will return to the construction of a Sobolev space associated with the system of

vector �elds in Section 13.

Proof of Theorem 11.7. Let Y =
P

k

j=1 cjXj, where cj's are arbitrarily chosen con-

stant coe�cients with
P

k

j=1 c
2
j
� 1.

Let �(x; t) be the function uniquely de�ned by the conditions �(x; 0) = x and
d

dt
�(x; t) = Y (�(x; t)). The properties of � are collected in the following lemma. For

the proof, see Franchi, Serapioni and Serra Cassano, [83, p.101], or Hartman, [110],

Hille, [119].

Lemma 11.13 If 
0 �� 
, then there exists T > 0 such that � : 
0� (�2T; 2T )! 
.

Moreover for every t 2 (�2T; 2T ), the mapping �(�; t) : 
0 ! 
 is bi-Lipschitz onto

the image with the inverse �(�;�t); the mapping �(�; t) is di�erentiable a.e. and

@�i

@xj
(x; t) = �ij + aij(x; t);

where �ij is the Kronecker symbol and jaij(x; t)j � Cjtj, with a constant C which does

not depend neither on x 2 
0 nor on t 2 (�T; T ). This implies that the Jacobian of �

satis�es

J�(x; t) = 1 + eJ�(x; t); j eJ�(x; t)j � Cjtj; (59)

for the given range of x and t.
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Let 
0 �� 
. It su�ces to show that jXuj � g a.e. in 
0; the theorem will follow then

by an exhaustion of the domain 
.

De�ne the directional derivative of u in the direction of Y by the formula eY u(x) =
d

dt
jt=0u(�(x; t)).

The plan of the proof of the theorem is the following. In the �rst step we prove thateY u exists a.e. and that j eY uj � g a.e. In the second step we prove that eY u is actually

the distributional derivative and in the last step we show that, by an appropriate choice

of the cj's, we get j eY uj = jXuj.
Step 1. We show that eY u exists a.e. and j eY uj � g a.e.

If Y (x) = 0, then eY u(x) = 0, and hence j eY u(x)j � g(x). Thus it remains to prove

the inequality in the open set where Y 6= 0.

Observe that the curves t 7! �(x; t) are admissible, and hence, for �2T < t1 < t2 <

2T ,

ju(�(x; t2))� u(�(x; t1))j �
Z

t2

t1

g(�(x; t)) dt:

Thus, if for given x, the function t 7! g(�(x; t)) is locally integrable, then the above

inequality implies that the function t 7! u(�(x; t)) is absolutely continuous and

j eY u(�(x; t))j =
����� ddtu(�(x; t))

����� � g(�(x; t)); (60)

for almost all t 2 (�2T; 2T ).

Fix x0 2 
0 with Y (x0) 6= 0, and let Bn�1(x0; �) be a su�ciently small ball contained

in the hyperplane perpendicular to Y (x0). For a moment restrict the domain of de�ni-

tion of � to G = Bn�1(x0; �)� (�T; T ). The uniqueness theorem for ODE implies that

� is one-to-one on G. Moreover the properties of � collected in Lemma 11.13 imply

that � is Lipschitz on G and the Jacobian of � : G ! 
 satis�es C1 � jJ�j � C2 > 0

on G provided � and T are su�ciently small (note that this is the Jacobian of a dif-

ferent mapping than that in (59)). Hence jJ�(��1(z))j�1 is bounded on �(G). Note

that jJ�(��1(z))j�1 is de�ned almost everywhere on �(G). This follows from the

observation that if E � �(G), jEj > 0, then by the change of variables formula

0 < jEj =
R
��1(E) jJ�j and hence j��1(E)j > 0. The last observation implies also

that if we prove that some property holds for almost all (x; t) 2 Bn�1(x0; �)� (�T; T ),

then it is equivalent to say that the property holds for almost all z 2 �(G).

The set �(G) is open and it contains x0. Since we can cover the set where Y 6= 0

with such �(G)'s it remains to prove that j eY j � g a.e. in �(G).

In order to prove that for almost every z 2 �(G) the directional derivative eY u(z)

exists and satis�es j eY u(z)j � g(z), it su�ces to prove that for almost every x 2
Bn�1(x0; �) the function t 7! g(�(x; t)), t 2 (�T; T ) is integrable, and then the claim
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follows from (60). The integrability follows immediately from the estimateZ
Bn�1(x0;�)

Z
T

�T

g(�(x; t)) dt dx =

Z
�(G)

g(z)jJ�(��1(z))j�1 dz � C

Z
�(G)

g(z) dz <1

and the Fubini theorem. Thus we proved that j eY uj � g a.e. in �(G) and hence a.e. in


0.

Step 2. Now we prove that eY u = Y u, where Y u is the distributional derivative

de�ned by its evaluation on ' 2 C1

0 (
0) by the formula

hY u; 'i = �
Z
uY

�
' = �

Z
uY '�

Z
u' divY:

In the proof we will need a stronger result than just the inequality j eY uj � g. Let

u�(z) = (u(�(z; �))� u(z))=�. We claim that for every ' 2 C1

0 (
0)Z
u�(z)'(z) dz �!

Z eY u(z)'(z) dz: (61)

Since u� ! eY u a.e. it su�ces to prove that, locally, the family fu�g0<�<T is uniformly

integrable. Then the convergence (61) will follow from Proposition 14.9. According to

the Vall�ee Poussin theorem (see Theorem 14.8), it su�ces to prove that there exists a

convex function F : [0;1)! [0;1) such that F (0) = 0, F (x)=x!1 as x!1, and

sup
�

R
�(G) F (ju�j) <1, where G was de�ned in the �rst step.

Since g 2 L1(�(G)), then again by Vall�ee Poussin's theorem there is a convex

function F with growth properties as above and such that
R
�(G) F (g) <1. Now

ju�(�(x; t))j = �
�1ju(�(x; t + �))� u(�(x; t))j � �

�1
Z

t+�

t

g(�(x; s)) ds:

Hence Jensen's inequality implies

F (ju�(�(x; t))j) � �
�1
Z

t+�

t

F
�
g(�(x; s))

�
ds;

and thusZ
Bn�1(x0;�)

Z
T

�T

F
�
ju�(�(x; t))j

�
dt dx � �

�1
Z
Bn�1(x0;�)

Z
T

�T

Z
t+�

t

F
�
g(�(x; s))

�
ds dt dx

�
Z
Bn�1(x0;�)

Z
T+�

�T

F
�
g(�(x; s))

�
ds dx:

Therefore

sup
0<�<T

Z
�(G)

F (ju�(z)j) dz = sup
0<�<T

Z
Bn�1(x0;�)

Z
T

�T

F
�
ju�(�(x; t))j

�
jJ�(x; t)j dt dx

� C

Z
Bn�1(x0;�)

Z 2T

�T

F (g(�(x; s)) ds dx <1;
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which yields desired uniform integrability. This completes the proof of (61).

Now we proceed to prove that eY u = Y u. Fix an arbitrary x0 2 
0. Note that

Y u = Y (u� u(x0)), and hence

jh eY u� Y u; 'ij �
����Z eY u' + (u� u(x0))Y '

����+ Z
ju� u(x0)j j'j jdivY j = I1 + I2:

First we prove that sup jh eY u� Y u; 'ij = C(x0; ") <1, where the supremum is taken

over all ' 2 C1

0 (B(x0; ")) with k'k1 � 1. This inequality implies that eY u� Y u is a

signed Radon measure with total variation on Bn(x0; ") equal to C(x0; ").

