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Abstract

We examine the predictability of stock market returns by employing a new metric
entropy measure of dependence with several desirable properties. We compare our re-
sults with a number of traditional measures. The metric entropy is capable of detecting
nonlinear dependence within the returns series, and is also capable of detecting nonlin-
ear\a±nity" between the returns and their predictions obtained from various models
thereby serving as a measure of out-of-sample goodness-of-¯t or model adequacy. Sev-
eral models are investigated, including the linear and neural-network models as well
as nonparametric and recursive unconditional mean models. We ¯nd signi¯cant evi-
dence of small nonlinear unconditional serial dependence within the returns series, but
fragile evidence of superior conditional predictability (pro¯t opportunity) when using
market-switching versus buy-and-hold strategies.

Keywords: Entropy, stock returns, nonparametric, neural-networks, prediction, depen-
dence, nonlinear.
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1 Introduction

Much of the theoretical literature in ¯nance is based on market e±ciency arguments which

imply unpredictability of returns (or, no \pro¯t opportunity"). The empirical evidence,

however, is mixed. In the existing literature the most common paradigm is a linear-in-mean

model with searches for variables that may provide signi¯cant explanation for the returns

(see, for example, Pesaran & Timmermann (1995)). Alternatively, given a set of variables

one searches empirically for suitable functional forms (see, for example, Qi (1999)). The

linear model evidence is somewhat inconclusive. A number of authors have pointed out that

these inferences may be in reality an artifact of the linear ¯lters, and have presented results

which indicate the presence of nonlinear dependence in returns and other ¯nancial series.

This is a vast literature; for some examples see Qi (1999) who considers both linear models

and feed-forward neural-network models of monthly excess returns, Abhyankar, Copeland &

Wong (1997), Campbell, Lo & MacKinlay (1997), and the references therein.

Given that ¯ndings such as those of Qi (1999) are based on linear parametric models

and neural-network implementations, they are in e®ect concerned with the joint questions of

predictability and functional speci¯cation. This latter issue raises the possibility that these

¯ndings may be contaminated by model misspeci¯cation. This is particularly worrisome

since these ¯ndings may be further confounded by the failings of the currently dominant,

correlation-type measures of ¯t, predictability, and dependence. The evidence on these fail-

ings is quite widespread (for example, see Granger, Maasoumi & Racine (2000), Skaug &

Tj¿stheim (1996), Hsieh (1989), Scheinkman & LeBaron (1989) and Liu & Stengos (1999)

with their references in the area of \growth convergence"). Noting these di±culties, many

authors have explored nonlinear, nonparametric, and semiparametric approaches. For in-

stance White (1988), Stengos (1995), and Frank & Stengos (1988), inter alia, considered

nonlinear models (including neural nets) and nonparametric regressions for returns on cer-
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tain equities and precious metals as a means of accommodating generic nonlinearity in the

conditional mean of returns.

We have not investigated GARCH models which may be viewed as attempts to capture

some nonlinearities. Hong & White (2000) removed persistent GARCH e®ects from the

S&P series but came to similar conclusions as ours. In other ¯nancial applications (see

Hsieh (1989) for exchange rates) the presence of unaccounted nonlinear dependence in the

residuals of such models has been detected. Pagan & Schwert (1990) studied the performance

of parametric, nonparametric, as well as semiparametric models of conditional variances

in the GARCH setting for monthly U.S. stock returns (1834-1925). Based on traditional

criteria, they found parametric variants did \better" out of sample, with exponential GARCH

being the overall best. But the better in-sample performance of their nonparametric and

semiparametric techniques led them to advocate combining the two approaches. Given

the sensitivity of parametric GARCH to misspeci¯cation of the mean and variances, its

nonparametric implementations are worthy of further research but lie beyond the scope of

our paper.

Notably, in most studies the burden of dealing with nonlinearities is placed on the suc-

cessful modeling of the conditional mean and conditional variance (see Hong &White (2000)

for an exception). A common conclusion from these studies is that the observed nonlinear-

ities may be too complex to be exploitable for improved \predictability", especially with

small samples (see Stengos (1995) and Hsieh (1989) for examples).

It is desirable to disentangle some of these issues. For instance, one can make an inquiry

about any unconditional, or conditional (and possibly nonlinear) dependence structure in

returns without requiring the speci¯cation of conditional mean-variance models. Here, non-

parametric density and other functional estimation receives further attention in our work.

And, one may begin to question the traditional concepts as well as measures of \pre-

dictability". The latter are generally limited to moment-based measures of prediction error
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in the conditional mean. Indeed, the concept of the conditional mean itself is an opti-

mum predictor under criteria that may be inadequate in non-Gaussian, nonlinear, and non-

symmetric circumstances found in ¯nancial processes. In this connection entropy measures

o®er opportunities which are explored here. Entropies are de¯ned directly in terms of the

actual distributions and not the variables and their moments. Partly for this reason they

also o®er a clearer view of the relation between total independence, conditional dependence,

and causality relations in several directions. For our purposes, it su±ces to note that en-

quiring about unconditional independence in the return series is logically prior to questions

of conditional dependence/predictability. Gourieroux, Monfort & Renault (1986) provide

an extensive account based on the Kullback information criterion and its related \causality

measures". They obtain Geweke's causality tests and decompositions as a special case (see

Geweke (1982)).

