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1 INTRODUCTION

The second law of thermodynamics has a curious status. Many modern physicists
regard it as an obsolete relic from a bygone age, while many others, even today,
consider it one of the most firmly established and secure achievements of science
ever accomplished.

From the perspective of the foundations of physics, a particularly interesting
question is its relationship with the notion of irreversibility. It has often been
argued, in particular by Planck, that the second law expresses, and characterises,
the irreversibility of all natural processes. This has led to much debated issues,
such as whether the distinction between past and future can be grounded in the
second law, or how to reconcile the second law with an underlying microscopic
mechanical (and hence reversible) theory. But it is not easy to make sense of these
debates since many authors mean different things by the same terms.

The purpose of this paper is to provide some clarification by distinguishing
three different meanings of the notion of (ir)reversibility and to study how they
relate to different versions of the second law. A more extensive discussion is
given in [23].

2 THREE CONCEPTS OF (IR)REVERSIBILITY

Many physical theories employ a state space Γ consisting of all possible states of a
system. An instantaneous state is thus represented as a point s in Γ and a process
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as a parameterised curve:

P = {st ∈ Γ : ti ≤ t ≤ t f}.

The laws of a theory usually allow only a definite class of such processes (e.g.
the solutions of the equations of motion). Call this class W , the set of all possi-
ble worlds (according to this theory). Let now R be an involution (i.e. R2s = s)
that turns a state s into its ‘time reversal’ Rs. In classical mechanics, for exam-
ple, R is the transformation which reverses the sign of all momenta and magnetic
fields. In a theory like classical thermodynamics, in which the state does not con-
tain velocity-like parameters, one may take R to be the identity transformation.
Further, define the time reversal P ∗ of a process P by:

P ∗ = {(Rs)−t : −t f ≤ t ≤ −ti}.

The theory (or a law) is called time-reversal invariant (TRI) if the class W is closed
under time reversal, i.e. iff:

P ∈W =⇒ P ∗ ∈W . (1)

According to this definition1 the form of the laws themselves (and a given
choice for R) determines whether the theory is TRI or not. And it is straight-
forward to show that classical mechanics is indeed TRI. Note also that the term
‘time-reversal’ is not meant literally. That is to say, we consider processes whose
reversal is or is not allowed by a physical law, not a reversal of time itself. The
prefix is only intended to distinguish the term from a spatial reversal. Further-
more, note that it is not relevant here whether the reversed processes P ∗ occur in
the actual world. It is sufficient that the theory allows them. Thus, the fact that
the sun never rises in the west is no obstacle to celestial mechanics qualifying as
TRI.

Is this theme of time-reversal (non)invariance related to the second law? Even
though the criterion is unambiguous, its application to thermodynamics is not a
matter of routine. In contrast to mechanics, thermodynamics does not possess
equations of motion. This, in turn, is due to the fact that thermodynamical pro-
cesses only take place after an external intervention on the system. (E.g.: remov-
ing a partition, establishing thermal contact with a heat bath, pushing a piston,
etc.) They do not refer to the autonomous behaviour of a free system. This is not
to say that time plays no role. Classical thermodynamics, in the formulation of

1Some authors [14] propose an alternative definition of time reversal invariance. Supposing
the theory is deterministic, its laws specify evolution operators U(t1, t0) such that st = U(t, t0)s0.
In that case, one can define TRI of the theory by the requirement U−1(t, t0)RU(t, t0) = R. This
definition has the advantage that it does not rely on the possible worlds semantics. However, it
applies only for deterministic theories, and not to thermodynamics.
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Clausius, Kelvin or Planck, is concerned with processes occurring in the course
of time, and its second law is clearly not TRI. However, in other formulations,
such as those by Gibbs, Carathéodory or Lieb and Yngvason, this is less clear.

My main theme, however, is the notion of ‘(ir)reversibility’. This term is at-
tributed to processes rather than theories or laws. But in the philosophy of physics
literature it is intimately connected with time-reversal invariance. More precisely,
one calls a process P allowed by a given theory irreversible iff the reversed pro-
cess P ∗ is excluded by this theory. Obviously, such a process P exists only if
the theory in question is not TRI. Conversely, every non-TRI theory admits ir-
reversible processes in this sense. They constitute the hallmark of time-reversal
variance and, therefore, discussions about (ir)reversibility and (non)-TRI in phi-
losophy of physics coincide for the most part. However, in thermodynamics, the
term is commonly employed with other meanings.

The thermodynamics literature often uses the term ‘irreversibility’ to denote
an aspect of our experience which, for want of a better word, one might also
call irrecoverability. In many processes, the transition from an initial state si to a
final state s f , cannot be fully ‘undone’, once the process has taken place. In other
words, there is no process which starts off from state s f and restores the initial
state si completely. Ageing and dying, wear and tear, erosion and corruption are
the obvious examples. This is the sense of irreversibility that Planck intended,
when he called it the essence of the second law.

Many writers have emphasised this theme of irrecoverability in connection
with the second law. Indeed, Eddington introduced his famous phrase of ‘the
arrow of time’ in a general discussion of the ‘running-down of the universe’, and
illustrated it with many examples of processes involving ‘irrevocable changes’,
including the example of Humpty-Dumpty who, allegedly, could not be put to-
gether again after his great fall. In retrospect, one might perhaps say that a better
expression for this theme is the ravages of time rather than its arrow.

(Ir)recoverability differs from (non)-TRI in at least two respects. First, the only
thing that matters here is the retrieval of the original state si. It is not necessary
that one can find a process P∗ which retraces all the intermediate stages of the
original process in reverse order. A second difference is that we are dealing with a
complete recovery. Planck repeatedly emphasised that this condition includes the
demand that all auxiliary systems that may have been employed in the original
process are brought back to their initial state. Now, although one might argue that
a similar demand should also be included in the definition of TRI, the problem is
here that the auxiliary systems are often not characterisable as thermodynamical
systems.

Schematically, the idea can be expressed as follows. Let s be a state of the
system and Z a (formal) state of its environment. Let P be some process that
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brings about the following transition:

〈si, Zi〉
P−→ 〈s f , Z f 〉 (2)

Then P is reversible in Planck’s sense iff there exists2 another process P ′ that
produces

〈s f , Z f 〉
P ′
−→ 〈si, Zi〉. (3)

However, the term ‘reversible’ is also used in yet a third sense, which has no
straightforward connection with the arrow of time at all. It is often used to denote
processes which proceed so delicately and slowly that the system can be regarded
as remaining in equilibrium ‘up to a negligible error’ during the entire process.
We shall see that this is the meaning embraced by Clausius. Actually, it appears
to be the most common usage of the term in the physical-chemical literature; see
e.g. [13, 8]. A more apt name for this kind of processes is quasi-static. Of course,
the above way of speaking is vague, and has to be amended by criteria specifying
what kind of ‘errors’ are intended and when they are ‘small’. These criteria take
the form of a limiting procedure so that, strictly speaking, reversibility is here not
an attribute of a particular process but of a series of processes.