In what follows we assume that ' is compactly supported in Bn(x0; ") with the

supremum norm no more than 1. As Y has locally Lipschitz coe�cients, jdiv Y j is

locally bounded and hence

I2 � C"
n sup
Bn(x0;")

ju� u(x0)j:

The estimates for I1 are more di�cult to handle. In what follows we write u instead of

u� u(x0) and simply assume that u(x0) = 0. We haveZ
u(x)Y '(x) dx = lim

t!0

1

t

�Z
u(x)'(x) dx�

Z
u(x)'(�(x;�t)) dx

�
= A:

The change of variables ex = �(x;�t) together with (59) yieldsZ
u(x)'(�(x;�t)) dx =

Z
u(�(ex; t))'(ex)(1 + eJ�(ex; t)) dex;

and hence by (61)

A = lim
t!0

Z
u(x)� u(�(x; t))

t
'(x) dx� lim

t!0

1

t

Z
u(�(x; t))'(x) eJ�(x; t) dx

= �
Z eY u(x)'(x) dx� lim

t!0

1

t

Z
u(�(x; t))'(x) eJ�(x; t) dx:

Hence

I1 =

����lim
t!0

1

t

Z
u(�(x; t))'(x) eJ�(x; t) dx

����
� C lim

t!0

Z
Bn(x0;")

ju(�(x; t))j dx � C"
n sup
Bn(x0;")

ju� u(x0)j:

This and the estimate for I2 yields that eY u � Y u is a signed Radon measure whose

total variation on Bn(x0; ") is estimated from above by

j eY u� Y uj(Bn(x0; ")) � C"
n sup
B(x0 ;")

ju� u(x0)j:
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This in turn implies that the measure j eY u� Y uj is absolutely continuous with respect

to the Lebesgue measure, so eY u� Y u 2 L1
loc, and then by the Lebesgue di�erentiation

theorem

j eY u(x0)� Y u(x0)j = lim
"!0

Z
Bn(x0;")

j eY u� Y uj � C lim
"!0

sup
Bn(x0;")

ju� u(x0)j = 0

for almost all x0. Thus eY u = Y u, and hence by Step 1, jY uj � g a.e.

Step 3. Repeating the above arguments for all the rational coe�cients cj, we con-

clude that there is a subset of 
0 of full measure such that for all rational cj's withP
j c

2
j
� 1 there is jPj cjXjuj � g at all points of the set. If jXuj = 0 at a given point,

then jXuj � g at the point. If jXuj 6= 0, then approximating coe�cients ecj = Xju=jXuj
by rational coe�cients and passing to 0 with the accuracy of the approximation yields

jXuj = jPj
ecjXjuj � g. The proof of the theorem is complete.

11.3 Carnot groups.

The aim of this subsection is to give a background on the so-called Carnot groups

which are prime examples of spaces that support the p-Poincar�e inequality for any

1 � p <1. Carnot groups are special cases of Carnot{Carath�eodory spaces associated

with a system of vector �elds satisfying H�ormander's condition that will be described

in the next subsection. For a more complete introduction to Carnot groups, see Folland

and Stein, [71, Chapter 1] and also Heinonen [112].

Before we provide the de�nition we need to collect some preliminary notions and

results.

Let g be a �nite dimensional real Lie algebra. We say that g is nilpotent of step

m if for some positive integer m, g(m) 6= f0g, g(m+1) = f0g, where g(1) = g and

g(j+1) = [g; g(j)]. A Lie algebra is called nilpotent if it is nilpotent of some step m. A

Lie group G is called nilpotent (of step m) if its Lie algebra is nilpotent (of step m).

Let V be the underlying vector space of the nilpotent Lie algebra g. De�ne the

polynomial mapping � : V � V ! V by the Campbell{Hausdor� formula

X � Y =
1X
p=1

(�1)p+1

p

X
ni+mi�1
i=1;2;:::;p

(n1 + m1 + : : :+ np + mp)
�1

n1!m1! � � �np!mp!

�(adX)n1(adY )m1 : : : (adX)np(adY )mp�1Y; (62)

where (adA)B = [A;B]. We adopt here the convention that if mp = 0, then the term

in the sum ends with : : : (adX)np�1X. Note also that if mp > 1, then the term in the

sum is zero.
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The formal series on the right hand side of (62) is in fact a polynomial, because

the Lie algebra is nilpotent. One can check that the mapping de�nes a group struc-

ture on V with the Lie algebra g. Since connected and simply connected Lie groups

with isomorphic Lie algebras are isomorphic, we obtained a full description of simply

connected nilpotent Lie groups.

In what follows the group identity will be denoted by 0; however for the group law

we use multiplicative notation: xy.

One can write formula (62) in the form

X � Y = X + Y +
1

2
[X; Y ] + : : :

where the dots indicate terms of order greater than or equal to 3. Note that the map

t 7! tX is a one parameter subgroup of V . Hence the exponential map exp : g ! V

is identity. Then one can �nd a basis in V so that in the induced coordinate system

the Jacobi matrix of the left multiplication by a 2 V is a lower triangular matrix with

ones on the diagonal. Thus the Jacobi determinant equals one. Hence the Lebesgue

measure is the left invariant Haar measure. The same argument applies to the right

multiplication, and so the Lebesgue measure is the bi-invariant Haar measure.

A Carnot group is a connected and simply connected Lie group G whose Lie algebra

g admits a strati�cation g = V1�� � ��Vm, [V1; Vi] = Vi+1, Vi = f0g for i > m. Obviously

a Carnot group is nilpotent. Moreover a Carnot group is nilpotent of step m if Vm 6= 0.

Note that the basis of V1 generates the whole Lie algebra g. Carnot groups are also

known as strati�ed groups.

Being nilpotent, Carnot group is di�eomorphic to IRn for some n.

Let X1; X2; : : : ; Xk form a basis of V1. We identify X1, X2,. . . ,Xk with the left

invariant vector �elds.

The following result is due to Chow, [39], and Rashevsky, [208]. For modern

proofs see Bella��che, [7], Gromov, [99], Herman, [118], Nagel, Stein and Wainger, [199],

Strichartz, [230], Varopoulos, Salo�-Coste and Coulhon, [247].

Proposition 11.14 The Carnot{Carath�eodory distance associated with the basis X1,

X2,. . . ,Xk of V1 is a metric i.e., every two points of the Carnot group can be connected

by an admissible curve.

The aim of this subsection is to prove that a Carnot group with the above Carnot{

Carath�eodory metric supports the p-Poincar�e inequalities for all 1 � p < 1 (see

Theorem 11.17). This is a special case of Jerison's result (see Theorem 11.20) that will

be described in the next subsection.

By G we will denote a Carnot group of step m and � will be the Carnot{

Carath�eodory metric associated with the basis X1,. . . , Xk of V1.

68



As the Carnot{Carath�eodory metric is not given in an explicit form it is quite

di�cult to handle it. Therefore it is convenient to introduce new distances that can be

de�ned explicitly and that are equivalent to the Carnot{Carath�eodory metric.

A Carnot group admits a one-parameter family of dilations that we next describe.

For X 2 Vi and r > 0 we set �rX = riX. This extends to a linear map that is an

automorphism of the Lie algebra g. This in turn induces an authomorphism of the Lie

group via the exponential map.

Observe that the metric � has the two important properties of being left invariant

and commutative with �r in the sense that �(�rx; �ry) = r�(x; y).

A continuous homogeneous norm on G is a continuous function j � j : G ! [0;1)

that satis�es 1) jx�1j = jxj, 2) j�rxj = rjxj for all r > 0 and 3) jxj = 0 if and only if

x = 0.

One such homogeneous norm is given by jxj = �(0; x).

Proposition 11.15 Let j � j be a continuous homogeneous norm. Then the following

results hold.

1. There exist constants C1; C2 > 0 such that C1kxk � jxj � C2kxk1=m, for jxj � 1.

Here k � k denotes a �xed Euclidean norm.

2. The distance %(x; y) = jx�1yj is a quasimetric i.e., it has all the properties of

metric but the triangle inequality that is replaced by a weaker condition: there is

a constant C > 0 such that for all x; y; z 2 G

%(x; y) � C(%(x; z) + %(z; y)): (63)

3. Balls B(x; r) = fy : %(x; y) < rg are the left translates of B(0; r) by x, and

B(0; r) = �rB(0; 1).

4. The number Q =
P

m

j=1 j dimVj will be called the homogeneous dimension. It

satis�es j�r(E)j = rQjEj and hence jB(x; r)j = CrQ for all x 2 G and all r > 0,

where jEj denotes the Lebesgue measure of the set E.

5. Any two continuous homogeneous norms are equivalent in the sense that if j � j0
is another continuous homogeneous norm on G, then there exist C1; C2 > 0 such

that C1jxj0 � jxj � C2jxj0 for all x 2 G.

For a proof, see Folland and Stein, [71, Chapter 1]. Anyway the proof is easy and it

could be regarded as a very good exercise.

In the literature the concept of a homogeneous norm is de�ned as above but with

the additional property of being C1-smooth on G n f0g. This property is irrelevant to
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us. Thus we delete it and add the adjective \continuous" to indicate that we do not

assume smoothness.