Accordingly, we propose to study excess returns for unconditional, nonparametric depen-

dence using a normalization of the Hellinger-Bhattacharya-Matusita metric entropy measure

which we have found to be successful in detecting generic and possibly nonlinear dependence

(see Granger et al. (2000)). Being entropy-based, this measure is de¯ned over the densities

of the stock returns which we estimate nonparametrically. For a range of popular models the

detection capability of this entropy has been found to be at least as good as the BDS test,

and better than the traditional correlation and other moments measures, especially in non-

linear settings (see Skaug & Tj¿stheim (1993), Skaug & Tj¿stheim (1996), and Granger et al.

(2000)). Other entropies, especially the Kullback-Leibler (KL) measure, are seeing increasing

and welcome use in testing for independence and other hypotheses. For instance, Robinson

(1991), Delgado (1994), Hong & White (2000), and Zheng (2000) are all concerned with the

KL measure for testing independence. Most entropies, however, are non-metric since they

violate the triangularity rule and symmetry required of distance measures (see Maasoumi

(1993) for a synthesis, and Hirschberg, Maasoumi & Slottje (2000) for a cluster analysis
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example wherein \divergence" needs to be distinguished from \distance").

We ¯nd a small but signi¯cant degree of nonlinear serial dependence in stock market

returns which is not model dependent. We then propose and use the same entropy measure

to investigate the predictive performance of linear, neural-network, and a nonparametric

regression of stock returns all of which employ the same set of popular \predictive" variables

used in Qi (1999) and Pesaran & Timmermann (1995), along with predictions generated

simply using the unconditional mean of past returns. We weigh the evidence on the predictive

performance of various models based on the recursive predictions generated by each model.

This last use of our entropy as a goodness-of-¯t, or predictability measure is similar to the

use of Kullback-Leibler and relative entropy measures of ¯t as in, for instance, Joe (1989)

and Cameron & Windmeijer (1997). Since potential \pro¯t" is an additional and popular

measure of \success" in this literature, we merely report it for a number of time periods.

Based on the results here and elsewhere, we infer that the evidence in favor of conditional

predictability of stock returns is non-robust with respect to such things as period of analysis,

data frequency, variable and functional form choices, as well as the predictability criteria.

In particular, we ¯nd that the buy-and-hold strategy generated by using the unconditional

mean of past returns can outperform the market-switching strategies generated by the linear,

neural-network, and nonparametric models. The small unconditional serial dependence in

the returns themselves may be too small, or too complex, for robust conditional mean and

variance analysis. Similar conclusions were drawn by Diebold & Nason (1990) and Stengos

(1995), and by Hong & White (2000) even after they removed persistent GARCH e®ects

from the S&P series.

Section 2 de¯nes the data to be studied along with an overview of our entropy measure,

and then uses the entropy measure to detect serial dependence in the returns series itself.

Section 3 introduces potential models for predicting excess returns and examines the relative

performance of these various speci¯cations. Section 3.1 considers the use of the entropy
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measure for assessing the adequacy of the various conditional mean models based on the

actual out-of-sample excess returns and the out-of-sample predictions generated by these

models, and Section 3.2 o®ers further discussion. Section 3.3 reports the pro¯ts generated

by these various models, and Section 4 concludes.

2 Assessing Dependence in Excess Returns

We use data found in the recent study by Qi (1999). These were also used in Pesaran &

Timmermann (1995) and, in addition to being used in a number of other published studies,

are publicly available. We brie°y describe the data for the interested reader.

Following standard practice, we consider monthly excess returns on the S&P 500 index

at time t de¯ned as the capital gain, plus dividend yield, minus the one-month Treasury-bill

rate:

rt =
·
(Pt ¡Pt¡1) +Dt

Pt¡1

¸
¡ I1t¡1; ; (1)

where Pt is the stock price, Dt dividends, and I1t¡1 the return from holding a one-month

Treasury bill from the end of month t ¡ 1 through the end of month t. The predictive

variables are the unscaled dividend yield, the earnings-price ratio, the 1-month T-bill rate

(1 & 2 lags), the 12-month T-bill rate (1 & 2 lags), the year-on-year in°ation rate, the year-

on-year rate of change in industrial output, and the year-on-year growth rate in the narrow

money stock.

Qi (1999) applied a number of existing tests for nonlinear dependence to this series for

the period 1954:1-1992:121, and results were somewhat mixed. Qi's tests were performed on

the residuals of a prewhitening autoregressive model with order chosen by AIC or BIC (see

also Abhyankar et al. (1997)). Interestingly, the BDS test of Brock, Deckert, Scheinkman
1We are indebted to Min Qi for allowing us full access to her data and for verifying that our Matlab code

indeed should replicate the model she estimated.
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& LeBaron (1996) was not signi¯cant (Qi (1999, page 422)), while other tests such as the

Ljung & Box (1978) test were. However, limitations of a number of competing tests have

been noted such as the signi¯cance of the Ljung-Box test potentially being due to ARCH

e®ects (Diebold & Nason (1990)). Overall, Qi concludes that her results also \con¯rm the

evidence of nonlinearity in returns on the S&P 500 index".

