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nature in terms of probabilities (instead of trajectories or wave functions). © 1997 The Franklin 
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L Introduction 

In recent years, a radical change of  perspective has been witnessed in science following 
the realization that large classes of  systems may exhibit abrupt transitions, a multiplicity 
of  states, coherent structures or a seemingly erratic motion characterized by unpre- 
dictability often referred to as deterministic chaos. Classical science emphasized stability 
and equilibrium; now we see instabilities, fluctuations and evolutionary trends in a 
variety of  areas ranging from atomic and molecular physics through fluid mechanics, 
chemistry and biology to large-scale systems of  relevance in environmental and econ- 
omic sciences. Concepts such as 'dissipative structures' and 'self-organisation' have 
become quite popular. Distance from equilibrium, and therefore the arrow of  time, 
plays an essential role in these processes, somewhat like temperature in equilibrium 
physics. When we lower the temperature we have, in succession, various states of 
matter. In non-equilibrium physics and chemistry, when we change the distance from 
equilibrium the observed behavior is even more varied. How can these findings be 
interpreted from the point of  view of the basic laws of  physics? These questions are at 
the heart of  our present description of  nature. 

The 19th century has left us with a conflicting heritage. On one side, there are the 
'laws of  nature' such as Newton's law which relates acceleration to force. This law is 
time reversible and deterministic. If we know the initial condition of a dynamical 
system, we can predict its state at an arbitrary time, be it in the future or in the past. 
There is no distinction between past and future. These characteristics remain true in 
relativity and quantum mechanics, as the Einstein or Schrrdinger equations are also 
reversible and deterministic. On the other hand, the famous 'second law' of ther- 
modynamics, associated with the increase of  entropy, expresses the arrow of  time. 

The nature and reality of  the flow of time has fascinated artists, philosophers and 
scientists over the years. The fact that the fundamental equations of dynamics are time 
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reversible whereas a thermodynamic description is time oriented may be called the time 
paradox.  It is interesting that the time paradox was only identified in the second half 
of the 19th century. It was then that the Viennese physicist Ludwig Boltzmann tried to 
emulate what Charles Darwin had achieved in biology and to formulate an evolutionary 
approach to physics. At that time, the laws of Newtonian physics had long been 
accepted as expressing the ideal of  objective knowledge. As Newton's  laws imply the 
equivalence between past and future, any at tempt to confer a fundamental meaning 
onto the arrow of time was resisted as a threat to the ideal of  objective knowledge. 
Newton 's  laws were considered to be final in their domain of application, somewhat as 
quantum mechanics is considered today by many  physicists. How could unidirectional 
time associated with entropy be understood without destroying these amazing achieve- 
ments of  the human mind? 

Here we come to the relation between non-linear science and the time paradox. It 
has been realized in recent years that irreversibility may become a source of order. This 
is already clear in classical experiments such as thermal diffusion. We heat one wall of  
a box containing two components  and cool the other. The system evolves to a steady 
state in which one component  is enriched in the hot part  and the other in the cold part. 
We have an ordering process that would be impossible at equilibrium. 

Close to equilibrium, entropy is maximum or free energy minimum. Fluctuations 
are harmless as they are followed by responses which bring the system back to equi- 
librium. The situation changes drastically, however, when we go far from equilibrium. 
Then there is no longer any minimum principle and fluctuations can grow. I f  the 
equations of  evolution are non-linear we observe, in general, bifurcations which lead 
to new spatio-temporal structures. The 'dissipative structures' achieved in this way are 
therefore the consequences of  non-linearity. In this sense we may even consider life, 
with its essential non-equilibrium properties, as the manifestation of non-linearity. We 
shall not go into details concerning these macroscopic aspects which are treated in 
many publications (1, 2). Let us only note that these results indicate that irreversibility 
(associated with the flow of time) has a fundamental  constructive role, be it in chemistry 
or biology. For  this reason, irreversible processes cannot correspond to approximations 
that we would introduce into the basic laws. On the contrary, what we need is an 
extension of  both classical and quantum physics which includes irreversibility. Our 
main subject here will be the relation between non-linearity and time symmetry breaking 
on the fundamental  dynamical level. For  a general presentation see Refs. (9, 10). 