To give an explicit example of a continuous homogeneous norm note that any ele-

ment x 2 V can be represented as x =
P

m

j=1 xj, where xj 2 Vj. Fix an Euclidean norm

k � k in V . Then

jxj =
mX
j=1

kxjk1=j;

is a continuous homogeneous norm on G (after identi�cation of G with V ).

The continuous homogeneous norm induced by the Carnot{Carath�eodory metric

x 7! �(0; x) satis�es (63) with C = 1. For general continuous norms we only have

C � 1. See also Hebisch and Sikora, [111], for a construction of a homogeneous norm

(i.e. smooth on G n f0g) with C = 1.

Mitchell, [194], proved that the Hausdor� dimension of a Carnot group is equal to

its homogeneous dimension, see also [99, p. 102]. This dimension, in general, is larger

than the Euclidean dimension of the underlying Euclidean space. This shows that the

Carnot{Carath�eodory geometry is pretty wild and the metric is not equivalent to any

Riemannian metric.

It is an exercise to show that inequality 1: of the above proposition implies that for

every bounded domain 
 � G, there are constants C1; C2 > 0 such that

C1kx� yk � �(x; y) � C2kx� yk1=m; (64)

whenever x; y 2 
. Note that inequality (64) along with Lemma 9.4 imply that every

two points can be connected by a geodesic | the shortest admissible curve.

So far we have not given any examples of the Carnot group. Let us �ll the gap right

now.

Example 11.16 The most simple nontrivial example of a Carnot group is the Heisen-

berg group IH1 = C� IR with the group law

(z; t) � (z0; t0) = (z + z
0
; t + t

0 + 2Im zz
0):

The basis consisting of the left invariant vector �elds X; Y; Z, such that X(0) = @=@x,

Y (0) = @=@y, T (0) = @=@t, is given by

X =
@

@x
+ 2y

@

@t
; Y =

@

@y
� 2x

@

@t
; T =

@

@t
:

Note that [X; Y ] = �4T and all the other commutators are trivial. Thus the Lie

algebra is strati�ed, h = V1 � V2 with V1 = spanfX; Y g and V2 = spanfTg. The

Carnot{Carath�eodory metric is de�ned with respect to the vector �elds X, Y . The

group IH1 is a nilpotent group of step 2 and its homogeneous dimension is 4. The
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family of dilations is given by �r(z; t) = (rz; r2t) for r > 0. Moreover the function

j(z; t)j = (t2 + jzj4)1=4 is a homogeneous norm.

The following theorem states that a Carnot group supports a 1-Poincar�e inequality.

This is a corollary of a much more general theorem of Jerison (see Theorem 11.20). For

completeness we provide a clever proof due to Varopoulos, [245] (see also [218, page

461]).

Proposition 11.17 Any Carnot group equipped with the Lebesgue measure and the

Carnot{Carath�eodory metric supports a 1-Poincar�e inequality.

Proof. Let G be a Carnot group with the Carnot{Carath�eodory metric that we denote

by �. Let u; g be a pair of a continuous function and its upper gradient. It su�ces to

prove that Z
B

ju(x)� uBj dx � Cr

Z
2B
g(x) dx (65)

on every ball of radius r. Obviously we can assume that the ball B is centered at 0. Set

jzj = �(0; z) and let z : [0; jzj] ! G be a geodesic path that joins 0 with z. Observe

that s 7! xz(s) is the shortest path that joins x with xz. Hence

ju(x)� u(xz)j �
Z
jzj

0
g(xz(s)) ds:

This and the left invariance of the Lebesgue measure yieldsZ
B

ju(x)� uBj dx �
1

jBj
Z
B

Z
B

ju(x)� u(y)j dy dx

=
1

jBj
Z
G

Z
G

�B(x)�B(xz)ju(x)� u(xz)j dz dx

� 1

jBj
Z
G

Z
G

Z
jzj

0
�B(x)�B(xz)g(xz(s)) ds dx dz:

Invoking the right invariance of the Lebesgue measure we obtainZ
G

�B(x)�B(xz)g(xz(s)) dx =

Z
G

�Bz(s)(�)�Bz�1z(s)(�)g(�) d�

� �2B(z)

Z
2B
g(�) d�; (66)

Here we denote by Bh the right translation of B by h. The above inequality requires

some explanations. If the expression under the sign of the middle interval has a nonzero

value, then � = xz(s) = yz�1z(s) for some x; y 2 B. Hence z = x�1y 2 2B. Thus

� = xx�1y(s) lies on a geodesic that joins x with y and so �(x; �) + �(y; �) = �(x; y),

which together with the triangle inequality implies � 2 2B and hence (66) follows. NowZ
B

ju(x)� uBj dx �
1

jBj
Z
G

Z
jzj

0
�2B(z)

Z
2B
g(�) d� ds dz

71



=
1

jBj
Z
2B

Z
2B
jzjg(�) d� dz

� Cr

Z
2B
g(�) d�:

The proof is complete.

Remarks. 1) The above proof easily generalizes to more general unimodular groups,

see [245], [218, page 461].

2) Applying Theorem 9.8 to inequality (65) we conclude that the ball 2B on the right

hand side can be replaced by B, and, moreover, the exponent on the left hand side can

be replaced by Q=(Q� 1), where Q is the homogeneous dimension of the group. This

inequality in turn implies the isoperimetric inequality. Such an isoperimetric inequality

was proved �rst in the case of the Heisenberg group by Pansu, [204], and in the general

case of the Carnot groups by Varopoulos, [247].

For a more complete treatment of Sobolev inequalities on Lie groups with the

Carnot{Carath�eodory metric, see Gromov, [99], and Varopoulos, Salo�-Coste and Coul-

hon, [247] and also Folland [69], [70], Nhieu [201], [202].

11.4 H�ormander condition.

De�nition. Let 
 � IRn be an open, connected set, and let X1, X2,. . . ,Xk be vector

�elds de�ned in a neighborhood of 
, real valued, and C1 smooth. We say that

these vector �elds satisfy H�ormander's condition, provided there is an integer p such

that the family of commutators of X1; X2; : : : ; Xk up to the length p i.e., the family

of vector �elds X1,. . . ,Xk, [Xi1
; Xi2

],. . . , [Xi1
; [Xi2

; [: : : ; Xip]] : : :], ij = 1; 2; : : : ; k, span

the tangent space IRn at every point of 
.

The de�nition easily extends to smooth manifolds, but for simplicity we will consider

the Euclidean space only.

As an example take the vector �elds X1 = @=@x1, X2 = xk1@=@x2, where k is

a positive integer. These two vector �elds do not span IR2 along the line x1 = 0.

However X1, X2 and commutators of the length k + 1 do.

Another example is given by vector �elds on a Carnot group. Namely, if G is a

Carnot group (see the previous subsection) with the strati�cation g = V1� : : :� Vm of

its Lie algebra, then the left invariant vector �elds associated with a basis of V1 satisfy

H�ormander's condition.

The above condition was used by H�ormander [125], in his celebrated work on hy-

poelliptic operators, see also Bony [14], Chemin and Xu [35], Fe�erman and S�anchez-

Calle [68], H�ormander and Melin [126], Jerison [130], Morbidelli [195], Nagel, Stein,
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and Wainger [199], Rothschild and Stein [213], S�anchez-Calle [219], Varopoulos, Salo�-

Coste and Coulhon [247]. Related references will also be given in Section 13.

As usual, the Carnot{Carath�eodory distance associated with a family of vector �elds

satisfying H�ormander's condition will be denoted by �.

The following result provides the full version of the theorem of Chow and

Raschevsky, whose special case was discussed earlier (see Proposition 11.14). For the

proof, see the references given there. In some more simple settings the theorem was

proved earlier by Carath�eodory, [31].

Theorem 11.18 Let an open and connected set 
 � IRn and a system of vector �elds

satisfying H�ormander's condition in 
 be given. Then any two points in 
 can be

connected by a piecewise smooth admissible curve, and hence the Carnot{Carath�eodory

distance is a metric.

Nagel, Stein and Wainger, [199], studied the geometry of Carnot{Carath�eodory spaces

in detail and, in particular, they gave a more quantitative version of Chow{Raschevsky's

theorem. Let us quote some of their results.

In what follows ~B(x; r) will denote a ball with respect to the metric �.

Theorem 11.19 Let X1; : : : ; Xk be a system of vector �elds satisfying H�ormander's

condition as above, and let � be the associated Carnot{Carath�eodory metric. Then for

every compact set K � 
 there exist constants C1 and C2 such that

C1jx� yj � �(x; y) � C2jx� yj1=p (67)

for every x; y 2 K. Moreover there are r0 > 0 and C � 1 such that

j ~B(x; 2r)j � Cj ~B(x; r)j (68)

whenever x 2 K and r � r0.