It would be useful to consider measures of dependence and association de¯ned in the

space of distribution functions. Granger & Maasoumi (1993) considered a normalization of

the Matusita-Bhattacharya-Hellinger measure of dependence given by

S½ =
1
2

Z 1

¡1

Z 1

¡1

³
f 1

2 ¡ f
1
2
1 f

1
2
2

´2
dxdy; (2)

where f = f(x; y) is the joint density and f1 = f(x) and f2 = f(y) are the marginal densities

of the random variables X and Y . If X and Y are independent, this metric will yield the

value zero, and is otherwise positive and less than one. To see the relation of this normalized

measure to entropy divergence measures, consider the k-class entropy family of Havrda &

Charvat (1967) cited and discussed in Maasoumi (1993):

Hk(f ) = (k ¡ 1)¡1(1¡ Efk¡1); : : : k 6= 1

= ¡E log f; (Shannon 0s entropy) for k = 1;

where E denotes expectation with respect to the distribution f: The k-class entropies satisfy

axioms A1-A5 of Maasoumi (1993), and are similar to Renyi's entropy family which satisfy

axioms A1-A4 as well as an \arithmetic mean value" property. Essentially they di®er only

slightly in their branching (aggregation) properties. For two density functions f1 and f2; the

asymmetric (with respect to f2) k-class entropy divergence measure is:

Ik(f2; f1) =
1
k ¡ 1

·Z
(fk1 =fk2 )dF2 ¡ 1

¸
; k 6= 1;
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such that limk!1 Ik(¢) = I1(¢); the Shannon cross entropy (divergence) measure. Once the

divergence in both directions of f1 and f2 are added, a symmetric measure is obtained which,

for k = 1; is well known as the Kullback-Leibler measure. The symmetric k¡ class measure

at k = 1
2 is of interest to us in this paper, and is given as follows:

I1
2
= I 1

2
(f2; f1) + I 12 (f1; f2) = 2M (f1; f2) = 4B(f1; f2)

where M (¢) =
Z

(f
1
2
1 ¡ f

1
2
2 )2dx , is known as the Matusita distance, and,

B(¢) = 1 ¡ ½¤ , is known as the Bhattacharya distance with

½¤ =
Z

(f1f2)
1
2 being a measure of \a±nity" between the two densities.

B(¢) and M (¢) are rather unique among measures of divergence since they satisfy the

triangular (distance) inequality and are, therefore, metric. While the other divergence mea-

sures are also quite capable of characterizing desired null hypotheses (such as independence)

they are not appropriate when these distances are compared across models, sample periods,

or agents. These comparisons are often made, and more often implicit in inferences.

Other than axioms A1-A5 alluded to above, the following useful properties are satis¯ed

by this entropy measure (see Granger et al. (2000)):

1. It is well de¯ned for both continuous and discrete variables.

2. It is normalized to zero if X and Y are independent, and lies between 0 and +1.

3. The modulus of the measure is equal to unity if there is a measurable exact (nonlinear)

relationship, Y = g(X) say, between the random variables.

4. It is equal to or has a simple relationship with the (linear) correlation coe±cient in the

case of a bivariate normal distribution.

5. It is metric, that is, it is a true measure of \distance" and not just of divergence.
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6. The measure is invariant under continuous and strictly increasing transformations h(¢).

This is useful since X and Y are independent if and only if h(X) and h(Y ) are inde-

pendent. Invariance is important since otherwise clever or inadvertent transformations

would produce di®erent levels of dependence.

Note that,

S½ = 1¡ ½¤; where 0 · ½¤ ·
Z Z

(f £ f1f2)
1
2 dx dy · 1:

Properties 1-3 are easily veri¯ed. Property 5 is established in the literature (seeMaasoumi

(1993)), and Property 6 was established by Skaug & Tj¿stheim (1993). To verify Property

4, let f(x; y) = N (0; 0; 1; 1; ½) and f(x) = N(0; 1) = f(y); then:

½¤ =
(1 ¡ ½2) 54
(1 ¡ ½2

2 )
3
2
= 1 if ½ = 0

= 0 if ½ = 1:

As in Maasoumi (1993), the axiomatic characterizations that uniquely identify the k-

class entropies, or divergence measures, reveal the extent to which our measure is unique for

k = 1=2: We make no further claims. In particular, various normalizations are possible and

must be justi¯ed within the application context. Ours is justi¯ed by a desire for analogy

to the linear correlation coe±cient. Also, as was commented by Hong & White (2000), it

seems possible to obtain a more general proof of asymptotic Gaussianity of our measure

than is given by Skaug & Tj¿stheim (1993). Gaussianity, however, appears to be generally

a poor approximation for this statistic. A ¯nal appealing property is worthy of mention.

Entropy measures are dimensionless since they are de¯ned over distribution functions. In

multivariate settings, competing moment-based measures must be summarized by arbitrary

scalar functions (such as trace or determinant of variance matrices).
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Granger et al. (2000) consider a kernel implementation of this metric and demonstrate

how critical values can be obtained under the null of serial independence in the case of time-

series data. A few words on the computation of this metric are in order. For the estimation

of the univariate and bivariate densities in S½ we use kernel density estimators. For the

kernel function we employ the widely used second-order Gaussian kernel, while bandwidths

are selected via likelihood cross-validation (Silverman (1986, page 52)). To compute the

multivariate integral we employ numerical quadrature using the `tricub()' algorithm of Lau

(1995, pg 303).

We apply the metric S½ to the excess returns data in Equation (1) by setting x = rt

and y = rt¡k in Equation (2). Note that this test is applied directly to the series rather

than indirectly via a prewhitening AR model as in Qi (1999), and is therefore not subject to

pitfalls surrounding inappropriate speci¯cation of the prewhitening ¯lters. The results are

summarized in Figure 1 which depicts the value of the metric itself and the 90th percentile

of its distribution under the null of independence.

Examining Figure 1 we see that there exists a small but signi¯cant nonlinear dependence

present in this series at lag K = 1; but not thereafter. We applied the test for serial

independence found in Granger et al. (2000) for lag K = 1 and obtained an empirical p-

value of 0:001. This too suggests the presence of a small but highly signi¯cant, nonlinear

serial dependence, and is consistent with the overall ¯ndings of Qi (1999) and others.