Again, quasi-static processes are not necessarily the same as those called re-
versible in the previous two senses. For example, the motion of an ideal harmonic
oscillator is reversible in the sense of Planck, but it is not quasi-static. Conversely,
the discharge of a charged condenser through a very high resistance can be made
to proceed quasi-statically, but even then it remains irreversible in Planck’s sense.

Comparison with the notion of TRI is hampered by the fact that ‘quasi-static’
is not strictly a property of a process. Perhaps the following example might be
helpful. Consider a process PN in which a system, originally at temperature θ1 is
consecutively placed in thermal contact with a sequence of N heat baths, each at a
slightly higher temperature than the previous one, until it reaches a temperature
θ2. By making N large, and the temperature steps small, such a process becomes
quasi-static, and we can represent it by a curve in the space of equilibrium states.
However, for any N, the time-reversal of the process is impossible.

The reason why so many authors nevertheless call such a curve ‘reversible’
is that one can consider a second process QN, in which the system, originally at
temperature θ2, is placed into contact with a series of heat baths, each slightly
colder than the previous one. Again, each process QN is non-TRI. A forteriori, no
QN is the time reversal of any PN. Yet, if we now take the quasi-static limit, the
state change of the system will follow the same curve in equilibrium space as in
the previous case, traversed in the opposite direction. The point is, of course, that

2One might read ‘exists’ here as ‘allowed by the theory’, i.e. as P ′ ∈W . But this is not Planck’s
view. He emphasised that P ′ might employ any appliances available in Nature, rather than allowed
by a theory. This is a third respect in which his sense of reversibility differs from that of TRI.
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precisely because this curve is not itself not a process, the notion of time reversal
does not apply to it.

3 EARLY FORMULATIONS OF THE SECOND LAW

The work of the founding fathers Carnot, Clausius and Kelvin (=W.Thomson) can
be divided into two lines: one main line dealing exclusively with cyclic processes;
and another addressing (also) non-cyclic processes. In this section I will discuss
both.

The first line starts with the work of Carnot (1824). Carnot studied cyclic pro-
cesses performed by an arbitrary system in interaction with two heat reservoirs,
(the furnace and the refrigerator), at temperatures θ+ and θ−, while doing work
on some third body. Let Q+(C ), Q−(C ) and W(C ) denote, respectively, the heat ab-
sorbed from the furnace, the heat given off to the refrigerator, and the work done
by the system during the cycle C . He assumed that the heat reservoirs remain
unchanged while they exchange heat with the system.

Carnot’s main assumptions were: (i) heat is a conserved substance, i.e., Q+(C ) =
Q−(C ); and (ii) the impossibility of a perpetuum mobile of the first kind, or:

CARNOT’S PRINCIPLE: It is impossible to perform a repeatable cycle
in which the only result is the performance of (positive) work.

Note that Carnot did not object to the performance of (positive) work in a cycle as
such. Rather, his point was that, due to the assumption that the heat reservoirs act
as invariable buffers, the cycle could be repeated arbitrarily often. Thus, violation
of the above principle would provide unlimited production of work at no cost
whatsoever. This he regards as inadmissible.

By a well known reductio ad absurdum argument, he obtained

CARNOT’S THEOREM: (a) The efficiency η(C ) := W(C )/Q+(C ) is bounded
by a universal maximum C, which depends only on the temperatures
θ+ and θ−:

η(C ) ≤ C(θ+, θ−) (4)

(b) This maximum is attained if the cycle C is ‘reversible’.

In fact Carnot did not use the term ‘reversible’. So one might ask how he con-
ceived of the condition in (b). Actually he discusses the issue twice. He starts
his argument with an example: the Carnot cycle for steam. In passing, he notes
its relevant feature: ‘The operations we have just described might have been per-
formed in an inverse direction and order (Mendoza, 1960, p.11).’ This feature, of
course, turns out to be crucial for the claim that this cycle has maximal efficiency.
Later, he realised that a more precise formulation of this claim was desirable,
and he formulates a necessary and sufficient criterion for maximum efficiency
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(ibid. p. 13): it should be avoided that bodies of different temperature come into
direct thermal contact. He notes that this criterion cannot be met exactly, but can
be approximated as closely as we wish. In modern terms: the criterion is that the
process should be quasi-static at all stages which involve heat exchange.

Accordingly, even at this early stage, there are two plausible options for a
definition of a ‘reversible’ cycle. Either we focus on the crucial property of the
Carnot cycle that it can also be run backwards. This is the option chosen by Kelvin
in 1851. Of course, this is a natural choice, since this property is essential to the
proof of the theorem. Or else, one can focus on Carnot’s necessary and sufficient
condition and use this as a definition of a reversible cycle. This is more or less
the option followed by Clausius in 1864. He called a cyclic process reversible
(umkehrbar) iff it proceeds quasi-statically.

Carnot’s work proved very valuable, a quarter of a century later, when Kelvin
showed in 1848 that it could be used to devise a absolute temperature scale. But in
the meantime, serious doubts had appeared about the conservation of heat. Thus,
when the importance of his theorem was recognised, the adequacy of Carnot’s
original derivation had already become suspect. Therefore, Clausius (1850) and
Kelvin (1851) sought to obtain Carnot’s theorem on a different footing. They
replaced Carnot’s assumption (i) by the Joule-Mayer principle stating the equiva-
lence of heat and work, i.e.: Q+(C ) = Q−(C )) + JQ(C ) where J is Joule’s constant.
Instead of Carnot’s (ii), they adopted the impossibility of perpetuum mobile of
the second kind:

THE CLAUSIUS/KELVIN PRINCIPLE It is impossible to perform a cy-
cle3 in which the only effect is:

to let heat pass from a cooler to a hotter body (Clausius)
to perform work and cool a single heat reservoir (Kelvin).

They showed that Carnot’s theorem, by that time called the “second thermody-
namic law” or the “Zweite Hauptsatz” can be recovered.

In a series of papers, Clausius and Kelvin extended and reformulated the re-
sult. In 1854 Kelvin showed that the absolute temperature scale T(θ) can be cho-
sen such that C(T+, T−) = J(1− T−/T+) or equivalently

Q+(C )
T+ =

Q−(C )
T− . (5)

3In the usual formulation of these principles, the unlimited repeatability of the cycle is not
stressed so much as it was by Carnot. However, one may infer that it was at least intended by
Kelvin, when he wrote in his introduction ‘Whenever in what follows, the work done or the me-
chanical effect produced by a thermo-dynamic engine is mentioned without qualification, it must be
understood that the mechanical effect produced, either in a non-varying machine, or in a complete
cycle, or any number of complete cycles of a periodical engine, is meant.’ [15, p. 177].
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Generalising the approach to cycles involving an arbitrary number of heat reser-
voirs, they obtained the formulation4

∮
C

dQ
T

= 0 if C is reversible, (6)

and ∮
C

dQ
T

≤ 0 if C is not reversible (7)

Note that here T stands for the absolute temperature of the heat reservoirs; it is
only in the case of (6) that T can be equated with the temperature of the system.