IL Chaotic Maps 
The basic idea is simple. We know, since the pioneering work of  Gibbs and Einstein 

at the beginning of this century, that we can describe dynamics from two points of  
view. On the one hand we have the individual description in terms of trajectories in 
classical dynamics or of  wave functions in quantum theory. On the other hand we have 
the description in terms of ensembles associated with a probabili ty distribution (called 
the density matrix in quantum mechanics). An ensemble represents a superposition of 
trajectories or wave functions. For  Gibbs and Einstein, the ensemble point of  view was 
merely a convenient computat ional  tool when exact initial conditions were not avail- 
able. In their view, probabilities express ignorance or lack of information. Moreover, 
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it has always been admitted that the consideration of  individual trajectories and prob- 
ability distributions were equivalent problems. We can start with individual trajectories 
and then derive the evolution of  probability functions or vise-versa. 

Is this always so? For  stable systems where we do not expect any irreversibility, this 
is indeed true. Gibbs and Einstein were right. The individual point of  view (in terms of 
trajectories) and the statistical point of  view (in terms of probabilities) are then, indeed, 
equivalent, but for unstable dynamical systems this is no longer so. The equivalence 
between the individual level and the statistical level is then broken. We obtain new 
solutions for the probability distribution which are 'irreducible' as they do not apply 
to single trajectories. In this new formulation irreversibility is included because the 
symmetry between past and future is broken. Laws of nature acquire a new meaning. 
They no longer express certitudes but possibilities, as is appropriate for the evolutionary 
world that we observe (3). 

The simplest way to illustrate how irreversibility emerges from unstable dynamics is 
to consider chaotic maps, which are discrete-time dynamical process. The simplest 
chaotic map is known as the Bernoulli map (4, 5). We have a variable x defined on the 
interval from 0 to 1. This interval is the 'phase space' of  the system. The map is given 
by the rule that the value of  x at some given time step is twice the value at the previous 
time step. In order to stay in the interval from 0 to 1 though, if the new value exceeds 
1 only the fractional part is kept. The rule for the map is thus concisely written as 
Xn+ l = 2 X  n (mod 1), where n represents time, which takes integer values. 

This very simple system has the remarkable property that even though successive 
values of  x are completely determined, they also have quite random properties. If x is 
written in binary notation then successive values are obtained simply by removing the 
first digit in the expansion and shifting over the remaining digits. This means that after 
m time steps, information about the initial value to an accuracy of 2 -m is now amplified 
to give whether the value of  x is between 0 and 1/2 or 1/2 and 1. This amplification in 
any initial uncertainty of  the value of  x makes following trajectories for more than a 
few time steps a practical impossibility. 

A generic initial value of  x would be an irrational number with an infinite non- 
repeating expansion. This would lead to a trajectory that wanders forever throughout 
the phase space, but rational numbers, with repeating or terminating binary expansions, 
thus leading to periodic or fixed-point trajectories are densely distributed among 
irrational numbers. This means that qualitatively different behavior, in the sense of 
trajectory dynamics, arises from initial conditions that are infinitesimally close. This 
kind of complicated microstructure of phase space, typical for chaotic systems, is in 
contrast to systems with regular dynamics where initial conditions throughout large 
regions of phase spaces lead to similar behaviors. 

These facts suggest that a much more natural way to consider the time evolution in 
chaotic systems is in terms of  ensembles of  trajectories defined by probability distri- 
butions. The probability distribution evolves through the application of  an operator 
known as the Frobenius-Perron operator. In contrast to the erratic behavior of  tra- 
jectories, the evolution of  a 'smooth'  probability distribution is regular and approaches 
an equilibrium state. By a smooth distribution we mean one that does not just represent 
a trajectory, which would be a distribution localized at a single point. Then we would 
return to the problems with trajectories. A point distribution is written in terms of a 



748 Ilya Prigogine 

'Dirac delta function'. This object is not a normal function but a so-called generalized 
function. Its value is zero except at a single point where its value is infinity. It  has a 
well-defined meaning only when integrated with a normal function where it acts to sift 
out the value of  the normal function at the point where the delta function is non-zero. 

How to understand the difference between the individual behavior (the trajectories) 
and the statistical behavior associated with distribution functions? Here we come to 
one of  the main chapters of  modern mathematics associated with operators. These 
methods are essential in orthodox quantum theory. It  is remarkable that they also play 
a fundamental  role in overcoming the time paradox and permit the extension of  the 
laws of  nature to include irreversible processes. 