Having demonstrated how a metric entropy is capable of detecting the presence of sig-

ni¯cant nonlinear dependence for univariate time-series data, we now demonstrate how a

metric entropy can be useful for assessing out-of-sample forecasting performance of several

popular models.
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3 Predicting Excess Returns Using Economic Variables

Pagan & Schwert (1990) considered the forecasting performance of both parametric and

nonparametric GARCH models for monthly stock returns. On the basis of their criteria they

found frequent disagreement between the in-sample and out-of-sample results. Qi's (1999)

study focused primarily on prediction and considered two models for recursive prediction of

the monthly excess returns series, a linear regression model (LR) and a single hidden-layer,

eight hidden-unit feed-forward neural-network (NN) trained via Bayesian Regularization.

We use the same data and the LR model as a benchmark and focus on conditional recursive

prediction of excess returns. Similarly, we generate recursive predictions for the entire period

1960:1-1992:12 and focus on forecasting performance during this period, as well as the three

decades 1960:1-1969:12, 1970:1-1979:12, and 1980:1-1989:12.

In addition to the neural-network (NN) and linear regression (LR) models used in Qi

(1999), we also consider the unconditional mean of past excess returns (MN), and a non-

parametric kernel regression model (NP) having the same variables as the NN and LR

models. For the NP model, bandwidths were selected via leave-one-out cross-validation for

each sample upon which the recursive predictions were made. The models are therefore as

follows:

LR: r̂t+1 = g(xt; ^̄t) = ^̄
0t +

kX

i=1

^̄
itxit;

NN: r̂t+1 = g(xt; ®̂t; ^̄t) = ®̂0t +
nX

j=1

®̂jt logsig

Ã
kX

i=1

^̄ijtxit + ^̄0jt

!
;

MN: r̂t+1 = g(rt; t) = t¡1
tX

i=1

ri;

NP: r̂t+1 = g(xt; ĥt) =

Pt
i=1 riK

³
x1i¡x1t
ĥ1t
; : : : ; xki¡xkt

ĥkt

´

Pt
i=1K

³
x1i¡x1t
ĥ1t
; : : : ; xki¡xkt

ĥkt

´ ;

(3)
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where x0t = (x1t; : : : ; xkt) are the k (nine) ¯nancial and economic variables, rt is the excess

returns on the S&P 500 index at time t, and n is the number of hidden units used in the NN

model.

We found that no NN model could come close to generating the level of accumulated

wealth reported in Qi (1999) even though our NN models performed similarly in terms of

their statistical in and out-of-sample performance. We therefore report both the results in Qi

(1999) and our otherwise identical NNmodel estimated using 10 re-starts of the minimization

algorithm from di®erent random values. We believe that the replicated predictions and

pro¯ts reported below more accurately re°ect the performance of the NN model (see Racine

(2001) for further discussion).

Figure 2 presents the predicted versus actual values for each model for the entire forecast

period 1960:1-1992:12 where the predicted values are the one-step-ahead (out-of-sample) re-

cursive forecasts generated by each model as described above. As is seen from the predictions

generated by the MN plotted in Figure 2, this model always predicts that excess returns will

be positive and leads to a `buy-and-hold' strategy where the investor remains fully invested

in stocks and purchases more when her budget permits. The other models, on the other

hand, generate the `market-switching' behavior described below in Section 3.3.
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3.1 Assessing Model Adequacy

To assess models many have used the following traditional and moment-based measures

de¯ned as follows:

RMSE =

vuutT¡1
TX

t=1

(rt ¡ r̂t)2;

MAE = T¡1
TX

t=1

jrt ¡ r̂tj;

MAPE = T¡1
TX

t=1

¯̄
¯̄rt ¡ r̂t
rt

¯̄
¯̄ ;

CORR =
PT
t=1(rt ¡ ¹rt)(r̂t ¡ ¹̂

tr)qPT
t=1(rt ¡ ¹rt)2

qPT
t=1(r̂t ¡ ¹̂

tr)2
;

SIGN = T¡1
TX

t=1

zt;

(4)

where zt = 1 if rt+1 £ r̂t+1 > 0 and 0 otherwise. The ¯rst four are L2 and L1-norm summary

measures of out-of-sample prediction error while the last is the proportion of times the sign

of excess returns is correctly predicted. We note that SIGN is unusual, not continuous, and

does not satisfy the conditions of Property 3 discussed earlier. Therefore, it does not have

to agree with entropy nor any of the other measures.

This is a suitable setting in which to examine the S½ statistic as a measure of goodness-of-

¯t and as a test of predictive performance where we set x = rt and y = r̂t in Equation (2), r̂t

being the recursive prediction generated by a model. An adequate model would be expected

to produce a strong relationship between the actual returns and their predicted values. In

particular, the value of the entropy metric for the nonparametric regression would be free

of functional form misspeci¯cation (but not variable selection). We compute the entropy

measure given in Equation (2), with f = f(r̂t; rt) as the joint density of the predicted and
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actual excess returns, and f1 = f (r̂t) and f2 = f(rt) as the respective marginal densities. If

predicted and actual returns are independent, this metric will yield the value zero, and will

increase as the model's predictive ability improves.