Here, as usual, j ~Bj denotes the Lebesgue measure. In the previous subsection we proved

the theorem in the special case of a Carnot group. The general case is however much

more di�cult, see also Gromov, [99], and Varopoulos, Salo�-Coste and Coulhon, [247,

Section IV.5]. Estimate (67) has been obtained independently by Lanconelli [161].

Assume for a moment that 
 = IRn. If 
0 � IRn is bounded with respect to the

Euclidean metric, then by (67) it is also bounded with respect to �. However, if 
0 is

bounded with respect to �, then it need not be bounded with respect to the Euclidean

metric. Indeed, if one of the vector �elds is x21@=@x1, then the Carnot{Carath�eodory

distance to in�nity is �nite because of the rapid growth of the coe�cient. Hence, in

general, (68) holds only for r < r0 for some su�ciently small r0 and r0 cannot be
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replaced with 5 diam �(

0), even if diam �(


0) <1, as was required for the measure in

the de�nition of doubling in 
0.

Proposition 11.17 is a special case of the following Poincar�e inequality of Jerison

[130], see also Jerison and Sanchez{Calle, [133], and Lanconelli and Morbidelli, [162].

Theorem 11.20 Let X1; : : : ; Xk be a system of vector �elds satisfying H�ormander's

condition in 
. Then for every compact set K � 
 there are constants C > 0 and

r0 > 0 such that for u 2 Lip ( ~B)Z
~B
ju� u ~Bj dx � Cr

Z
2 ~B
jXuj dx; (69)

whenever ~B is a ball centered at K with radius r < r0.

In fact, Jerison proved the inequality with the L2 norms on both sides, but the same

argument works with the L1 norm. Then Jerison proved that one can replace the ball

2 ~B on the right hand side of (69) with ~B. As we have already seen this can be done in

a much more general setting, see Section 9.

11.5 Further generalizations

The results of the previous two subsections concern Poincar�e inequalities for smooth

vector �elds satisfying H�ormander's condition. It is a di�cult problem to �nd a large

class of vector �elds with Lipschitz coe�cients such that the Poincar�e type inequalities

hold on the associated Carnot{Carath�eodory spaces. The lack of smoothness does not

permit one to use a H�ormander type condition. There are few results of that type,

see Franchi, [72], Franchi, Guti�errez and Wheeden, [74], Franchi and Serapioni, [81],

Franchi and Lanconelli, [76], Jerison and Sanchez-Calle, [133]. It seems that Franchi

and Lanconelli, [76], were the �rst to prove a Poincar�e type inequality for a Carnot{

Carath�eodory space. They probably also were the �rst to prove estimates of the type

as in Theorem 11.19.

12 Graphs

Let G = (V;E) be a graph, where V is the vertex set and E the set of edges. We say

that x; y 2 V are neighbors if they are joined by an edge; we denote this by x � y.

Assume that the graph is connected in the sense that any two vertices can be connected

by a sequence of neighbors. We let the distance between two neighbors to be 1. This

induces a geodesic metric on V that we denote by %. The graph is endowed with the

counting measure: the measure of a set E � V is simply the number V (E) of elements

of E. For a ball B = B(x; r) we use also the notation V (B) = V (x; r). We say that G is
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locally uniformly �nite if d = supx2V d(x) <1, where d(x) is the number of neighbors

of x. The length of the gradient of a function u on V at a point x is

jrGuj(x) =
X
y�x

ju(y)� u(x)j:

Many graphs have the following two properties:

1. The counting measure is doubling i.e.,

V (x; 2r) � CdV (x; r);

for every x 2 V and r > 0.

2. The p-Poincar�e inequality holds i.e., there are constants C > 0 and � � 1 such

that

1

V (B)

X
x2B

ju(x)� uBj � CPr

 
1

V (�B)

X
x2�B

jrGujp(x)

!1=p

; (70)

for any ball B and any function u : V ! IR.

Observe that the doubling condition implies that the graph is locally uniformly �nite.

The Euclidean, or more generally, the upper gradients have the truncation property.

Unfortunately the truncation property is no longer valid for the length of the gradient on

a graph. This is because, in general, jrGu
t2
t1
j is not supported on the set ft1 < u � t2g.

However, intuition suggests that jrGuj should still have properties similar to those of

a gradient with the truncation property.

If v 2 Lip (IRn) and p > 0, then

1X
k=�1

jrv2k2k�1jp =
1X

k=�1

jrvjp�f2k�1<v�2kg � jrvjp (71)

almost everywhere. It turns out that inequality (71) is satis�ed also by the length of

the gradient on a graph. More precisely we have the following estimate.

Lemma 12.1 Let G be locally uniformly �nite i.e., d = sup
x2V d(x) <1. If v : V !

IR and p > 0, then
1X

k=�1

���rGv
2k

2k�1

���p (x) � C(p; d)jrGvjp(x)

for each x 2 V:

Proof. Fix x 2 V and let

vM(x) = maxfv(w) : %(w; x) � 1g ;
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vm(x) = minfv(w) : %(w; x) � 1g :
Note that jrGvj(x) � jvM(x)� vm(x)j. Assume for simplicity that vm(x) > 0 (the case

vm(x) � 0 follows by the same argument). Let j 2 ZZ be the least integer and i 2 ZZ

the largest integer such that

2j � vM(x) � vm(x) � 2i:

We have

jvM(x)� vm(x)j = vM(x)� 2j�1 +
j�2X

k=i+1

(2k+1 � 2k) + 2i+1 � vm(x):

Hence

jrGvjp(x) � C

0@jvM(x)� 2j�1jp +

0@ j�2X
k=i+1

2k

1Ap

+ j2i+1 � vm(x)jp
1A

� C

0@jvM(x)� 2j�1jp + (1� 2�p)

j�2X
k=i+1

2kp + j2i+1 � vm(x)jp
1A

� C

0@ 1

dp
jrGv

2j

2j�1 jp(x) +
1� 2�p

dp

j�2X
k=i+1

jrGv
2k+1

2k jp(x) +
1

dp
jrGv

2i+1

2i jp(x)

1A
� C(p)

dp

j�1X
k=i

jrGv
2k+1

2k jp(x)

=
C(p)

dp

1X
k=�1

jrGv
2k+1

2k jp(x):

The proof is complete.

The inequality of the lemma is a good substitute for the truncation property; it

allows one to mimic the proofs of Theorems 2.1 and 2.3. We will generalize Corol-

lary 9.8. This result deals with sharp inequalities with integrals on the di�erent sides

of the inequality taken over the same domain. As pointed out in Section 9 a Poincar�e

inequality does not, in general, guarantee that one could use balls of the same size on

the di�erent sides of the inequality. We described a su�cient condition in terms of the

geometry of balls that, in particular, holds for the Carnot-Caratheodory metrics. As �

is a geodesic metric, it should come as no surprise that we can reduce the size of � in

(70) down to 1:

Theorem 12.2 Assume that the counting measure is doubling, and that for some con-

stants Cb > 0; s � 1
V (x; r)

V (x; r0)
� Cb

�
r

r0

�s
whenever B(x; r) � B(x0; r0). Suppose that each function u : V ! IR satis�es the

p-Poincar�e inequality (70) with a �xed p > 0:
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1. If 0 < p < s, then there is a constant C > 0 such that

 
1

V (B)

X
x2B

ju(x)� uBjsp=(s�p)
!(s�p)=sp

� Cr

 
1

V (B)

X
x2B

jrGujp(x)

!1=p

(72)

for any ball B of radius r and any function u : V ! IR:

2. If p = s > 1, then there are constants C1; C2 > 0 such that

1

V (B)

X
x2B

exp

 
C1V (B)1=sju(x)� uBj
(diamB)krGukLs(B)

!s=(s�1)
� C2

for any ball B of radius r and any function u : V ! IR:

3. If p > s, then there is C > 0 such that

ju(x)� u(y)j � C%(x; y)1�s=prs=pV (B)�1=pkrGukLp(B) ;

for all x; y 2 B, where B is an arbitrary ball of radius r, and for any function

u : V ! IR:

The constants C, C1, C2 depend on p, s, �, Cd, Cb and CP only.