Let us now investigate the connections with the themes of section 2. All three
authors adopt a principle which is manifestly non-TRI: it forbids the occurrence
of certain cyclic processes while allowing their reversal. However, the main ob-
jective in the work of Clausius and Kelvin considered above was to obtain part
(a) of Carnot’s theorem, or its generalisation (6). These results are TRI, and ac-
cordingly, the non-TRI element did not receive much attention. Indeed, Kelvin
never mentions relation (7) at all, and indeed calls (6) “the full expression of the
second thermodynamic law”. Clausius (1854) discusses (7) only very briefly.

It is much harder to find a connection with irrecoverability. All the papers con-
sidered here are only concerned with cyclic processes. There can be no question,
therefore, of irrecoverable changes in that system, or of a monotonically changing
quantity. If one insists on finding such a connection, the only option is to take the
environment into account, in particular the heat reservoirs. Indeed, nowadays
one would argue that if a system performs an irreversible cycle, the total entropy
of the heat reservoirs increases. But such a view would be problematic here. First,
we are at a stage in which the very existence of an entropy function is yet to be
established. One cannot assume that the heat reservoirs already possess an en-
tropy, without running the risk of circularity. Moreover, the heat reservoirs are
conceived of as buffers with infinite heat capacity, and it is not straightforward to
include them in an entropy balance. The connection with irrecoverability there-
fore remains dubious.

The second line announced at the beginning of this section consists mainly
of three papers: Kelvin (1852) and Clausius (1864) and (1865). They differ from
earlier and later works of the same authors because they explicitly address non-
cyclic processes. Kelvin (1852) is a very brief note on the ‘universal tendency
towards the dissipation of energy’. He argued that natural processes in general
bring about ‘unreversible’ changes, so that a full restoration of the initial state
is impossible. Clearly, Kelvin uses the term ‘unreversible’ here in the sense of
‘irrecoverable’. He claims that this tendency is a necessary consequence of his

4From here on, Q is regarded as positive when absorbed by, and negative when given off by
the system.
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(1851)principle mentioned above. Moreover, he draws an eschatological con-
clusion: in the distant future, life on earth must perish. It is here that we first
encounter the “terroristic nimbus” of the second law: the heat death of the uni-
verse.5

Starting in 1862, Clausius also addresses non-cyclic processes, and some years
later, reaches a similar conclusion. He notes in 1865 that the validity of (6) implies
that the integral

∫ s2
s1

d Q
T is independent of the integration path, and can be used to

define a new function of state, called entropy S, such that

S(s2)− S(s1) =
∫ s2

s1

dQ
T

(8)

where the integral is performed for an umkehrbar (i.e. quasi-static) process. For an
unumkehrbar process he uses relation (7) to obtain∫ s2

s1

dQ
T

≤ S(s2)− S(s1). (9)

If this latter process is adiabatic, i.e. if there is no heat exchange with the environ-
ment, one may put dQ = 0 and it follows that

S(s2) ≥ S(s1). (10)

Hence we obtain:

THE SECOND LAW (Clausius’ version) For every non-quasi-static process in
an adiabatically isolated system which begins and end in an equilibrium
state, the entropy of the final state greater than or equal to that of the ini-
tial state. For every quasi-static process in an adiabatical system, the entropy
of the final state is equal to that of the initial state.

This is the first instance of a formulation of the second law as a statement about
entropy increase. Note that only the ‘≥’ sign is established. One often reads that
for irreversible processes the strict inequality holds in (10), holds but this does
not follow from Clausius’ version. Note also that, in contrast to the common
view that the entropy principle holds for isolated systems only, Clausius’ result
applies to adiabatically isolated systems.

Clausius too draws a bold inference about all natural processes and the fate of
the universe:

‘The second law in the form I have given it says that all transforma-
tions taking place in nature go by themselves in a certain direction,

5The lack of any argument for Kelvin’s bold claims has puzzled many commentators. It has
been suggested [?] the source for these claims is perhaps to be found in his religious beliefs rather
than in thermodynamics.
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which I have denominated the positive direction. [. . . ] The appli-
cation of this law to the universe leads to a conclusion to which W.
Thomson first called attention [. . . ] namely, [. . . ] that the total state of
the universe will change continually in that direction and hence will
inevitably approach a limiting state.’ [6, p. 42]

Noting that his theory is still not capable of treating the phenomenon of heat
radiation, he ‘restricts himself’ —as he puts it— to an application of the theory to
the universe:

‘One can express the fundamental laws of the universe that correspond to
the two main laws of thermodynamics in the following simple form:
1. The energy of the universe is constant.
2. The entropy of the universe tends to a maximum.’ (ibid. p. 44)

These words of Clausius are probably the most often quoted, and the most contro-
versial,in the history of thermodynamics. Even Planck admitted that the entropy
of the universe is an undefined concept [18, § 135]. Ironically, Clausius could have
avoided such criticism if he had not ‘restricted’ himself to the universe but gen-
eralised his formulation to an arbitrary adiabatically isolated system (beginning
and ending in equilibrium).

Another objection is that this version of the Law presupposes that the initial
and final states can also be connected by a quasi-static process, in order to define
their entropy difference by means of (8). This is not trivial for transformations
other than exchanges of heat and work.

To conclude, this second line of development focuses on arbitrary non-cyclic
processes of completely general systems. The main claim is that, apart from the
quasi-static case, all such processes are irrecoverable. However, the arguments
given for those grand claims are rather fragile. Kelvin provides no argument at
all, and Clausius’ attempts depends on rather special assumptions. A curious
point is that when Clausius reworked his previous papers into a textbook (1876)
he completely dropped his famous claim that the entropy of the universe tends
to a maximum. The most general statement of the second law presented in this
book, is again given as (6) and (7), i.e. restricted to cyclic processes.

4 PLANCK

The importance of Planck’s Vorlesungen über Thermodynamik[18] can hardly be un-
derestimated. The book has gone through eleven editions, from 1897 until 1964,
and still remains the most authoritative exposition of classical thermodynamics.
Planck’s position has always been that the second law expresses irrecoverability
of all processes in nature. However, it is not easy to analyse Planck’s arguments
for this claim. His text differs in many small but decisive details in the various
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editions. I also warn that the English translation of the Vorlesungen is unreli-
able. Particularly confusing is that it uses the translation ‘reversible’ indiscrimi-
nately, where Planck distinguishes between the terms umkehrbar, which he uses
in Clausius’ sense, i.e. meaning ‘quasi-static’, and reversibel, in the sense of Kelvin
(1852) meaning ‘recoverable’. Moreover, after Planck learned about Carathéodo-
ry’s work through a review by Born in 1921, he presented a completely different
argument from the eighth edition onwards.

In spite of the many intricacies in Planck’s book, I shall limit myself to a brief
exposition of Planck’s latter argument, published first in [19]. He starts from
the statement that “friction is an irreversibel process”, which he considers to be
an expression of Kelvin’s principle. This may need some explanation, because,
at first sight, this statement does not concern cyclic processes or the perpetuum
mobile at all. But for Planck, the statement means that there exists no process
which ‘undoes’ the consequences of friction, i.e., a process which produces no
other effect than cooling a reservoir and doing work. The condition ‘no other
effect’ here allows for the operation of any type of auxiliary system that operates
in a cycle.