Since the formulation of quantum mechanics in the 1920s, operator  calculus has 
become a basic tool for physicists. How indeed to understand the appearance of discrete 
energy levels in atomic physics? In classical mechanics, the basic quantity determining 
the dynamics of  a system is the Hamiltonian (that is the energy expressed in terms of 
coordinators and momenta).  It  is a continuous function. The basic step to derive 
quantization is to associate with each physical quantity an operator. An operator  is 
nothing more than a prescription of how to act on a given function. It may involve 
multiplication, differentiation or any other mathematical  operation. In general, an 
operator  O acting on a function f (x)  transforms it into a different function. (For 
example, if O is the derivative operator  d/dx, then Ox 2 = 2x.) 

However,  there are functions which remain invariant when we apply O; they are 
only multiplied by a number. These special functions are called eigenfunctions of the 
operator.  (In our example above, e i~x is an eigenfunction for all values of  k.) The 
number  which multiplies the eigenfunction is called the eigenvalue (in our example, it 
is ik). The basic idea of quantum mechanics is to associate the numerical values of 
observables to the eigenvalues of  the corresponding operator.  It is a daring step as it 
entails a conceptual difference between a physical quantity (represented by an operator) 
and the numerical values this quantity can take (the eigenvalues of  this operator).  The 
ensemble of  the eigenvalues forms the spectrum and a fundamental theorem is that we 
can express an operator in terms of  its eigenfunctions and eigenvalues. This is the 
'spectral decomposition" of  the operator,  but there is an additional element which is 
important  for us. 

The spectral decomposition of  an operator depends, not only on how the operator  
acts on a function but on the type of functions the operator is considered to act 
upon. In quantum mechanical problems, the operators are considered to act on 'nice' 
normalizable functions that are members of  a collection of functions known as a Hilbert 
space. Time evolution operators,  even in classical mechanics, have traditionally been 
analyzed in Hilbert space. A class of  operators known as Hermitian operators plays a 
special role. These operators have only real eigenvalues in Hilbert space. The time 
evolution is then expressed a s  e i'°t, which is a purely oscillating function because ~o is a 
real number. In order to have an explicit approach to equilibrium expressed by decay 
modes as e -~'' it is necessary to go outside the Hilbert space where Hermitian operators 
may have complex eigenvalues. 

The main point is that by extending the functional space, we can include in the 
spectral decomposition of  the operator  new states. This is an essential point to under- 
standing the appearance of new solutions in the statistical description. Time evolution 
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operators for unstable dynamical systems, when extended in this way, include irre- 
versibility, which was 'hidden' as long as we remained in the Hilbert space. 

As we have seen, the statistical description of  chaotic involves the Perron-Frobenius 
operator. Only recently has the Frobenius-Perron operator come under serious inves- 
tigation. Already by the late 1970s, David Ruelle of  the IHES in France, and Mark 
Pollicott, among others, noticed that the eigenvalues of  the Frobenius-Perron operator 
which characterize the approach to equilibrium could be determined. However, a 
difficulty in obtaining the spectral decomposition (i.e. both the eigenvalues and eigen- 
functions) is that for chaotic one-dimensional maps the Frobenius-Perron operator 
does not have a spectral decomposition in Hilbert space. For  this reason, Ioannis 
Antoniou of  the International Solvay Institutes in Brussels, suggested that the 
decomposition be performed in a more general function space (the 'rigged' Hilbert 
space we introduced above). 

In the last few years, several members of our group have obtained the spectral 
decomposition for the Bernoulli map and other chaotic systems (4, 5). An essential result 
of this work is that the eigenfunctions corresponding to the spectral decomposition with 
decay modes are indeed generalized functions. As noted, in the sense of a probability 
distribution, a trajectory is also a generalized function - -  a delta function. Since a 
generalized function cannot be multiplied by another one, this spectral decomposition 
cannot be applied to trajectories. (We have already noted that a delta function has to 
be associated with a continuous function, a product of  delta functions has no sense.) 
The new solution on the statistical level includes the approach to equilibrium, but 
cannot be applied to single trajectories. The equivalence between the individual descrip- 
tion and the statistical description is broken. 

The Bernoulli map has from the start a broken time symmetry. The trajectory 
description is not invertible, unlike real mechanical systems for which it is. However, 
by adding an extra dimension to the phase space we may extend the Bernoulli map to 
obtain an invertible system known as the baker map. The dynamics associated with 
the new dimension is contracting so the map preserves the area of an initial element of  
phase space. These two features of  invertibility and preservation of  phase space area 
are the essential features of  dynamical systems in the world around us. 