Remark. If sp=(s � p) < 1, then we have to replace uB by uB0
in (72), where B0 =

(2�)�1B.

Proof. The proof involves arguments similar to those used in the previous sections,

so we sketch the main ideas only leaving details to the reader.

First of all, under the local �niteness of the graph, one may assume that r > 10� (as

for r � 10� we have a �nite collection of non-isometric balls only). We follow the line of

ideas from Section 9. Given a ball B(x0; r) and a point x 2 B(x0; r); we join x to x0 by

a chain x = x1; :::; xm of length less than r of vertices. If we trace along the chain for l

steps with l the least integer larger or equal to 4�, then B(xl; 2�) � B(x0; r): Following

the chain towards x we may construct a chain B0 = B(x0; r=(2�)); B1; :::; Bk = B(xl; 2)

of balls as in the C(�;M) condition of Section 9. Next,

ju(x)� uB0
j �

l�1X
i=1

ju(xi+1)� u(xi)j+ juB(xl;2) � u(xl)j+
k�1X
i=0

juBi+1
� uBi

j

�
l�1X
i=1

jrGuj(xi) +
X

y2B(xl;2)

jrGuj(y)

+ C

kX
i=0

ri

0@ 1

V (�Bi)

X
y2�Bi

jrGujp(y)

1A1=p

: (73)
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We employed here the observation that ju(xi+1)� u(xi)j � jrGuj(xi). Inequality (73)

is a good substitute for (32), (42) as jrGuj(y) equals to the product of the radius and

the Lp-average of jrGuj over the ball �B(y; ��1):

Now assume that p < s. Write sp=(s� p) = p�. Using a version of Theorem 5.1 as

in Section 9 we conclude the weak type inequality

sup
t�0

V (fx 2 B : ju(x)� uB0
j > tg)tp�

V (B)
� Cr

p�

 
1

V (B)

X
x2B

jrGujp(x)

!p�=p
:

To obtain the desired strong type inequality one reasons as follows.

De�ne v� as in the proof of Theorem 2.1 (with 
 replaced by B). It su�ces to

prove suitable Lp
�

estimates for v+ and v�. In what follows v denotes either v+ or v�.

We have

sup
t�0

V fx 2 B : vt2t1 > tgtp�

V (B)
� Cr

p
�

 
1

V (B)

X
x2B

jrGv
t2
t1
jp
!p�=p

;

and hence

1

V (B)

X
x2B

v
p
�

(x) �
1X

k=�1

2kp
�

V (fx 2 B : v2
k�1

2k�2
� 2k�2g)

V (B)

� Cr
p�

0@ 1

V (B)

X
x2B

1X
k=�1

jrGv
2k�1

2k�2 jp(x)

1Ap
�
=p

� Cr
p�

 
1

V (B)

X
x2B

jrGvjp(x)

!p�=p

� Cr
p
�

 
1

V (B)

X
x2B

jrGujp(x)

!p�=p
:

If p = s, then the method described above provides us with a chains that are

su�ciently good to mimic the proof of Theorem 6.1.

Once we have good chains also the H�older continuity with the same balls on both

sides follows when p > s.

The proof is complete.

Remarks. 1) The doubling property 1. and the Poincar�e inequality 2. are very

important in the potential theory on graphs. Indeed, independently Delmotte, [62],

[63], Holopainen and Soardi, [124], and Rigoli, Salvatori and Vignati, [211], proved

that 1. and 2. imply the so-called Harnack inequality for p-harmonic functions. As

a consequence, they concluded a Liouville type theorem stating that every bounded

p-harmonic function on G is constant. Recall that u : V ! IR is 2-harmonic if it
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satis�es the mean value property, i.e., u(x) = d(x)�1
P

y�x u(y) for all x 2 V . For a

de�nition of p-harmonic functions with p 6= 2, see, e.g., [124]. The proof of the Harnack

inequality employs the Sobolev{Poincar�e inequality as it relies on the Moser iteration.

As we have already seen properties 1. and 2. imply the Sobolev{Poincar�e inequality.

Papers related to the Harnack inequalities on graphs include Chung, [42], Chung and

Yau, [43], Lawler, [165], Merkov, [191], Rigoli, Salvatori and Vignati, [212], Schinzel,

[220], Zhou, [257].

The Moser iteration was originally employed in the setting of elliptic and parabolic

equations; see the next section.

2) There are many examples of graphs for which both properties 1. and 2. are

satis�ed. A very nice example is given by a Cayley graph associated with a �nitely

generated group. We say that the group G is �nitely generated if there is a �nite set

figki=1 such that every element g 2 G can be presented as a product g = 
"1
i1
� � �"lil ,

"i = �1. Then the vertex set of the Cayley graph is the set of all elements of G and

two elements g1; g2 2 G are connected by an edge if g1 = g2
�1
i for some generator i.

Thus we may look at �nitely generated groups as geometric objects. This point of view

has been intensively used after Milnor's paper, [193].

We say that the group is of polynomial growth if V (r) � CrC for all r > 0 and

some C � 1. One of the most beautifully results in the area is due to Gromov [98]. He

proved that the group is of polynomial growth if and only if it is virtually nilpotent,

and hence by the theorem of Bass, [6], V (r) � rd for some positive integer d.

Thus if the group is of polynomial growth, then it satis�es the doubling property 1.

It is also known that it satis�es the 1-Poincar�e inequality.

Proposition 12.3 If G is a �nitely generated group of polynomial growth V (r) � rd,

d positive integer, then there is a constant C > 0 such that

1

V (B)

X
x2B

ju(x)� uBj � Cr
1

V (2B)

X
x22B

jrGu(x)j

for every ball B � X.

The reader may prove the proposition as an easy exercise mimicing the proof of Theo-

rem 11.17.

Other examples of graphs with properties 1. and 2. can be found in Holopainen

and Soardi, [124], Coulhon and Salo�-Coste, [56], [57], Salo�-Coste, [217].

3) The analysis on graphs is also important in the study of open Riemannian man-

ifolds because, roughly speaking, one can associate with given manifold a graph with

similar global properties. This method of discretization of manifolds has been in active

use after the papers of Kanai, [145], and Mostow, [198]. Related references include
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Auscher and Coulhon, [2], Coulhon [51], [52], [53], Coulhon and Salo�-Coste, [55], [56],

[57], Chavel, [32], Coulhon, [52], Delmotte, [62], [63], Holopainen, [120], Holopainen

and Soardi, [123], [124], Soardi [225], Varopoulos, [244], and Varopoulos, Salo�-Coste

and Coulhon, [247].

13 Applications to P.D.E and nonlinear potential

theory

The results presented in the paper directly apply to the regularity theory of degen-

erate elliptic equations associated with vector �elds. Below we describe some of the

applications.

13.1 Admissible weights

Let A = (A1; : : : ; Am) : IRn � IRm ! IRm be a Carath�eodory function satisfying the

growth conditions

jA(x; �)j � C1!(x)j�jp�1; A(x; �) � � � C2!(x)j�jp;

where 1 < p < 1, C1; C2 > 0 are �xed constants and 0 < ! 2 L1
loc(IR

n). We will

denote by d� = ! dx the measure with the density !.

Given A, we consider the equation

mX
j=1

X
�

j
Aj(x;X1u; : : : ; Xmu) = 0; (74)

where X = (X1; : : : ; Xm) is a family of vector �elds with locally Lipschitz coe�cients

in IRn. Recall that X�

j
denotes the formal adjoint of Xj; that is,

R
Xjuv =

R
uX�

j
v for

all u; v 2 C1

0 .

The theory of nonlinear equations of the type (74), especially when X is a system

of vector �elds satisfying H�ormander's condition, is an area of intensive research; see,

e.g., Buckley, Koskela and Lu, [19], Capogna, [25], Capogna, Danielli and Garofalo,

[26], [30], Chernikov and Vodop'yanov, [37], Citti, [44], Citti and Di Fazio, [45], Citti,

Garofalo and Lanconelli, [46], Danielli, Garofalo and Nhieu, [59], Franchi, Guti�errez

and Wheeden, [74], Franchi and Lanconelli, [76], Franchi and Serapioni, [81], Garofalo

and Lanconelli, [88], Garofalo and Nhieu, [90], Haj lasz and Strzelecki, [106], Jerison,

[130], Jerison and Lee, [131], [132], Jost and Xu, [142], Lu, [174], [175], [176], Marchi,

[184], Vodop'yanov and Markina, [250], Xu, [253], [254], Xu and Zuily, [255]. The above

papers mostly deal with the nonlinear theory. References to the broad literature on the

linear theory can be found in these papers.
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Equation (74) is a generalization of the classical weighted p-harmonic equation.