He then considers an adiabatically isolated fluid6 capable of exchanging en-
ergy with its environment by means of a weight at height h. Planck asks whether
it is possible to bring about a transition from an initial state s of this system to a fi-
nal state s′, in a process which brings about no changes in the environment other
than the displacement of the weight. If Z denotes the state of the environment
and h the height of the weight, the desired transition can be represented as

(s, Z, h) ?−→ (s′, Z, h′).

He argues that, by means of ‘reversibel-adiabatic’7 processes, one can always achieve
a transition from the initial state s to an intermediary state s∗ in which the volume
equals that of state s′ and the entropy equals that of s. That is, one can realise a
transition

(s, Z, h) −→ (s∗, Z, h∗), with V(s∗) = V(s′) and S(s∗) = S(s).

Whether the desired final state s′ can now be reached from the intermediate state
s∗ depends on the value of the only independent variable in which s∗ and s′ differ.
For this variable one can choose the energy U.

There are three cases:
(1) h∗ = h′. In this case, energy conservation implies U(s∗) = U(s′). Because the
coordinates U and V determine the state of the fluid completely, s∗ and s′ must
coincide.

6A fluid has, by definition, a state completely characterised by two independent variables.
7Apparently, Planck’s pen slipped here. He means: umkehrbar-adiabatic.
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(2) h∗ > h′. In this case, U(s∗) < U(s), and the state s′ can be reached from s∗ by
letting the weight perform work on the system, e.g. by means of friction, until the
weight has dropped to height h′. According to the above formulation of Kelvin’s
principle, this process is irreversible (i.e. irrecoverable).
(3) h∗ < h′ and U(s∗) > U(s). In this case the desired transition is impossible. It
would be the reversal of the irreversible process just mentioned in (2), i.e. produce
work by cooling the system and thus realise a perpetuum mobile of the second kind.

Now, Planck argues that in all three cases, one can also achieve a transition
from s∗ to s′ by means of heat exchange in an umkehrbar (i.e. quasi-static) process
in which the volume remains fixed. For such a process he writes

dU = TdS. (11)

Using the assumption that T > 0, it follows that, in the three cases above, U must
vary in the same sense as S. That is, the cases U(s∗) < U(s′), U(s∗) = U(s′) or
U(s∗) > U(s′), can also be characterised as S(s∗) < S(s′), S(s∗) = S(s′) and S(s∗) >
S(s′) respectively.

An analogous argument can be constructed for a system consisting of several
fluids. Just as in earlier editions of his book, Planck generalises the conclusion
(without a shred of proof) to arbitrary systems and arbitrary physical/chemical
processes:

Every process occurring in nature proceeds in the sense in which the sum of
the entropies of all bodies taking part in the process is increased. In the lim-
iting case, for reversible processes this sum remains unchanged. [. . . ] This
provides an exhaustive formulation of the content of the second law of ther-
modynamics [19, p. 463]

Note how much Planck’s construal of the perpetuum mobile differs from Carnot
and Kelvin. The latter authors considered the device which performs the cycle,
as the system of interest and the reservoir as part of the environment. By con-
trast, for Planck, the reservoir is the thermodynamical system, and the engine per-
forming the cyclic process belongs to the environment. Related to this switch of
perspective is the point that the reservoir is now assumed to have a finite en-
ergy content. Thus, the state of the reservoir can change under the action of the
hypothetical perpetuum mobile device. As a consequence, the cycle need not be
repeatable, in sharp contrast to Carnot’s original formulation of the idea.

Secondly, Planck’s argument can hardly be regarded as satisfactory for the
bold and universal formulation of the second law. It applies only to systems con-
sisting of fluids, and relies on several implicit assumptions which can be ques-
tioned outside of this context. In particular, this holds for the assumption that
there always exist functions S and T (with T > 0) such that dQ = TdS; and the
assumption of a rather generous supply of quasi-static processes. As we shall see
in section 6, Carathéodory’s treatment is much more explicit on just these issues.
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5 GIBBS

The work of Gibbs [11] is very different from that of his European colleagues.
Where they were primarily concerned with processes, Gibbs concentrates his
efforts on a description of equilibrium states. He assumes that these states are
completely characterised by a finite number of state variables like temperature,
energy, pressure, volume, entropy, etc., but he makes no effort to prove the exis-
tence or uniqueness of these quantities from empirical principles. He proposes:

THE PRINCIPLE OF GIBBS: For the equilibrium of any isolated system it is
necessary and sufficient that in all possible variations of the state of the sys-
tem which do not alter its energy, the variation of its entropy shall either
vanish or be negative. [11, p.56]

Actually, Gibbs presented this statement only as “an inference naturally sug-
gested by the general increase of entropy which accompanies the changes occur-
ring in any isolated material system”. But many later authors have regarded the
Gibbs principle as a formulation of the second law (e.g.˙ [24],[3] and [2]). We can
follow their lead and Truesdell [22] about how the principle is to be understood.

The first point to note is then that the Gibbs principle is not literally to be seen
as a criterion for equilibrium. Indeed, this would make no sense because all states
considered here are already equilibrium states. Rather, it is to be understood as
a criterion for stable equilibrium. Second, the principle is interpreted analogous
to other well-known variational principles in physics like the principle of least
action, etc. Here, a ‘variation’ is virtual, i.e., it represents a comparison between
two conceivable models or ‘possible worlds’, and one should not think of them
as (part of) a process that proceeds in the course of time in one particular world.
Instead, a variational principle serves to decide which of these possible worlds is
physically admissible, or, in the present case, stable.

According to this view, the Gibbs principle tells us when a conceivable equi-
librium state is stable. Such a proposition obviously has a modest scope. First,
not all equilibrium states found in Nature are necessarily stable. Secondly, Gibbs’
principle is more restricted than Clausius’ statement of the second law in the
sense that it applies to a isolated (i.e. no energy exchange is allowed) and not
merely adiabatically isolated systems. More importantly, it provides no informa-
tion about evolutions in the course of time; and a direction of natural processes,
or a tendency towards increasing entropy, cannot be obtained from it.Hence, the
second law as formulated by Gibbs has no connections with the arrow of time.

Of course the view sketched above does not completely coincide with Gibbs’
own statements. In some passages he clearly connects virtual variations to actual
processes, e.g. when writing: “it must be regarded as generally possible to pro-
duce that variation by some process”[11, p. 61]. Some sort of connection between
variations and processes is of course indispensable if one wants to maintain the
idea that this principle has implications for processes.
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Probably the most elaborate attempt to provide such a connection is the pre-
sentation by Callen [3]. Here, it is assumed that, apart from its actual state, a
thermodynamic system is characterised by a number of constraints, determined
by a macroscopic experimental context. These constraints single out a particular
subset C of Γ, consisting of states which are consistent with the constraints. It is
postulated that in stable equilibrium, the entropy is maximal over all states in C .

A process is then conceived of as being triggered by the cancellation of one or
more of these constraints. (E.g.: mixing or expansion of gases after the removal
of a partition, loosening a previously fixed piston, etc.) It is assumed that a such
a process sets in spontaneously, after the removal of a constraint.