Contrary to the Bernoulli map, there is a representation of the Frobenius-Perron 
operator of  the baker map in Hilbert space but no irreversibility is apparent there. 
The generalized spectral decomposition for the baker map has also been recently 
constructed. In this decomposition, irreversibility emerges from the unstable dynamics 
by selecting a class of distribution functions which approach equilibrium in our future. 
There is also a class oriented to the past. Which class to choose? Experience shows that 
all objects in our universe share the same direction of  time. We all age together. 
Therefore it is natural to retain the class of  distributions which approach equilibrium 
in our future. Irreversibility already appears at the most basic level in this system. 
The generalized spectral decompositions for other model systems with more realistic 
features, such as diffusion, have also been constructed. 

III. Probabilistic Extension of  Classical Mechanics 

We come now to systems governed by classical mechanics. Here the individual 
description in terms of  trajectories also has, in general, to be replaced by a statistical 
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description in terms of distribution functions. We understand that this is a strong 
statement. Many people look at present for an extension of quantum mechanics, but 
that even classical mechanics has to be extended is certainly unexpected. Let us indicate 
in which systems we expect irreversibility to emerge and to which our extension will 
apply. 

We come first to the problem of  integrability closely connected to the problem of 
non-linearity. These problems are at the center of  Henri Poincar6 at the end of the 19th 
century. The Hamil tonian generally contains two terms corresponding, respectively, to 
the kinetic and the potential energy. Poincar6 asked the question (which we simplify 
somewhat): is it possible to eliminate the potential energy by an appropriate choice of 
variables? Then the system would become isomorphic to independent particles and the 
solutions of  the equation of  motion would be immediate. Poincar6 has shown that this 
is, in general, impossible and fortunately so. I f  the answer had been in the affirmative 
there would be no possibility of  coherence, no organization and no life. The importance 
of  Poincar6 resonances is well-recognized today. It  led to the K A M  theory, so called 
in honor  of  its founders Kolmogorov,  Arnold and Moser. 

Poincar6 moreover  identified the reason for non-integrability: the existence of res- 
onances between the various degrees of  freedom. For  each degree of freedom there is 
an associated frequency ~o. Consider then a system characterized by two degrees of  
freedom. The corresponding frequencies are ~ol and ~2; whenever (nl~o~ +n2o92)= 0, 
with n~ and n2 non-vanishing integers, we have resonance. These resonances lead to 
the problem of  small denominators by showing up in perturbation calculations as 
1/(n~eg~ + n2ah). The resonances give rise to random trajectories. In this sense, Poincar6 
resonances and non-integrability are also associated with chaos. Resonances are respon- 
sible for fundamental  phenomena such as emission or absorption of light, decay of 
unstable particles and scattering of  particles, to name a few. 

Besides non-integrability there is a second condition for irreversibility. In typical 
macroscopic situations where we observe irreversible processes, molecules collide con- 
tinuously with each other. We have 'persistent'  interactions. This is in contrast  to 
' t ransi tory '  interactions as considered, e.g. in ordinary scattering experiments (described 
by the so-called 'S-matrix' theory) in which we have free asymptotic ' in'  and 'out '  
states. To describe persistent interactions we have to introduce 'delocalized' distribution 
functions spread out in space. 

In this paper  we shall consider in detail the problems of  anharmonic lattices (6). We 
shall also limit ourselves to classical dynamics. We consider the thermodynamics limit 
for which the number  of  particles N ~  c~. Moreover,  we require that the distinction 
between intensive variables and extensive variables be maintained in this limit. For  
example, the displacement of  a single particle has to remain finite as well as the density 
of  energy H/N. 

We first consider the case of  a harmonic lattice and consider the limit N ~  ~ .  The 
dynamic description can then be performed on the level of  trajectories or in terms of 
distributions p associated with a Hilbert space (Section IV). We then consider the case 
of  anharmonic lattices (Section V) and show that the thermodynamic limit destroys 
the Hilbert space structure. Moreover,  due to Poincar6 resonances, new diffusive terms 
appear  which destroy trajectories. The trajectory 'collapses' to use the terminology of 
quantum mechanics. 
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IV. Harmonic Lattices 

We first summarize briefly the situation for harmonic lattices. For  simplicity, we 
consider one-dimensional lattices. We assume that N atoms with mass m are equally 
spaced with a distant a in the equilibrium position, and the equilibrium potential energy 
U0. For  the excited lattice, the potential energy U is the quadratic form 

U - -  U o = 2,,,,Ann,UnUn,, (1) 

where u. is the displacement of the nth atom from its equilibrium position. We impose 
cyclic boundary conditions U.+N = U.. 