Indeed, if X = r and A(�) = !(x)j�jp�2� we get the equation

div
�
!(x)jrujp�2ru

�
= 0:

In what follows we assume that the condition (53) is satis�ed i.e. we assume that the

Carnot{Carath�eodory distance � is a metric such that the identity map is a homeo-

morphism between the Euclidean metric and �.

We call u a weak solution of (74) if

Z
IRn

mX
j=1

Aj(x;Xu)Xj'(x) dx = 0;

for any ' 2 C1

0 (IRn). We assume that the weak solution belongs to the weighted

Sobolev space W
1;p
X

(IRn
; �) de�ned as the closure of C1 functions in the norm

kuk1;p;X;! =

�Z
IRn

ju(x)jp!(x) dx

�1=p
+

�Z
IRn

jXu(x)jp!(x) dx

�1=p
:

Already in the \classical" case i.e. when Xu = ru one has to put many additional

conditions on the weight ! in order to have a reasonable theory.

The �rst condition concerns the de�nition of the Sobolev space. One needs the

so-called uniqueness condition which guarantees that the \gradient" X is well de�ned

in the Sobolev space associated to X. Later we will clarify this condition.

The regularity results for solutions to (74), like Harnack inequality and H�older

continuity, are usually obtained via the Moser iteration technique. For that the essential

assumptions are a doubling condition on �, (with respect to the Carnot{Carath�eodory

metric), the Poincar�e inequality

�Z
eB ju� ueBjp d�

�1=p
� Cr

�Z
eB jXujp d�

�1=p
; (75)

for all smooth functions u in a metric ball eB, and a Sobolev inequality�Z
eB jujq d�

�1=q
� Cr

�Z
eB jXujp d�

�1=p
; (76)

with some q > p for all smooth functions u with compact support in a metric ball ~B.

Given the above assumptions one can mimic the standard Moser iteration technique

replacing Euclidean balls by metric balls. This leads to the Harnack inequality which

states that if u is a positive solution to (74) on 2 eB, then

supeB u � C infeB u ;
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where the constant C does not depend on eB. Then the iteration of the Harnack

inequality implies that each weak solution to (74) is locally H�older continuous with

respect to � and hence | if the condition (67) is satis�ed | locally H�older continuous

with respect to the Euclidean metric.

The fact that the above conditions are essential for the Moser iteration was observed

�rst by Fabes, Kenig and Serapioni, [65]. They considered the \classical" linear setting,

X = r, p = 2.

It seems that Franchi and Lanconelli, [76], were the �rst to apply the Moser tech-

nique for the Carnot{Carath�eodory metric as above. Then the idea was extended

by many authors to more di�cult situations; see, e.g., Capogna, Danielli and Garo-

falo, [26], Chernikov and Vodop'yanov, [37], Franchi, [72], Franchi and Lanconelli, [77],

Franchi, Lu and Wheeden, [79], Franchi and Serapioni, [81], Jerison, [130], Lu, [175].

There are moreover many other related papers.

Salo�-Coste, [216], and Grigor'yan, [97], independently realized that in certain set-

tings, a Poincar�e inequality implies a Sobolev inequality and hence one can delete

assumption (76) as it follows from (75). This result was extended then to more general

situations by several authors: Biroli and Mosco, [9], Maheux and Salo�-Coste, [181],

Haj lasz and Koskela, [103], Sturm, [234], Garofalo and Nhieu, [90].

The result presented below (Theorem 13.1) is in the same spirit. This is a general-

ization of a result of Haj lasz and Koskela, [103].

The following de�nition is due to Heinonen, Kilpel�ainen and Martio, [117], when

X = r and due to Chernikov and Vodop'yanov, [37], in the case of general vector

�elds.

We say that ! 2 L1
loc(IR

n), ! > 0 a.e. is p-admissible, 1 < p < 1; if the measure

de�ned by d� = !(x) dx satis�es the following four conditions:

1. (Doubling condition) �(2 eB) � Cd�( eB) for all metric balls eB � IRn.

2. (Uniqueness condition) If 
 is an open subset of IRn and 'i 2 C1(
) is a sequence

such that
R

 j'ijp d�! 0 and

R

 jX'i� vjp d�! 0, where v 2 Lp(�); then v � 0.

3. (Sobolev inequality) There exists a constant k > 1 such that for all metric ballseB � IRn and all ' 2 C1

0 ( eB)

�Z
eB j'jkp d�

�1=kp
� C2r

�Z
eB jX'jp d�

�1=p
:

4. (Poincar�e inequality) If eB � IRn is a metric ball and ' 2 C1( eB), thenZ
eB j'� 'eBjp d� � C3r

p

Z
eB jX'jp d�:
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One can easily modify the above de�nition and consider vector �elds de�ned in an

open subset 
 of IRn with the estimates in the above conditions depending on compact

subsets of 
. However for clarity we assume the global estimates. We do not care

to present various results in their most general form. We aim to present the method.

Various generalizations are then obvious.

The uniqueness condition guarantees that any function u 2 Lp(IRn
; �) that belongs

to W
1;p
X

(IRn
; �) has a uniquely de�ned gradient Xu as the limit of gradients Xuk of

smooth functions uk which converge to u in the Sobolev norm. If the uniqueness

condition were not true, then we would �nd uk 2 C1 such that uk ! 0 in Lp(�) and

Xu! v 6� 0 in Lp(�). Then the zero function would have at least two gradients 0 and

v i.e. (0; 0) and (0; v) would be two distinct elements in W
1;p
X

(IRn
; !).

Theorem 13.1 Let 0 < ! 2 L1
loc(IR

n) and let X be a system of vector �elds in IRn

satisfying condition (53). Then the weight ! is p-admissible, 1 < p < 1, if and

only if the measure � associated with ! is doubling with respect to the metric � (i.e.

�(2 eB) � Cd�( eB) for all metric balls eB � IRn) and there exists � � 1 such thatZ
eB ju� ueBj d� � Cr

�Z
� eB jXujp d�

�1=p
;

whenever eB � IRn is a metric ball of radius r and u 2 C1(� eB).

Proof. The necessity is obvious. Now we prove the su�ciency. First note that the

uniqueness of the gradient 2. was recently proved by Franchi, Haj lasz and Koskela, [75,

Corollary 13].

Next, by Corollary 9.8, we conclude the Sobolev{Poincar�e inequality�Z
eB j'� 'eBjp� d�

�1=p�
� Cr

�Z
eB jX'jp d�

�1=p
;

for all ' 2 C1( eB) with some p� > p (remember that the doubling condition implies

(20) with s = log2Cd). For our purpose the exact value of p� is irrelevant. It is only

important that p� > p. This and the H�older inequality implies the Poincar�e inequality

4.

Now we are left with the Sobolev inequality 3. Since p� > p we have p� = kp for

some k > 1. For ' 2 C1

0 ( eB) we have�Z
eB j'jkp d�

�1=kp
�
�Z
eB j'� 'eBjkp d�

�1=kp
+ j'eBj:

The Sobolev{Poincar�e inequality provides us with the desired estimate for the �rst

summand on the right hand side. Now it su�ces to estimate j'eBj. The Poincar�e

inequality applied to the ball eB gives�Z
eB j'� 'eBjp d�

�1=p
� Cr

�Z
eB jX'jp d�

�1=p
; (77)

83



and when applied to the ball 2 eB gives

�Z
eB j'� '

2eBjp d�
�1=p

�
�Z

2eB j'� '
2eBjp d�

�1=p
� C2r

�Z
2eB jX'jp d�

�1=p
= 2Cr

�Z
eB jX'jp d�

�1=p
: (78)

Thus  
1� �( eB)

�(2 eB)

!�Z
eB j'eBjp d�

�1=p
=

�Z
eB j'eB � '

2eBjp d�
�1=p

� 3Cr

�Z
eB jX'jp d�

�1=p
:

In the proof of the equality we employ the fact that ' is supported in eB and the inequal-

ity follows from the triangle inequality and inequalities (77) and (78). It follows from the

doubling property and the geometry of metric balls in IRn that 1��( eB)=�(2 eB) > C > 0

and hence

j'eBj � C
0
r

�Z
eB jX'jp d�

�1=p
:

The proof is complete.