Now, clearly, the removal of a constraint implies an enlargement of the set C .
Hence, if we assume that the final state of this process is again a stable equilib-
rium state, it follows immediately that every process ends in a state of higher (or
at best equal) entropy.

I will not attempt to dissect the problems that Callen’s approach brings along,
except for three remarks. First, the idea of extending the description of a thermo-
dynamical system in such a way that apart from its state, it is also characterised
by a constraint brings some conceptual difficulties. For if the actual state is s, it is
hard to see how the class of other states contained in the same constraint set C is
relevant to the system. It seems that on this approach the state of a system does
not provide a complete description of its thermodynamical properties.

Second, the picture emerging from Callen’s approach is somewhat anthro-
pomorphic. For example he writes, for the case that there are no constraints, i.e.
C = Γ, that ‘the system is free to select any one of a number of states’ (1960, p. 27).
This sounds as if the system is somehow able to ‘probe’ the set C and chooses its
own state from the options allowed by the constraints.

Third, the result that entropy increases in a process from one equilibrium state
to another, depends rather crucially on the assumption that processes can be suc-
cessfully modelled as the removal of constraints. But, clearly, this assumption
does not apply to all natural processes. For instance, one can also trigger a pro-
cess by imposing additional constraints. Hence, this approach does not attain the
universal validity of the second law that Planck argued for.

6 CARATHÉODORY

Carathéodory [4] was the first mathematician to pursue a rigorous formalisation
of the second law. Like Gibbs, he construed thermodynamics as a theory of equi-
librium states rather than (cyclic) processes. Again, a thermodynamical system is
described by a state space Γ, represented as a (subset of a) n-dimensional man-
ifold in which the thermodynamic state variables serve as coordinates. He as-
sumes that Γ is equipped with the standard Euclidean topology. But metrical
properties of the space do not play a role in the theory, and there is no preference
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for a particular system of coordinates.
However, the coordinates are not completely arbitrary. Carathéodory distin-

guishes between ‘thermal coordinates’ and ‘deformation coordinates’. (In typical
applications, temperature or energy are thermal coordinates, whereas volumes
are deformation coordinates.) The state of a system is specified by both types
of coordinates; the shape (Gestalt) of the system by the deformation coordinates
alone. It seems to be assumed that the deformation coordinates remain mean-
ingful in the description of the system when the system is not in equilibrium,
whereas the thermal coordinates are defined only for equilibrium states. In any
case, it is assumed that one can obtain every desired final shape from every initial
state by means of an adiabatic process.

The idea is now to develop the theory in such a way that the second law
provides a characteristic mathematical structure of state space. The fundamental
concept is a relation that represents whether state t can be reached from state s
in an adiabatic process.8 This relation is called adiabatic accessibility, and I will
denote it, following Lieb and Yngvason, by s ≺ t. This notation may suggest
that the relation has the properties of an ordering relation. And indeed, given its
intended interpretation, this would be very natural. But Carathéodory does not
state or rely on these properties anywhere in his paper.

In order to introduce the second law, Carathéodory proposes an empirical
claim: from an arbitrary given initial state it is not possible to reach every final
state by means of adiabatic processes. Moreover, such inaccessible final states can
be found in every neighbourhood of the initial state. However, he immediately
rejects this preliminary formulation, because it fails to take into account the finite
precision of physical experiments. Therefore, he strengthens the claim by the idea
that there must be a small region surrounding the inaccessible state, consisting of
points which are also inaccessible.

The second law thus receives the following formulation:

THE PRINCIPLE OF CARATHÉODORY: In every open neighborhood Us ⊂ Γ of
an arbitrary chosen state s there are states t such that for some open neigh-
borhood Ut of t: all states r within Ut cannot be reached adiabatically from s.
Formally:

∀s ∈ Γ ∀Us ∃t ∈ Us & ∃Ut ⊂ Us ∀r ∈ Ut : s ≺6 r. (12)

He then restricts his discussion to so-called ‘simple systems’, defined by four
additional conditions:

8Carathéodory’s definition of an ‘adiabatic process’ is as follows. He calls a container adiabatic
if the system contained in it remains in equilibrium, regardless of what occurs in the environment,
as long as the container is not moved nor changes its shape. Thus, the only way of inducing a
process of a system in an adiabatic container is by deformation of the walls of the vessel. (E.g. a
change of volume or stirring.) A process is said to be adiabatic if it takes place while the system
remains in an adiabatic container.
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1. The system has only a single independent thermal coordinate. Physically, this
means that the system has no internal adiabatic walls since in that case it would
have parts with several independent temperatures. By convention, the state of a
simple system is written as s = (x0, . . . , xn−1), where x0 is the thermal coordinate.

2. For any given pair of an initial state and final shape of the system there is more
than one adiabatic process P that connects them, requiring different amounts of
work. For example, for a gas initially in any given state one can obtain an arbitrary
final value for its volume by adiabatic expansion or compression. This change of
volume can proceed slowly or fast, and these procedures indeed require different
amounts of work.

3. The amounts of work done in the processes just mentioned form a connected in-
terval. In other words, if for a given initial state and final shape there are adiabatic
processes P1,P2 connecting them, which require the work W(P1) and W(P2) re-
spectively, then there are also adiabatic processes P with any value of W(P ), for
W(P1) ≤ W(P ) ≤ W(P2).

In order to formulate the fourth demand Carathéodory considers a special kind
of adiabatic process. He argues that one can perform an adiabatic process from
any given initial state to any given final shape, in such a way that the deformation
coordinates follows some prescribed continuous functions of time:

x1(t), . . . , xn−1(t), (13)

Note that the system will generally not remain in equilibrium in such a process,
and therefore the behaviour of the thermal coordinate x0 remains unspecified.

Consider a series of such adiabatic processes in which the velocity of the defor-
mation becomes ‘infinitely slow’, i.e. a series in which the derivatives ẋ1(t), . . . , ẋn−1(t)
converge uniformly towards zero. He calls this limit a quasi-static change of state.
the final demand is now:

4. In a quasi-static change of state, the work done on the system converges to a value
W, depending only on the given initial state and final shape, which can be ex-
pressed as a path integral along the locus of the functions (13):

W =
∫

dW =
∫

p1dx1 + · · ·+ pndxn−1,

where p1, . . . , pn denote some functions on Γ. Physically, this demand says that for
adiabatic processes, in the quasi-static limit, there is no internal friction or hystere-
sis.

Carathéodory’s version of the first law (which I have not discussed here), can
then be invoked to show that

W = U(s f )−U(si), (14)
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or in other words, the work done in quasi-static limit equals the energy difference
between final and initial state. He argues that by this additional condition the
value of the thermal coordinate of the final state is also uniquely fixed. Since
the choice of a final shape is arbitrary, this holds also for all intermediate stages
of the process. Thus, a quasi-static adiabatic change of state corresponds to a
unique curve in Γ.