There is a complicated relationship between entropies, generally, and moment-based mea-

sures of a distribution. Ebrahimi, Maasoumi & Soo¯ (1999) explored this issue for Shannon's

entropy. Based on a Legendre series expansion of entropy, they showed that it is a function

of many moments of the underlying probability density function (PDF), much like a moment

generating function. In view of the de¯nition of entropy as a relatively unique function of

the PDF, this result is quite revealing (if not surprising). Ebrahimi et al. (1999) examined

ranking of distributions by variance and Shannon's entropy. Their ¯ndings are relevant to

the comparison of our entropy measure with moment-based measures of forecasting and ¯t,

but a full discussion is beyond the scope of this paper. We merely summarize three useful

results. First, the class of distributions that can be characterized by a single moment (e.g.,

variance) is very large. Put simply, single moment measures are inadequate for ranking

PDFs that are likely to be appropriate for ¯nancial processes. Secondly, nonlinear transfor-

mations of variables tend to increase \uncertainty" de¯ned broadly by entropy or otherwise.

For most relevant PDFs, single moment measures are not likely to re°ect this increased

uncertainty (unpredictability) as fully as entropy can. This does not bode well for the tra-

ditional measures of forecastability for nonlinear, non-Gaussian, and asymmetric processes.

Thirdly, in univariate settings, when characterization of a PDF by variance is adequate (as

for the Normal PDF), the entropy characterization is in agreement. This is important since

it indicates limited risks associated with the use of the more general entropy measures even

when \variance" measures may su±ce. Of course, there is no general agreement on a scalar

function of variance in multivariate cases (e.g., trace or determinant of the variance matrix),

whereas entropy is a dimensionless measure. Since one does not know the \true" PDF in

empirical settings, one may be inclined to regard the entropy guidance on predictability and
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¯t as controlling. We note that SIGN is very di®erent from measures that characterize sta-

tistical distribution functions. Also, CORR is maximized by linear l̄ters whether they are

correct or not.

As was noted in Granger et al. (2000) and Skaug & Tj¿stheim (1996), the asymptotic

normal distribution of S½ is unreliable for practical inference. We therefore compute p-values

by resampling the statistic under the null of independence to detect signi¯cant deviation from

zero. We generate replications which are serially independent having marginal distributions

identical to the original data simply by applying a random shu²e to the dataset. Randomly

reordering the data leaves the marginal distributions intact while generating an independent

bivariate distribution. This reshu²e is used to recompute the statistic using data generated

under the null, and this can be repeated a large number of times to generate the empirical

distribution of the statistic under the null. One could then use the empirical distribution of

this resampled statistic to compute ¯nite-sample critical values. The null distribution will

be that for a given bandwidth and will therefore adapt to bandwidth choice as in Racine

(1997).

There is another di±culty with the existing results in the literature. Whereas we can

and do compute p-values for our entropy measure, results reported in previous studies are

only the numerical estimates of the traditional ¯t criteria. Statistical signi¯cance can not

be inferred. As is appreciated, exact sampling distributions of statistics such as the simple

correlation-coe±cient have been elusive. Following Efron & Tibshirani (1993, page 49) in

which they bootstrap the sampling distribution of CORR, we choose to bootstrap the empir-

ical distributions of RMSE, MAE, MAPE, CORR, and SIGN under the null of independence.

We then can compute p -values under the null of independence to detect signi¯cant deviation

from that which would occur if the actual and predicted values were in fact independent.

Each of the models appearing in Equation (3) along with the replicated NN model were

used to obtain recursive forecasts. Beginning with the data for 1954:1-1959:12, each model
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was estimated and a forecast was made for 1960:1. Next, each model was estimated for

1954:1-1960:1 and a forecast was made for 1960:2 and so on. Following Qi (1999), we consider

results for the entire period 1960:1-1992:12 and for the decade sub-periods 1960:1-1969:12,

1970:1-1979:12, and 1980:1-1989:12. We then computed S½ and the measures in Equation

(4) for the realized series rt and its out-of-sample forecast, r̂t. The results are presented in

Table 1.

3.2 Discussion

Consider the out-of-sample performance reported in Table 1, and the plots in Figure 3. An

examination of the plots of the predicted versus the actual values is suggestive of a lack of

robustness in the predictive ability of all the conditional mean models considered, including

nonparametric regression. Models having good predictive ability may be expected to have a

plot with tight scattering around the diagonal, passing through the origin and with a slope

of 1.

Turning now to the traditional measures found in Table 1, the values marked with as-

terisks are signi¯cant in that they di®er from that which would occur if the predicted and

actual returns were independent. It is clear that, except for the decade of the 70s, there is no

model that performs well by any of the criteria. And for the 70s, only the Linear Regression

and the NN models show some signi¯cant promise by CORR (which is maximized for LR),

by SIGN and the entropy measures (the empirical p-values are less than 0:01). The ¯ndings

are generally con¯rmed in the ¯rst panel of Table 1 for the entire sample period. RMSE,

MAE, and MAPE detect no signi¯cant predictability for any model and in any period. In-

terestingly, the nonparametric regression model does not perform well at all. We remind the

reader that we employ cross-validation for bandwidth selection. Naturally, di®erent band-

widths will be selected through cross validation for the joint and marginal distribution of
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Table 1: Out-of-sample forecast performance of alternative models for various periods using
correlation and entropy-based measures. Entries marked with ¤¤¤ have empirical p-values
< 0:01, ¤¤ 0:01 · p < 0:05, and ¤ 0:05 · p < 0:10 under the null of independence of actual
and predicted excess returns.