13.2 Sobolev embedding for 0 < p < 1

The classical Sobolev{Poincar�e inequality

�Z
B

ju� uBjp
�

dx

�1=p�
� C

�Z
B

jrujp
�1=p

;

holds when 1 � p < n. It is easy to see that it fails when 0 < p < 1, and even a

weaker version of the Poincar�e inequality fails for the range 0 < p < 1. For an explicit

example, see Buckley and Koskela, [16].

However Buckley and Koskela, [16], and in a more general version Buckley, Koskela

and Lu, [19], proved that if u is a solution to the equation divA(x;Xu) = 0 in a John

domain with respect to the Carnot{Carath�eodory metric, then u satis�es a Sobolev{

Poincar�e inequality for any 0 < p < s, where s is given by condition (20).

As we will see, one of the results of the paper, Theorem 9.7, which states that for

any 0 < p < s, a p-Poincar�e inequality implies a Sobolev{Poincar�e inequality, can be

regarded as an abstract version of the above result. In particular this gives a new proof

of the result of Buckley, Koskela and Lu.

More precisely, assume that X = (X1; : : : ; Xm) are locally Lipschitz vector �elds in

IRn. Assume that the associated Carnot{Carath�eodory metric satis�es condition (53),
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the Lebesgue measure is doubling with respect to the Carnot{Carath�eodory distance

i.e. j2 eBj � Cdj eBj for all metric balls eB � IRn, and that condition (20) is satis�ed.

In addition we assume that the 1-Poincar�e inequality is satis�ed i.e. there is C > 0

and � � 1 such that Z
eB ju� ueBj dx � CPr

Z
� eB jXuj dx ;

for all metric balls eB � IRn and all u 2 C1(� eB).

Let A : IRn � IRm ! IRm be a Carath�eodory function such that

jA(x; �)j � C1j�jq�1; A(x; �) � � � C2j�jq ;

where 1 < q < 1 is given. (Observe that in contrast with the previous section we do

not allow the weight !.)

The following result is a variant of the result of Buckley, Koskela and Lu, [19].

Theorem 13.2 Let 
 � IRn be a John domain with respect to the Carnot{

Carath�eodory metric. Then for any 0 < p < s there is a constant C > 0 such that

if u is a solution to equation divA(x;Xu) = 0, in 
, then

inf
c2IR

�Z


ju� cjp� dx

�1=p�
� Cdiam 


�Z


jXujp

�1=p
:

The constant C depends on n, p, s, Cb, Cd, C1, C2, CP , and CJ only.

Proof. Let u be a solution to divA(x;Xu) = 0 in 
. The �rst fact we need is that the

gradient jXuj of the solution u satis�es a weak reverse H�older inequality. This is well

known. However, for the sake of completeness, we provide a proof.

Given a metric ball eB, let �R be a cut-o� function such that 0 � �R � 1, �RjeB � 1,

�R � 0 outside 2 eB and jX�Rj � 1=R. Using the distance function with respect to � we

easily construct a cut-o� function with the metric Lipschitz constant 1=R. Then the

estimate jX�Rj � 1=R follows from Corollary 11.8.

Now taking a test function (u � u
2eB)�R, where 2 eB � 
 is any metric ball and

�R is the associated cut-o� function, we conclude from a standard computation the

Caccioppoli estimate Z
eB jXujq � C

Rq

Z
2eB ju� u

2eBjq :
Then we estimate the right hand side by the Sobolev{Poincar�e inequality and conclude

that there is p < q such that for all metric balls eB with 2 eB �� 


�Z
B

jXujq dx
�1=q
� C

�Z
2eB jXujp dx

�1=p
: (79)
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This inequality is known under the name weak reverse H�older inequality.

It is well known that the weak reverse H�older inequality has the self-improving

property: if inequality (79) holds for some 0 < p < q and all eB with 2 eB � 
, then for

any 0 < p < q there is a new constant C such that (79) holds for any eB with 2 eB � 
,

see [19, Lemma 1.4]. This together with the 1-Poincar�e inequality shows that the pair

u, g satis�es a p-Poincar�e inequality in 
 for any p > 0. Hence the claim follows from

Theorem 9.7. The proof is complete.

14 Appendix

Here we collect the results in the measure theory that are needed in the paper. All

the material is standard. Since we could not �nd a single reference that would cover

the material we need, we have made all the statements precise and sometimes we have

even given proofs. Good references are Federer, [66], Mattila, [188], and Simon, [224].

In the appendix we do not assume that the measure � is doubling.

14.1 Measures.

Throughout the paper by a measure we mean an outer measure, and by a Borel measure,

an outer, Borel-regular measure i.e., such a measure � on a metric space (X; d) that all

Borel sets are �-measurable and for every set A there exists a Borel set B such that

A � B and �(A) = �(B). In the case of a Borel measure we also assume that the

measure of each ball is strictly positive and X =
S
1

j=1 Uj, where Uj are open sets with

�(Uj) <1.

Note that if the space X is locally compact, separable and �(K) < 1 for every

compact set K, then X can be written as a union of a countable family of open sets

with �nite measure.

Theorem 14.1 Suppose that � is a Borel measure on (X; d). Then

�(A) = inf
U�A

U�open

�(U)

for all subsets A � X, and

�(A) = sup
C�A

C�closed

�(C)

for all measurable sets A � X.

For the proof, see [66, Theorem 2.2.2. and Section 2.2.3], [188, Theorem 1.10] or [224,

Theorem 1.3].
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If the space is locally compact and separable, the supremum over closed sets in the

above theorem equals to the supremum over compact sets.

As a corollary to the above theorem we obtain the following well known result.

Theorem 14.2 If � is a Borel measure on a metric space (X; d), then for every 1 �
p <1, continuous functions are dense in Lp(X; �).

Proof. Simple functions are dense in Lp(X; �), see [214, Theorem 3.13], so it su�ces to

prove that characteristic functions can be approximated by continuous functions. Fix

" > 0. If A � X is measurable, �(A) < 1, then there exists a closed set C and an

open set U such that C � A � U , �(U n C) < ". Now by Urysohn's lemma, there

exists a continuous function '" on X such that 0 � '" � 1, '"jC = 1 and '"jXnU = 0.

Then obviously k�A � '"kp ! 0 as "! 0. This completes the proof.

In order to have a variaty of Borel measures one usually assumes that the space

be locally compact. In the de�nition of the doubling measure one does not assume

anything about the metric space. However, as we will see, the existence of a doubling

measure is such a strong condition that the space is \almost" locally compact.

We say that a subset A of a metric space (X; d) is an "-net if for every x 2 X there

is y 2 A with d(x; y) < ". A metric space (X; d) is called totally bounded if for each

" > 0 there exists a �nite "-net.

The following two lemmas are well known.

Lemma 14.3 A metric space (X; d) is compact if and only if it is complete and totally

bounded.

Lemma 14.4 Every metric space is isometric to a dense subset of a complete metric

space.

The �rst lemma follows from a direct generalization of the proof that every bounded

sequence of real numbers contains a convergent subsequence, while the second lemma

follows by adding the \abstract limits" of Cauchy sequences to the space.

Theorem 14.5 If a metric space (X; d) admits a Borel measure � which is locally

uniformly positive in the sense that for every bounded set A � X and every " > 0

inf
x2A

�(B(x; ")) > 0; (80)

then (X; d) is isometric to a dense subset of a locally compact separable metric space.
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Proof. The fact that X is a union of countably many open sets of �nite measure and

(80) imply that X can be covered by balls X =
S
1

j=1Bj with �(2Bj) <1.

According to Lemma 14.3 and Lemma 14.4 it su�ces to prove that for every j =

1; 2; : : : and every " > 0 there is a �nite "-net in Bj. This, however, easily follows from

(80) and the condition �(2Bj) <1. The proof is complete.

It is of fundamental importance to note that the doubling condition implies local

uniform positivity of the measure, as follows from the following result.

Lemma 14.6 Let � be a Borel measure on a metric space X. Assume that � is dou-

bling, in the following sense, on a bounded subset Y � X: there is a constant Cd � 1

such that

�(B(x; 2r)) � Cd�(B(x; r));

whenever x 2 Y , and r � diamY . Then

�(B(x; r)) � (2 diamY )�s�(Y )rs;

for s = log2Cd, x 2 Y and r � diamY .