We then introduce normal coordinates qk 

u. = ~ qke ik'' (2) 
k 

where (with integer j) 

2g 
k = ~aaJ (3) 

and angle a k and action variable Jk related to qk though ( o - k  = (ok 

~/~. f "U ~ . 1 , o, .+  

I r /  ,~,12 . / \ ' . '= . ) 
e"-tJ- <o k) e .... j>. 

Neglecting anharmonic terms, we obtain the expected form for the Hamiltonian 

H0 = ~ (okJ~- (5) 
k 

The equations of motion are obviously 

Jk = 0 (6) 

(~k = ('Ok" 

We next consider the statistical description in terms of distribution functions p(J, ct,t) 
which satisfy the Liouville equation 

• 8 p  l~ =Lop ,  L o -  - i ( o  c~ ~ . (7) 

The eigenfunctions go({n})and eigenvalues ll< are (p({n})= cexp[i~nkc~k[ and 
k _ ~  J 

l~< = ~ nk(ok where c is a normalization constant. 
k 

Now let us consider more closely the limit N ~  ~ .  Using Eqs (2) and (4) we obtain 
terms of the form 
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2 ,,-, ikna ~ k  iO~k 
u,= ~ m L k  e ~/ ~ e  . (9) 

In the limit N---, 

2~ ~ ~j 'dk  (10) 
Na 

imposes that 

The condition u,---, finite for N ~  oo (11) 

Eei~*,~ N//N for N-~oo. (12) 
k 

The angle variables must therefore behave as 'stochastic variables' to which we can 
apply the law of  large numbers. Not  all initial conditions are compatible with Eq (11). 
If Eq (12) is not satisfied, we have to leave the model of a harmonic solid. Note that 
this condition means that the sequence ~kl,~k2 .... with kj = (2nj/Na) is 'incompressible' 
and therefore has a larger probability to realize the situation in Eq (12). They cor- 
respond to stochastic sequences among the real number sequences for 0 < ~kj< 27t. 

We now turn to the statistical description of Eq (7). As could be expected, there is 
complete equivalence of  this description to the individual description. Indeed let us 
impose a Hilbert space structure for the statistical description. We expand p(J,~) in a 
Fourier series. With obvious notations 

p(J, oO=~pl,,}(J)exp[i~"nk~kl. (13) 

The Hilbert norm is therefore 

(PIP) = S d J ~  Ip{.}(J)l 2. (14) 
{,} 

This norm is preserved in time. To obtain a finite Hilbert norm for N ~  0% well- 
defined conditions have to be satisfied. Indeed the norm of  Eq (14) contains such terms 
as (with n, . . . . .  - lk,0,1k,2k,...) 

ipolZ+~Lp,kl2+~lp,k,d2+ ~ Ip~k~r,k,,12+ . . .  (15) 
k kk' kk'k" 

which have to converge for N ~  oo.t This implies 

1 1 
p0~0(1), P~k~ ~ ,  Plk,k',z'~ N3/Z. (16) 

The Hilbert space structure is equivalent to the trajectory description including the 
randomness condition Eq (12). Indeed using Eq (9)Eq (13)Eq (16) we have 

1 
t l f  ~ is over k+k'+k" = 0 (conservation of"momentum") the condition is [lk.lk'.lk" ~ ~"  

kk'k" 
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1 
( u . )  ,-~ ~ I d J ~ - 0 ( 1 ) .  (17) 

We may calculate in the same way other averages such as (u,u,,.), or (u,,u,,.u,,.). Note 
that using Eqs (9) and (16) 

1 1 3 1 
(u.,u.zu.3).~ -~g~k~, IdJ p,,,k.,k,,-- - ~  N - ~  ,-~ 0(1). (18) 

V. Anharmonic Lattices 

We now come to anharmonic lattices. The potential energy is now: 

1 
U--Uo = ~ A.n,u.un,+ 1 ,,~,, B,,,,, ,.,,u,,u,,,u,,,,. (19) 

The Hamiltonian H becomes 

with, after a few calculations, 

H = H 0 + 2 V  (20) 

v = E ( V/2r q - -  ) 
kk'k" \ O')k(Ok'('Ok" 