With this concept of a ‘simple system’ Carathéodory obtains the following

CARATHÉODORY’S THEOREM: For simple systems, Carathéodory’s
principle is equivalent to the proposition that the differential form
dQ := dU − dW possesses an integrable divisor, i.e. there exist func-
tions S and T on the state space Γ such that

dQ = TdS. (15)

Thus, for simple systems, every equilibrium state can be assigned a value for
entropy and absolute temperature. Curves representing quasi-static adiabatic
changes of state are characterised by the differential equation dQ = 0, and by
virtue of (15) one can conclude that (if T 6= 0) entropy remains constant. Ob-
viously the functions S and T are not uniquely determined by the relation (15).
Carathéodory discusses further conditions to determine the choice of T and S up
to a constant of proportionality, and extends the discussion to composite simple
systems. However, I will not discuss this issue.

Before we proceed to the discussion of the relation of this formulation with
the arrow of time, I want to mention a number of strong and weak points of the
approach. A major advantage of Carathéodory’s approach is that it provides a
suitable mathematical formalism for the theory, and brings it in line with other
modern physical theories. The way this is done is comparable to the (contempo-
rary) development of relativity theory. There, Einstein’s original approach, which
starts from empirical principles like the light postulate and the relativity princi-
ple, was replaced by an abstract geometrical structure, Minkowski spacetime,
where these empirical principles are incorporated in local properties of the met-
ric. Similarly, Carathéodory constructs an abstract state space where an empirical
statement of the second law is converted into a local topological property. Fur-
thermore, all coordinate systems are treated on the same footing (as long as there
is only one thermal coordinate, and they generate the same topology).9 Note
further that the environment of the system is never mentioned explicitly in his
treatment of the theory. This too is a big conceptual advantage.

9Indeed, the analogy with relativity theory can be stretched even further. Lieb and Yngvason
call the set Fs = {t : s ≺ t} the ‘forward cone’ of s. This is analogous to the future light cone of
a point p in Minkowski spacetime. (i.e. the set of all points q which are ‘causally accessible’ from
p.) Thus, Carathéodory’s principle implies that s is always on the boundary of its own forward
cone.
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But Carathéodory’s work has also provoked objections, in particular because
of its high abstraction. Many complain that the absence of an explicit reference to
a perpetuum mobile obscures the physical content of the second law. The question
has been raised (e.g. by Planck [19]) whether the principle of Carathéodory has
any empirical content at all. However, Landsberg [16] has shown that for simple
systems Kelvin’s principle implies Carathéodory’s principle, so that any violation
of the latter would also be a violation of the former.

Other problems in Carathéodory’s approach concern the additional assump-
tions needed to obtain the result (15). In the first place, we have seen that the
result is restricted to simple systems, involving four additional auxiliary condi-
tions. Falk and Jung [10] objected that the division of five assumptions into four
pertaining to simple systems and one ‘Principle’, expressing a general law of na-
ture, seems ad hoc. Indeed, the question whether Carathéodory’s principle can
claim empirical support for non-simple systems still seems to be open.

Secondly, Bernstein [1] has pointed out defects in the proof of Carathéodo-
ry’s theorem. What his proof actually establishes is merely the local existence of
functions S and T obeying (15). But this does not mean there exists a single pair of
functions, defined globally on Γ, that obey (15). In fact, a purely local proposition
like Carathéodory’s principle is too weak to guarantee the existence of a global
entropy function.

For the purpose of this essay, of course, we need to investigate whether and
how this work relates to the arrow of time. We have seen that Carathéodory,
like Gibbs, conceives of thermodynamics as a theory of equilibrium states, rather
than processes. But his concept of ‘adiabatic accessibility’ does refer to processes
between equilibrium states. The connection with the arrow of time is therefore
more subtle than in the case of Gibbs.

In order to judge the time-reversal invariance of the theory of Carathéodo-
ry according to the criterion on page 2 it is necessary to specify a time reversal
transformation R. It seems natural to choose this in such a way that Rs = s and
R(≺) = � . (Since the time reversal of an adiabatical process from s to t is an
adiabatic process from t to s) Then Carathéodory’s principle is not TRI. Indeed,
the principle forbids that Γ contains a ‘minimal state’ (i.e. a state s from which
one can reach all states in some neighborhood of s. It allows models where a
‘maximal’ state exists, (i.e. a state s from which one can reach no other state some
neighborhood. Time reversal of such a model violates Carathéodory’s principle.
However, this non-invariance manifests itself only in rather pathological cases.
(For a fluid, a ‘maximal’ state would be one for which temperature and volume
cannot be increased.) If we exclude the existence of such maxima, Carathéodory’s
theory becomes TRI.

Carathéodory also discusses the notorious notion of irreversibility. Consider,
for a simple system, the class of all final states s′ with a given shape (x′1, . . . , x′n−1)
that are adiabatically accessible from a given initial state s = (x0, . . . xn−1). For ex-
ample, an adiabatically isolated gas is expanded from some initial state (T, V) to
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some desired final volume V′. The expansion may take place by moving a pis-
ton, slowly or more or less suddenly. The set of final states that can be reached
in this fashion differ only in the value of their thermal coordinate x′0. Due to
demand 3 above, the class of accessible final states constitute a connected curve.
Carathéodory argues that, for reasons of continuity, the values of S attained on
this curve will also constitute a connected interval. Now among the states of the
curve there is the final state, say t, of a quasi-static adiabatic change of state start-
ing from s. And we know that S(t) = S(s). Carathéodory argues that this entropy
value S(s) cannot be an internal point of this interval. Indeed, if it were an inter-
nal point, then there would exist a small interval (S(s)− ε, S(s) + ε) such that the
corresponding states on the curve would all be accessible from s. Moreover, it is
always assumed that we can change the deformation coordinates in an arbitrary
fashion by means of adiabatic state changes. By quasi-static adiabatic changes of
state we can even do this with constant entropy. But then, all states in a neigh-
borhood of s would be adiabatically accessible, which violates Carathéodory’s
principle.

Therefore, all final states with the final shape (x′1, . . . , x′n−1) that can be reached
from the given point s must have an entropy in an interval of which S(s) is a
boundary point. Or in other words, they all lie one and the same side of the
hypersurface S = const. By reasons of continuity he argues that this must be the
same side for all initial states. Whether this is the side where entropy is higher,
or lower than that of the initial state remains an open question. According to
Carathéodory, a further appeal to empirical experience is necessary to decide this
issue.

He concludes:

‘[It] follows from our conclusions that, when for any change of state the value
of the entropy has not remained constant, one can find no adiabatic change
of state, which is capable of returning the considered system from its final
state back to its initial state. Every change of state, for which the entropy varies is
“irreversible”.’ (Carathéodory 1909, p. 378).

Without doubt, this conclusion sounds pleasing in the ears of anyone who be-
lieves that irreversibility is the genuine trademark of the second law. But a few
remarks are in order.

First, Carathéodory’s conclusion is neutral with respect to time reversal: both
increase and decrease of entropy is irreversible! Planck objected that the approach
is not strong enough to characterise the direction of irreversible processes. In fact
Carathéodory admitted this point [5]. He stressed that an additional appeal to
experience is necessary to conclude that changes of entropy in adiabatic processes
are always positive (if T > 0). In other words, in Carathéodory’s approach this is
not a consequence of the second law.