The above lemma together with Theorem 14.5 shows that doubling spaces are isometric

to dense subsets of locally compact separable metric spaces. The anologous result holds

also when the measure is doubling on some open set only. Note that a doubling measure

is �nite on bounded sets.

The above remark together with the following result shows that a doubling measure

can be extended to a doubling measure on the larger locally compact space.

Proposition 14.7 Let Y � X be a dense subset of a metric space (X; d). Let � be

a Borel measure on (Y; d), �nite on bounded sets. Then there exists a unique Borel

measure �� on (X; d) such that

��(U) = �(U \ Y )

for every open set U � X. Moreover, if � is doubling on (Y; d), then �� is doubling on

(X; d) with the same doubling constant.

Proof. Set ��(A) = infB�A; B�Borel �(B \ Y ) for an arbitrary set A � X. One easily

veri�es that �� is a Borel measure on (X; d). This proves the existence of the measure.

The uniqueness follows form Theorem 14.1.

Assume now that � is doubling. Then obviously �� is doubling with the same

doubling constant on all balls centered at Y . Since any ball in X can be \approximated"

by balls centered at Y , the result follows.
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Remark. If we removed the assumption that � be �nite on bounded sets, Y would

still have the property Y =
S
1

j=1 Uj, where the sets Uj are open with �(Uj) < 1.

However then this property would not necessarily be true for ��. For example, let Y be

the complement of a Cantor set in [0; 1], and X = [0; 1]. Then Y consists of countable

many intervals. Equip Y with a measure so that the measure of each of the intervals

is 1. Then X cannot be decomposed into a countable number of open sets with �nite

��-measure.

14.2 Uniform integrability.

In this section � is an arbitrary measure on a set X.

Assume that �(X) < 1. We say that a family fu�g�2I of �-measurable functions

on X is uniformly integrable if

lim
�(A)!0

sup
�2I

Z
A

ju�j d� = 0:

The following theorem is due to Vall�ee Poussin. For a proof, see Dellacherie and Meyer,

[61], or Rao and Ren, [207].

Theorem 14.8 Let � be a measure on a set X with �(X) < 1 and let fu�g�2I be a

family of �-measurable functions. Then the following two conditions are equivalent.

1. The family fu�g�2I is uniformly integrable.

2. There exists a convex smooth function F : [0;1) ! [0;1) such that F (0) = 0,

F (x)=x!1 as x!1 and

sup
�2I

Z
X

F (ju�j) d� <1:

The following well known result is a very useful criteria for convergence in L1.

Proposition 14.9 Let �(X) < 1. If un are uniformly integrable on X and un ! u

a.e., then
R
X
jun � uj d�! 0.

Proof. It follows directly from Egorov's theorem and the de�nition of uniform inte-

grability that the sequence un is a Cauchy sequence in the L1 norm, and hence un

converges to u in L1. The proof is complete.
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14.3 L
p and L

p

w
spaces.

In the following two theorems � is an arbitrary �-�nite measure on X. The �rst result

is known as Cavalieri's principle.

Theorem 14.10 If p > 0 and u is measurable, thenZ
X

jujp d� = p

Z
1

0
t
p�1

�(juj > t) dt:

The claim follows from Fubini's theorem applied to X � [0;1).

We say that a measurable function u belongs to the Marcinkiewicz space Lp

w
(X) if

there is m > 0 such that

�(juj > t) � mt
�p for all t > 0: (81)

If u 2 Lp(X), then (81) with m =
R
X
jujp d� is known as Chebyschev's inequality, so

Lp(X) � Lp

w
(X). The converse inclusion does not hold. However, the following, well

known result holds.

Theorem 14.11 If �(X) < 1 then Lp

w
(X) � Lq(X) for all 0 < q < p. Moreover, if

u satis�es (81), then

kukLq(X) � 21=q
 

qm

p� q

!1=p

�(X)1=q�1=p: (82)

Proof. Fix t0 > 0. Using Theorem 14.10 and the estimates �(juj > t) � �(X) for

t � t0 and �(juj > t) � mt�p for t > t0 we getZ
X

jujq d� � q

�Z
t0

0
t
q�1

�(X) dt+ m

Z
1

t0

t
q�p�1

dt

�
= t

q

0�(X) +
qm

p� q
t
q�p

0 :

Then inequality (82) follows by choosing t0 = (qm=(p� q))1=p�(X)�1=p.

14.4 Covering lemma.

Theorem 14.12 (5r-covering lemma.) Let B be a family of balls in a metric space

(X; d) with supfdiamB : B 2 Bg <1. Then there is a pairwise disjoint subcollection

B0 � B such that [
B2B

B �
[
B2B0

5B

If (X; d) is separable, then B0 is countable and we can represent B0 as a sequence

B0 = fBig1i=1, and so [
B2B

B �
1[
i=1

5Bi:
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See Federer, [66, 2.8.4-6], Simon, [224, Theorem 3.3], or Ziemer, [258, Theorem 1.3.1]

for a clever proof.

14.5 Maximal function.

Assume that the measure � is doubling on an open set 
 � X. The following theorem

is a version of the well known maximal theorem of Hardy, Littlewood and Wiener.

Theorem 14.13 (Maximal theorem.) If X, 
 and � are as above, and the maximal

function M
u is de�ned as in the introduction, then

1. �(fx 2 
 : M
u(x) > tg) � Ct�1
R

 juj d� for t > 0 and

2. kM
ukLp(
) � CkukLp(
) for 1 < p � 1.

In the �rst inequality the constant C depends on Cd only, while in the second one it

depends on Cd and p.

For a proof in the case of Lebesgue measure, see Stein, [228, Chapter 1]. We assume that

the reader is familiar with that proof and we show how to modify the argument in order

to cover our setting. It su�ces to prove 1.; one then proceeds as in [228]. Inequality 1.

would follow from this inequality for the restricted maximal function M
;Ru provided

we prove it with a constant C that does not depend on R. To this end, note �rst

that the doubling condition implies that 
 is separable and hence the second part of

Theorem 14.12 applies. Then the argument from the case of the Lebesgue measure

works without any changes. We had to work with the restricted maximal function in

order to know that obtain a suitable covering consisting of balls with radii less than R

(if we did not have the upper bound for the radii, we could not apply Theorem 14.12).

We will also need a more general result. For c � 1 and x 2 
 de�ne Fc(x) as the

family of all measurable sets E � 
 such that E � B(x; r) and �(B(x; r)) � c�(E) for

some r > 0. Then we de�ne a new maximal function as follows

Mc


u(x) = sup
E2Fc(x)

Z
E

juj d�:

Obviously Mc


u � cM
u, and thus we obtain as a corollary to Theorem 14.13 the

following result.

Corollary 14.14 Theorem 14.13 holds with M
 replaced byMc


. The only di�erence

is that now the constants C in Theorem 14.13 depend also on c.
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14.6 Lebesgue di�erentiation theorem.

We say that a sequence of nonempty sets fEig1i=1 converges to x if there exists a

sequence of radii ri > 0 such that Ei � B(x; ri) and ri ! 0 as i!1.

Theorem 14.15 Let � be doubling on 
 � X and u 2 L1
loc(
; �). Then for �-a.e.

x 2 
 we have

lim
r!0

Z
B(x;r)

u(y) d�(y) = u(x): (83)

Moreover, if we �x c � 1, then for �-a.e. x 2 
 and every sequence of sets Ei 2 Fc(x),

i = 1; 2; : : : that converges to x we have

lim
i!1

Z
Ei

u(y) d�(y) = u(x): (84)

See [228, Chappter 1] for a proof in the case of the Lebesgue measure in IRn. The

same argument works also in our setting as it only relies on two facts: the weak type

inequality for the maximal function (see Theorem 14.13 and Corollary 14.14) and the

density of continuous functions in L1 (see Theorem 14.2).

Let � be doubling on 
 � X. Given u 2 L1
loc(
; �) it is often convenient to identify

u with the representative given everywhere by the formula

u(x) := lim sup
r!0

Z
B(x;r)

u(y) d�(y) : (85)

Theorem 14.15 shows that the taking the limit above only modi�es u on a set of

measure zero. We say that x 2 
 is a Lebesgue point of u if

lim
r!0

Z
B(x;r)

ju(y)� u(x)j d�(y) = 0;

where u(x) is given by (85). It follows from Theorem 14.15 that almost all points of 


are Lebesgue points of u. Observe that if x 2 
 is a Lebesgue point of u, then both

(83) and (84) are true.
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