Model RMSE MAE MAPE CORR SIGN S½

Panel A: 1960:1-1992:12
LR 0.0430 0.0329 2.1095 0.2081¤¤¤ 0.5960¤¤¤ 0.064
NN (Qi) 0.0429¤ 0.0328¤¤ 1.8289 0.2292¤¤¤ 0.6237¤¤¤ 0.065¤¤¤

NN (Rep) 0.0448 0.0337¤ 2.1334 0.1527¤¤¤ 0.6035¤¤¤ 0.072
NP 0.0482 0.0353 1.7803 0.0154 0.5516 0.083
MN 0.0435 0.0328 1.5102 -0.0426 0.5581 0.123

Panel B: 1960:1-1969:12

LR 0.0361 0.0283 1.3726 0.0656 0.5667 0.099¤¤¤
NN (Qi) 0.0352 0.0274 1.1150 0.0661 0.6083 0.092¤¤
NN (Rep) 0.0351 0.0274 1.1202 0.0969 0.6000¤ 0.088
NP 0.0387 0.0296 1.6515 -0.0061 0.5750 0.087
MN 0.0358 0.0276 1.5734 -0.0392 0.5917 0.097

Panel C: 1970:1-1979:12

LR 0.0451 0.0349 3.5492 0.2458¤¤¤ 0.6250¤¤¤ 0.088¤¤¤

NN (Qi) 0.0444 0.0345 2.5604 0.3067¤¤¤ 0.6750¤¤¤ 0.103
NN (Rep) 0.0485 0.0369 3.6540 0.1239 0.6250¤¤¤ 0.081¤
NP 0.0515 0.0371 2.3849 0.1151 0.5667¤ 0.093
MN 0.0466 0.0359 1.9231 -0.1062 0.4833 0.115¤

Panel D: 1980:1-1989:12

LR 0.0476 0.0359 1.3894 0.2287¤¤ 0.5750 0.093
NN (Qi) 0.0487 0.0368 1.7134 0.2070¤¤ 0.5750 0.084
NN (Rep) 0.0505 0.0375 1.6292 0.1742¤ 0.5667 0.101
NP 0.0549 0.0406 1.4663 -0.1113 0.4917 0.126
MN 0.0477 0.0353 1.0458 -0.1251 0.5917 0.087

the predictions given by di®erent models for di®erent periods. In ¯nite-samples, then, some

of the variation in the statistic S½ is due to bandwidth di®erences.
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It is not meaningful to compare how these criteria rank models when their estimates

are not signi¯cant. Taken together these results suggest that these models possess little or

no predictive ability. Given the plots in Figure 3, these ¯ndings support the conclusion of

inadequacy in these models.

The speci¯c instances of disagreement between the SIGN criterion and others, including

the entropy, are not surprising per se in light of our earlier discussion. Entropy is a function

of many moments of a distribution. When higher order moments are important for charac-

terizing distributions, many of the traditional criteria fail to be adequate. To shed more light

on this topic, in Appendix B we report a small Monte Carlo study of the sampling properties

of the traditional criteria for linear models which are generally favorable to them. For these

models the traditional criteria perform well and can detect dependence and independence,

especially asymptotically. Our entropy measure, however, can detect dependence in nonlin-

ear and nonstationary cases as well when the traditional measures may fail, as shown by

Granger et al. (2000). These results suggest to us that the agreement between the entropy

measure and the traditional measures observed in this study is evidence against the \mean

models" and their conditioning variables, and/or predictability of the stock markets. This

conclusion is in broad agreement with the evidence based on GARCH models (see Pagan &

Schwert (1990) and Campbell et al. (1997)). Hong & White (2000) employed the Kullback-

Leibler measure, removed GARCH e®ects, and still concluded that the daily S&P returns

are white noise but with strong nonlinear dependence.

3.3 Comparing Pro¯tability for Di®erent Models and Time Hori-

zons

In this paper our aim is to examine the link between entropy and predictability. In the

literature predictability has also been associated with pro¯tability. We also look at prof-
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itability but do not intend to suggest any necessary association - indeed if one is interested

in modeling pro¯tability then this should directly enter the objective function in our opinion.

We consider pro¯ts generated by a switching portfolio based upon predictions from each of

these models assuming that $100 was invested in either stocks or bonds as detailed in Pesaran

& Timmermann (1995), and used by Qi (1999) who considered three levels of transactions

costs, zero, low and high. We consider only the low/high cases following Qi (1999) who

de¯ned low transactions costs to be 0.5% on trading in stocks and 0.1% on trading in bonds,

while high costs were de¯ned to be 1% on stocks and 0.1% in bonds. Brie°y, the investor

generates a recursive prediction of next period's excess returns and predicts either positive or

negative excess returns. Given this prediction, she makes a decision of whether to buy stocks

or bonds giving rise to four possible decisions: for positive predictions, if currently holding

stock, buy more stock if the budget permits, while if currently holding bonds, switch to

stock; for negative predictions, if currently holding stock switch to bonds, while if currently

holding bonds, buy more bonds if the budget permits. Below we report those results for

the low transactions cost scenario, while Appendix A reports on the high cost scenario. We

follow Pesaran & Timmermann (1995) and Qi (1999) who only considered the case of holding

either stock or bonds, but not both simultaneously. Tables 2 through 5 present the pro¯ts

and ranks of each model for each period considered.