A second remark is that ‘irreversible’ here means that the change of state can-
not be undone in an adiabatic process. This is yet another meaning for the term,
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different from those we have discussed before. The question is then of course
whether changes of states that cannot be undone by an adiabatic process, might
perhaps be undone by some other process. Indeed, it is not hard to find examples
of this possibility: consider a cylinder of ideal gas in thermal contact with a heat
reservoir. When the piston is pulled out quasi-statically10, the gas does work,
while it takes in heat from the reservoir. Its entropy increases, and the process
would thus qualify as irreversible in Carathéodory’s sense. But Planck’s book
discusses this case as an example of a reversible process! Indeed, when the gas is
quasi-statically recompressed, the heat is restored to the reservoir and the initial
state is recovered for both system and reservoir. Thus, Carathéodory’s concept of
‘irreversibility’ does not coincide with Planck’s.

There is also another way to investigate whether Carathéodory’s approach
captures the content of the second law á la Clausius, Kelvin or Planck, namely
by asking whether the approach of Carathéodory allows models in which these
formulations of the second law are invalid. An example is obtained by applying
the formalism to a fluid while swapping the meaning of terms in each of the three
pairs ‘heat /work’, ‘thermal/deformation coordinate’ and ‘adiabatic’/‘without
any exchange of work’. The validity of Carathéodory’s formalism is invariant
under this operation, and a fluid remains a simple system. Indeed, we obtain, as
a direct analog of (15): dW = pdV for all quasi-static processes of a fluid. This
shows that, in the present interpretation, pressure and volume play the role of
temperature and entropy respectively. Furthermore, irreversibility makes sense
here too. For fluids with positive pressure, one can increase the volume of a fluid
without doing work, but one cannot decrease volume without doing work. But
still, the analog of the principles of Clausius of Kelvin are false: A fluid with low
pressure can very well do positive work on another fluid with high pressure by
means of a lever or hydraulic mechanism. And, thus, the sum of all volumes
of a composite system can very well decrease, even when no external work is
provided.

7 LIEB AND YNGVASON

Lieb and Yngvason [17] have recently provided a major contribution, by elaborate
rigorous approach to the second law. In this context, I cannot do justice to their
work, and will only sketch the main ideas, as far as they are relevant to my topic.

On the formal level, this work builds upon the approach of [4] and [12]. (In
its physical interpretation, however, it is more closely related to Planck, as we
will see below.) A system is represented by a state space Γ on which a relation ≺
of adiabatic accessibility is defined. All axioms mentioned below are concerned

10Carathéodory’s precise definition of the term ‘quasi-static’ is, of course applicable to adiabatic
processes only. I use the term here in the more loose sense of Section 2.
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with this relation. Further, Lieb and Yngvason introduce a formal operation of
combining two systems in state s and t into a composite system in state (s, t), and
the operation of ‘scaling’, i.e. the construction of a copy in which all its extensive
quantities are multiplied by a positive factor α. This is denoted by a multipli-
cation of the state with α. These scaled states αs belong to a scaled state space
Γ(α). The main axioms of Lieb and Yngvason apply to all states s ∈ ∪αΓ(α) (and
compositions of such states). They read:

A1. REFLEXIVITY: s ≺ s

A2. TRANSITIVITY: s ≺ t and t ≺ r imply s ≺ r

A3. CONSISTENCY: s ≺ s′ and t ≺ t′ implies (s, t) ≺ (s′, t′)

A4. SCALE INVARIANCE: If s ≺ t then αs ≺ αt for all α > 0

A5. SPLITTING AND RECOMBINATION: For all 0 < α < 1 : s≺ (αs, (1−α)s) and (αs, (1−
α)s) ≺ s

A6. STABILITY: If there are states t0 and t1 such that (s, εt0) ≺ (r, εt1) holds for a
sequence of ε’s converging to zero, then s ≺ r.

7. COMPARABILITY HYPOTHESIS: For all states s, t in the same space Γ: s≺ t or t≺
s. 11

The comparability hypothesis has, as its name already indicates, a lower status
than the axioms. It is intended as a characterisation of a particular type of thermo-
dynamical systems, namely, of ‘simple’ systems and systems composed of such
‘simple’ systems.12 A substantial part of their paper is devoted to an attempt to
derive this hypothesis from further axioms. I will, however, not go into this.

The aim of the work is to derive the following result, which Lieb and Yngva-
son call

THE ENTROPY PRINCIPLE (LIEB AND YNGVASON VERSION): There
exists a function13 S defined on all states of all systems such that when
s and t are comparable then

s ≺ t iff S(s) ≤ S(t). (16)

11The clause ‘in the same space Γ’ means that the hypothesis is not intended for the comparison
of states of scaled systems. Thus, it is not demanded that we can either adiabatically transform a
state of 1 mole of oxygen into one of 2 moles of oxygen or conversely.

12Beware that the present meaning of the term does not coincide with that of Carathéodory.
For simple systems in Carathéodory’s sense the comparability hypothesis need not hold.

13Actually, the Lieb-Yngvason entropy principle also states the additivity and extensivity of the
entropy function.
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The authors interpret the result (16) as an expression of the second law : ‘It
says that entropy must increase in an irreversible process.’ and: ‘the physical
content of [(16)] . . . [is that]. . . adiabatic processes not only increase entropy but an
increase in entropy also dictates which adiabatic processes are possible (between
comparable states, of course).’ [17, p. 19,20]).

The question whether this result actually follows from their assumptions is
somewhat involved. They show that the entropy principle follows from axioms
A1–A6 and the comparability hypothesis under some special conditions which,
physically speaking, exclude mixing and chemical reactions. To extend the result,
an additional ten axioms are needed (three of which serve to derive the com-
parability hypothesis). And even then, only a weak form of the above entropy
principle is actually obtained, where ‘iff’ in (16) is replaced by ‘implies’.

Before considering the interpretation of this result more closely, a few gen-
eral remarks are in order. This approach combines mathematical precision, clear
and plausible axioms and achieves a powerful theorem. This is true progress
in the formulation of the second law. Note that the theorem is obtained with-
out appealing to anything remotely resembling Carathéodory’s principle. This
is undoubtedly an advantage for those who judge that principle too abstract. In
fact the axioms and hypothesis mentioned above allow models which violate the
principle of Carathéodory [17, p. 91]. For example, it may be that all states are
mutually accessible, in which case the entropy function S is simply a constant on
Γ.

For the purpose of this paper, the question is whether there is a connection
with the arrow of time in this formulation of the second law. As before, there
are two aspects to this question: irreversibility and time-reversal (in)variance.
We have seen that Lieb and Yngvason interpret the relation (16) as saying that
entropy must increase in irreversible processes. At first sight, this interpretation
is curious. Adiabatic accessibility is not the same thing as irreversibility. So how
can the above axioms have implications for irreversible processes?

This puzzle is resolved when we consider the physical interpretation which
Lieb and Yngvason propose for the relation ≺:

ADIABATIC ACCESSIBILITY: A state t is adiabatically accessible from a state s,
in symbols s ≺ t, if it is possible to change the state from s to t by means of an
interaction with some device (which may consist of mechanical and electric
parts as well as auxiliary thermodynamic systems) and a weight, in such
a way that the auxiliary system returns to its initial state at the end of the
process whereas the weight may have changed its position in a gravitational
field’ [17, p. 17].