(21) 

where the summation Zkk'Z' is over k + k ' +  k" = 0 or over a vector of  the reciprocal 
lattice and we have introduced the parameter 2 for the coupling constant. Note that, 
as can be easily verified, 

1 
Vkk,Z, ~ w/~ .  (22) 

We shall show that both the trajectory description and the Hilbert space structure 
are incompatible with the thermodynamic limit N ~  oo. In thermodynamic equilibrium 
(equipartition theorem) 

(V') ,,~ N. (23) 

Because the summations over the wave vectors are restricted on the reciprocal lattice, 
we now have Plklk'~Z'~ l /x /@ in the Hilbert space. Hence, in contrast to Eq (23) we 
obtain, at most, 

1 21  7 -  
(V')-- ~k,k, ldJVkk.k..P,klk, l k - - - ~ N  ~--~,/N. (24) 

This shows already that thermodynamics equilibrium of  Eq (23) lies outside the 
Hilbert space. To obtain Eq (23) we need stronger 'correlations', such as 

P,k,J,',k" "~ 1/x/N (25) 

but then the Hilbert space norm diverges. 
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This is a strong indication that the approach to equilibrium requires one to give up 
the Hiibert space description, as is also the case for interacting particles. There is, 
however, an interesting difference. In the case of interacting particles, the Hilbert space 
norm vanishes in the limit N--+ oo, while here it diverges. 

Let us now describe the time evolution of anharmonic lattices in the Liouville 
formulation. For  interacting systems we have 

L = L0+2Lv. (26) 

We use the matrix notation 

({n}lLv[{n'})- (21rt)N;~...f)"d~l...d~N × expl--i~ne°~k;Lvexp[i~ne'°~k 1" 

(127) 

We obtain directly for the only non-vanishing matrix elements 

(nknk,nk,,ILvlnk +_ 1,nk,, +_ 1,nk,, +_ 1 ) 
I n k  n~, n,,, t3 0 O 7// "~1/2 

(28) 

Note that this is still an operator acting on the actions Jk. 
Starting from Eq (26) we can now introduce the dynamics of 'correlations'. The 

contribution P0 is called the 'vacuum of  correlations' and plays a especially important 
role. As a result of Eq (25) we may have 'destruction (of correlation) processes' such 
as represented graphically in Fig. 1. 

Now using Eqs (22) and (28) we see immediately that Fig. 2 leads precisely to Eq 
(25). Correlations are amplified by anharmonic effects and bring us outside the Hilbert 
space. The trajectory description is also destroyed. Indeed, because of Poincar6 res- 
onances, we now have 'diffusive processes' such as represented in Fig. 3. Each vertex 
contains derivative operators O/~J, and Fig. 3 leads therefore to a diffusive process 
containing second-order operators ~2/0J2 characteristic of diffusive process. 

Let us mention that these diffusive processes to order 22 represent Fokker-Planck 

k I 

P0 O l k l k ' l k "  

k"  

Fig. 1. Destruction process (see text). 
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k w 

P l k l k ' l k "  P0 

k" 

Fig. 2. Creation process (see text). 

type contributions which break time symmetry. The operator appearing in Fig. 3 can 
be easily obtained explicitly. It is 

1.im ~ nr(tok +COk,--~Ok,,] IVkk'-z'Pz X + ~j~. ej~.. J~Jk.J~. ~ + ~jk. ~ ,  . 

(29) 

The action variable now becomes a stochastic variable. As a result, even if we start 
with well-defined action variables 6 ( J k - j o )  trajectories are destroyed by diffusion. Eq 
(29) leads, for times of the order of the relaxation time, (,-~ 2 -2 for weak interactions) 
to 

( J~)  - ( J k )  2 ~ t. (30) 

These are 'non-Newtonian contributions'. In this sense, the trajectory collapses. 
There are, of course, many comments which could be made, but this would bring us 

outside the range of this article. Let us simply emphasize the role of the h-function for the 
frequency in Eq (29) which comes from Poincar6 resonances. For Poincar6 integrable 
systems, there would be no 'collapse' of the trajectory and the Hilbert space structure 

P0 P0 

k" 

Fig. 3. Diffusive processes ('collision'). 
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would be preserved since we could then introduce cyclic action-angle variables. The 
problem would then be similar to that of  harmonic oscillators. 