Table 2: Final wealth for the entire period (Panel A: 1960:1-1992:12): low transactions costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Entire Period
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $4631.13 (2) $8420.43 (1) $4204.96 (3) $1148.36 (5) $2432.78 (4)

Qi (1999) found that her neural-network model generated higher pro¯ts with lower risks

than did the linear regression when the recursive predictions were used to form a switching
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Table 3: Final wealth for ten year periods (Panel B: 1960:1-1969:12, Panel C: 1970:1-1979:12,
and Panel D: 1980:1-1989:12): low transactions costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Ten-Year Periods
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $177.94 (5) $222.33 (3) $224.12 (2) $179.94 (4) $227.65 (1)
2 $337.28 (2) $395.96 (1) $286.44 (3) $257.81 (4) $183.07 (5)
3 $452.25 (3) $560.57 (1) $383.88 (4) $212.70 (5) $452.54 (2)

Table 4: Final wealth for ¯ve year periods (1960:1-1964:12, 1965:1-1969:12, 1970:1-1974:12,
1975:1-1979:12, 1980:1-1984:12, 1985:1-1989:12): low transactions costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Five Year Periods
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $150.00 (5) $164.69 (2) $162.67 (3) $153.39 (4) $175.16 (1)
2 $112.69 (4) $128.24 (2) $130.87 (1) $111.43 (5) $123.46 (3)
3 $169.51 (2) $179.97 (1) $156.39 (3) $147.15 (4) $96.03 (5)
4 $175.73 (2) $194.32 (1) $161.76 (4) $154.74 (5) $170.13 (3)
5 $181.02 (3) $213.73 (1) $194.60 (2) $145.14 (5) $179.97 (4)
6 $223.62 (3) $234.76 (1) $176.57 (4) $145.01 (5) $225.08 (2)

strategy between stocks and bonds. As mentioned, we were unable to replicate Qi's results

and the replicated NN model does not perform nearly as well from a pro¯t standpoint as she

has reported. But we include both of them here for the interested reader. We examine the

number of times that the switching strategy based upon a given model yields the highest

pro¯t, and we must allow for ties given the nature of the data and period-length. Results

appear in tables 2 through 5.

Turning next to pro¯ts and to the relative ranking of the models reported in Tables 2

through 5 for the low transaction cost scenario and 6 through 9 for the high cost scenario

(Appendix A), it becomes evident that no model dominates throughout. Furthermore, we

observe that the buy-and-hold strategy generated by the simple mean predictions model

(MN) performs comparatively well for a number of sub-periods, often out-performing the
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Table 5: Final wealth for one year periods (1960:1-1960:12, 1961:1-1961:12 and so on): low
transactions costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Annual Periods
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $96.02 (5) $102.05 (1) $100.80 (4) $102.03 (2) $101.81 (3)
2 $117.12 (1) $117.12 (1) $117.12 (1) $117.12 (1) $117.12 (1)
3 $101.94 (1) $87.27 (4) $87.27 (4) $88.26 (3) $92.11 (2)
4 $106.84 (5) $112.42 (1) $112.42 (1) $112.42 (1) $112.42 (1)
5 $111.18 (1) $111.18 (1) $111.18 (1) $111.18 (1) $111.18 (1)
6 $106.18 (1) $106.18 (1) $106.18 (1) $103.69 (5) $106.18 (1)
7 $91.74 (4) $102.84 (1) $102.84 (1) $93.63 (3) $88.21 (5)
8 $101.51 (5) $105.72 (3) $105.72 (3) $108.98 (2) $110.30 (1)
9 $111.85 (3) $110.79 (4) $113.06 (2) $108.69 (5) $119.30 (1)
10 $106.76 (1) $104.36 (2) $104.36 (2) $92.60 (4) $92.60 (4)
11 $107.86 (2) $103.98 (4) $103.98 (4) $110.96 (1) $104.85 (3)
12 $99.62 (2) $99.62 (2) $99.62 (2) $104.87 (1) $99.62 (2)
13 $111.63 (2) $107.91 (4) $107.91 (4) $108.49 (3) $113.76 (1)
14 $104.94 (1) $104.94 (1) $104.94 (1) $97.90 (4) $83.99 (5)
15 $105.59 (2) $121.51 (1) $105.59 (2) $105.59 (2) $74.42 (5)
16 $124.68 (2) $131.92 (1) $119.36 (4) $113.32 (5) $121.51 (3)
17 $103.37 (1) $98.37 (5) $99.27 (4) $103.37 (1) $103.37 (1)
18 $95.56 (3) $98.24 (2) $99.96 (1) $95.56 (3) $95.56 (3)
19 $120.21 (1) $115.06 (3) $115.06 (3) $120.21 (1) $109.64 (5)
20 $107.04 (3) $115.58 (1) $107.04 (3) $98.34 (5) $109.86 (2)
21 $122.22 (4) $127.39 (1) $127.39 (1) $106.82 (5) $127.11 (3)
22 $111.64 (1) $111.64 (1) $105.06 (3) $99.61 (5) $100.68 (4)
23 $122.13 (2) $127.74 (1) $119.52 (4) $121.04 (3) $119.52 (4)
24 $117.51 (1) $117.51 (1) $117.51 (1) $117.51 (1) $117.51 (1)
25 $94.12 (5) $102.96 (2) $102.96 (2) $102.44 (4) $102.97 (1)
26 $114.76 (4) $115.70 (1) $114.89 (3) $102.91 (5) $115.33 (2)
27 $119.82 (1) $119.82 (1) $119.82 (1) $112.37 (5) $119.82 (1)
28 $107.88 (1) $107.88 (1) $85.27 (3) $85.27 (3) $85.27 (3)
29 $104.88 (3) $107.29 (2) $104.65 (4) $98.97 (5) $108.50 (1)
30 $105.62 (3) $101.66 (5) $105.62 (3) $107.90 (2) $118.27 (1)
31 $109.26 (1) $109.26 (1) $109.26 (1) $91.58 (5) $99.82 (4)
32 $110.91 (2) $110.91 (2) $110.91 (2) $114.30 (1) $110.91 (2)
33 $107.07 (1) $107.07 (1) $107.07 (1) $107.07 (1) $107.07 (1)