This view is rather different from Carathéodory’s, or indeed, anybody else’s:
clearly, this term is not intended to refer to processes occurring in a thermos flask.
As the authors explicitly emphasise, even processes in which the system is heated
are adiabatic, in the present sense, when this heat is generated by an electrical
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current from a dynamo driven by descending weight. Actually, the condition
that the auxiliary systems return to their initial state in the present concept is
strongly reminiscent of Planck’s concept of ‘reversible’!

This is not to say, of course, that they are identical. As we have seen before,
a process P involving a system, an environment and a weight at height h, which
produces the transition 〈s, Z, h〉 P−→ 〈s′, Z′, h′〉 is reversible for Planck iff there

exists a ‘recovery’ process P ′ which produces 〈s′, Z′, h′〉 P ′
−→ 〈s, Z, h〉. Here, the

states Z and Z′ may differ from each other. For Lieb and Yngvason, a process
〈s, Z, h〉 P−→ 〈s′, Z′, h′〉 is adiabatic iff Z = Z′. But in all his discussions, Planck
always restricted himself to such reversible processes ‘which leave no changes in
other bodies’, i.e. obeying the additional requirement Z = Z′. These processes are
adiabatic in the present sense.

A crucial consequence of this is that, in the present sense, it follows that if a
process P as considered above is adiabatic, any recovery process P ′ is automat-
ically adiabatic too. Thus, we can now conclude that if an adiabatic process is
accompanied by an entropy increase, it cannot be undone, i.e., it is irreversible
in Planck’s sense. This explains why the result (16) is seen as a formulation of a
principle of entropy increase In fact, we can reason as follows: assume s and t are
states which are mutually comparable, and that S(s) < S(t). According to (16), we
then have s ≺ t and t ≺6 s. This means that there exists a process from s to t which
proceeds without producing any change in auxiliary systems except, possibly, a
displacement of a single weight. At the same time there exists no such process
from t to s. The first-mentioned process is therefore irreversible in Planck’s sense.
Thus we have at last achieved a conclusion implying the existence of irrecover-
able processes by means of a satisfactory argument!

However, it must be noted that this conclusion is obtained only for systems
obeying the comparability hypothesis and under the exclusion of mixing and
chemical processes. The weak version of the entropy principle, which is derived
when we drop the latter restriction, does not justify this conclusion. Moreover,
note that it would be incorrect to construe (16) as a characterisation of processes.
The relation ≺ is interpreted in terms of the possibility of processes. As remarked
in section 6, one and the same change of state can very well be obtained (or un-
done) by means of different processes, some of which are adiabatic and others
not. Thus, when S(s) < S(t) for comparable states, this does not mean that all
processes from s to t are irreversible, but only that there exists an adiabatic ir-
reversible process between these states. So the entropy principle here is not the
universal proposition of Planck.

The next question concerns the time-reversal (in)variance of this approach.
As before, we can look upon the axioms as singling out a class of possible worlds
W . It is easy to show, using the implementation of time reversal used earlier, i.e.
replacing ≺ by �, the six general axioms, and the comparability hypothesis, are
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TRI!14 The fact that it is not necessary to introduce time-reversal non-invariance
into the formalism to obtain the second law, is very remarkable.

However, there remains one problematical aspect of the proposed physical in-
terpretation. It refers to the state of auxiliary systems in the environment of the
system. Thus, we are again confronted by the old and ugly question, when shall
we say that the state of such auxiliary systems has changed, and when are we
fully satisfied that their initial state is restored. This question remains rather in-
tractable from the point of view of thermodynamics, when one allows arbitrary
auxiliary systems (e.g. living beings) whose states are not represented by the ther-
modynamical formalism. Thus, the question when the relation≺ holds cannot be
decided in thermodynamical terms.

8 DISCUSSION

We have seen that there is a large variety in the connections between irreversibil-
ity and the second law. On one end of the spectrum, there is Planck’s view that
the second law expresses the irreversibility of all processes in Nature. A convinc-
ing derivation of this bold claim has, however, never been given. On the other
extreme, we find Gibbs’ approach, which completely avoids any connection with
time.

But even for approaches belonging to the middle ground, the term ‘irreversible’
is used in various meanings, time-reversal non-invariant, irrecoverable, and quasi-
static. In the long-standing debate on the question how the second law relates
to statistical mechanics, however, most authors have taken irreversibility in the
sense of time-reversal non-invariance. The point that in thermodynamics, the
term usually means something very different has been almost completely over-
looked.

The more careful and formal approaches by Carathéodory and, in particular
Lieb and Yngvason rather yield a surprising conclusion. It is possible to build
up a precise formulation of the second law without introducing a non-TRI ele-
ment in the discussion. The resulting formalism, therefore, remains strictly neu-
tral to the question of whether entropy increases or decreases. It implies only
that an entropy function can be constructed consistently, i.e. as either increasing
between adiabatically accessible states of all simple systems, or decreasing. At
the same time, the Lieb-Yngvason approach does imply that entropy increasing
processes between comparable states are irreversible in Planck’s sense. This, of
course, shows once more the independence of the two notions.

14This conclusion cannot be extended to the complete set of axioms proposed by Lieb and Yng-
vason. In particular, their axioms A7 and T1, which address mixing and equilibration processes,
are explicitly non-TRI. (I thank Jakob Yngvason for pointing this out to me.) However, these
axioms are needed only in the derivation of the (TRI) comparability hypothesis, and not in the
derivation of the entropy principle.
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Finally, I would like to point out an analogy between the axiomatisation of
thermodynamics in the Carathéodory and Lieb-Yngvason approach and that of
special relativity in the approach of Robb [20]. In both cases, we start out with
a particular relationship ≺ which is assumed to exist between points of a certain
space. In relativity, this is this is the relation of connectability by a causal signal.
In both cases, it is postulated that this relation forms a pre-order. In both cases,
important partial results show that the forward sectors Cs = {t : s ≺ t} are con-
vex and nested and that s is on the boundary of Cs. And in both cases the aim is
to show that the space is ‘orientable’ [9] and admits a global function which in-
creases in the forward sector. If this analogy is taken seriously, the Lieb-Yngvason
entropy principle has just as much to do with TRI as the fact that Minkowski
space-time admits a global time coordinate.

There is, however, also an important disanalogy. In thermodynamics, the
space Γ represents the states of a system, and an important feature is that we
can combine systems into a composite, or divide one into subsystems. In rela-
tivity, the space represent the whole of space-time, and there is no question of
combining several of these.

Due to the possibility of combining systems, the Lieb-Yngvason entropy prin-
ciple does yield an additional result: entropy can be defined consistently, in the
sense just mentioned. For some, this result may be sufficient to conclude that the
principle does express some form of irreversibility. However, as has been empha-
sized by Schrödinger [21] a formulation of the second law which states that all
systems can only change their entropy in the same sense, is not in contradiction
to the time-reversal invariance of an underlying microscopic theory.

REFERENCES
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