VI. Quantum Mechanics 

The results obtained in classical mechanics can be extended to quantum mechanics. 
The role of  Newton 's  equation is now played by the Schr6dinger equation which 
governs the time evolution of the wave function. Again, for non-integrable systems and 
delocalized distribution functions we have to go outside the Hilbert space. We then 
obtain new spectral decompositions of  the quantum Liouville operator which lead to 
complex eigenvalues and which are irreducible to wave functions. We may associate 
the new solutions with 'quantum chaos' .  This result is at the core of  the solution of  the 
quantum paradox. 

In spite of  the immense success of  quantum mechanics, discussions about  its foun- 
dations continue. It  is generally admitted that the wave function determines 'poten- 
tialities'. We need therefore an additional mechanism to go from potentialities to the 
'actualities' we measure. This introduces the 'collapse' of  the wave function and leads 
to irreversibility, but this means a dual structure at the basis of  quantum theory. When 
to use Schrrdinger equation; when to introduce the collapse? This leads to the quantum 
paradox. Many proposals to elucidate the conceptual foundations of  quantum theory 
can be found in the literature, but as is the case for the time paradox they are mostly 
based on approximations we as observers would introduce in the basic quantum laws. 
Also, none of  these proposals leads to new predictions which could be tested. 

Quantum theory started with the observations that spectroscopic frequencies are 
differences of  two energy levels but this is not true for the imaginary part  of  the 
eigenvalues, which correspond to irreversible processes. Quantum relaxations times, as 
observed or calculated, are not differences between two levels. This already shows that 
irreversible processes cannot be described in terms of wave functions in Hilbert space 
but only in terms of distribution functions. 

This approach leads to a unified and testable formulation (7, 10). The basic descrip- 
tion is now on the statistical level. The collapse corresponds to situations where the 
initial state is outside the Hilbert space (like for plane waves) and where Poincar6 
resonances lead to diffusive behavior. In our theory the observer no longer plays any 
special role. Our theory permits us to describe the approach to equilibrium of  quantum 
systems and eliminates the quantum paradox. We obtain a dynamical description of 
the measurement  process as the measuring device is a thermodynamic system and the 
thermodynamic limit leads to a broken time symmetry. It  is the common arrow of  time 
which is the necessary condition for our communicat ion with the physical world as it 
is the condition of our communicat ion with our fellow humans. 

Is it too ambitious to speculate that this work could have reconciled Niels Bohr and 
Albert Einstein? Bohr insisted that in order to communicate with the microscopic 
world, we need an apparatus  described in classical terms (8). This is the famous 
Copenhagen interpretation, but how to imagine a classical apparatus in a quantum 
world? We have seen that this is not necessary; what is essential is the broken time 
symmetry. On the other hand, Einstein was opposed to the extraordinary role quantum 
mechanics attributed to the observer. The observer would be responsible for the appear- 
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ance of  irreversibility - -  but likely irreversible processes would exist in nature be there 
human beings or not. In our approach,  irreversibility has a purely dynamical origin 
similar both in classical and quantum mechanics. 

Statistical physics and thermodynamics have played an immense historical role in 
the evolution of  physics in the 20th century. The divergence in the classical description 
of  the specific heat of  black-body radiation led to quantum theory. We are today in a 
somewhat similar situation. Non-linearity and instability force us to adopt  a different 
point of  view concerning the formulation of the laws of  nature. They now express 
possibilities instead of  certainties. There is no longer any contradiction between the 
dynamical and the thermodynamical  descriptions of  nature; far from being a measure 
of  our ignorance, entropy expresses a fundamental property of  the physical world, the 
existence of  a broken time symmetry leading to a distinction between past and future 
which is a universal property of  both the nature we observe as well as a prerequisite 
for the existence of life and consciousness. 

At the end of  the 19th century, when the debate about  Boltzmann's  work raged, 
Henry Poincar6 expressed his belief that the evolutionary picture associated with 
entropy only has a meaning in a non-deterministic world. Today we have no longer to 
turn away in horror  from this conclusion; it is the necessary outcome of  the thermo- 
dynamic limit, be it in classical or quantum mechanics. For  such systems, probabili ty 
is no longer associated with ignorance and certitude with reason. We have to find the 
narrow path  between the alienating deterministic picture in which there is no place for 
creativity and innovation and a purely random world in which there would also be no 
place for human endeavor. 
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