linear, neural-network, and nonparametric predictions. We see that, under the low cost

scenario, for ten-year periods the buy-and-hold strategy dominates the LR and NN switching
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portfolios for 2 out of 3 decades (Table 3), and is equal to or better for 3 out of 6 ¯ve year

periods (Table 4). For the high cost scenario, we see that, under the low cost scenario,

for ten-year periods the buy-and-hold strategy again dominates the LR and replicated NN

switching portfolios for 2 out of 3 decades (Table 7), and is better for 4 out of 6 ¯ve year

periods relative to LR and 3 relative to the replicated NN (Table 8).

The relatively good performance of a buy-and hold strategy using a model which does not

use predictive variables, but simply forecasts using the historical average of excess returns

available when the prediction is being made, deserves further interpretation. One interpre-

tation is that this ¯nding may not be that remarkable given recent studies which highlight

the mean-reverting nature of some markets (Balvers, Wu & Gilliland (2000)). As our graphs

show, the mean of excess returns is almost zero (but positive) over the entire sample. All

of the conditional speci¯cations may therefore be attempts to model this almost zero mean.

These attempts may produce some apparently large or \interesting" residuals which may

re°ect estimator properties rather than model characteristics.

4 Conclusions

Occasional ¯ndings of predictability here and elsewhere seemingly derive from a certain,

small degree of unconditional nonlinear serial dependence in the returns. But, any ¯nding of

linear/nonlinear predictability involves di±cult questions of conditional dependence. Our

and other results indicate that the latter type of inference is sensitive to the period of analysis,

frequency of data observations, conditioning variables, functional forms for conditional mean

and variance, and predictability criteria. The nonlinear memory e®ect detected by us using

both entropy-based and traditional measures may be too small to allow any robust and

durable ¯nding of conditional predictability in stock market returns. Indeed nonlinearities

may inherently lead to poorer predictability in a statistically deeper sense. We conclude
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that empirical evidence in favor of market-switching strategies over simple buy-and-hold

strategies is fragile at best. While our data do not extend to the decade of the 1990s, given

the well-known recent market performance it is likely that these ¯ndings would be further

reinforced.
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A Comparing Pro¯tability for Di®erent Models and

Time Horizons - High Transactions Costs

Table 6: Final wealth for the entire period (Panel A: 1960:1-1992:12): high transactions
costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Entire Period
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $3345.86 (2) $5962.83 (1) $3292.49 (3) $735.30 (5) $2393.67 (4)

Table 7: Final wealth for ten year periods (Panel B: 1960:1-1969:12, Panel C: 1970:1-1979:12,
and Panel D: 1980:1-1989:12): high transactions costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Ten-Year Periods
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $156.01 (5) $207.02 (3) $212.93 (2) $156.14 (4) $225.02 (1)
2 $317.22 (2) $347.22 (1) $258.85 (3) $232.91 (4) $180.88 (5)
3 $404.43 (3) $496.24 (1) $357.34 (4) $182.75 (5) $447.09 (2)

Table 8: Final wealth for ¯ve year periods (1960:1-1964:12, 1965:1-1969:12, 1970:1-1974:12,
1975:1-1979:12, 1980:1-1984:12, 1985:1-1989:12): high transactions costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Five Year Periods
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $141.15 (5) $161.31 (2) $159.34 (3) $145.78 (4) $173.28 (1)
2 $103.94 (4) $120.69 (3) $125.68 (1) $100.73 (5) $122.13 (2)
3 $166.08 (2) $176.34 (1) $154.79 (3) $138.49 (4) $95.00 (5)
4 $168.69 (2) $173.91 (1) $147.70 (5) $148.54 (4) $168.25 (3)
5 $165.26 (4) $199.08 (1) $183.08 (2) $133.86 (5) $177.96 (3)
6 $216.87 (3) $220.89 (2) $172.97 (4) $135.09 (5) $222.64 (1)
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Table 9: Final wealth for one year periods (1960:1-1960:12, 1961:1-1961:12 and so on): high
transactions costs.

Final Wealth and Rank of $100.00 Invested For Various Models: Annual Periods
Period LR Rank NN (Qi) Rank NN (Rep) Rank NP Rank MN Rank

1 $93.16 (5) $101.01 (1) $99.78 (4) $99.99 (3) $100.77 (2)
2 $115.93 (1) $115.93 (1) $115.93 (1) $115.93 (1) $115.93 (1)
3 $100.92 (1) $86.39 (4) $86.39 (4) $86.50 (3) $91.18 (2)
4 $104.71 (5) $111.28 (1) $111.28 (1) $111.28 (1) $111.28 (1)
5 $110.05 (1) $110.05 (1) $110.05 (1) $110.05 (1) $110.05 (1)
6 $105.11 (1) $105.11 (1) $105.11 (1) $101.62 (5) $105.11 (1)
7 $89.01 (4) $102.84 (1) $102.84 (1) $91.76 (3) $87.31 (5)
8 $100.48 (5) $104.65 (3) $104.65 (3) $105.74 (2) $109.18 (1)
9 $110.72 (3) $107.49 (4) $111.93 (2) $106.52 (5) $118.09 (1)
10 $105.69 (1) $104.36 (2) $104.36 (2) $91.66 (4) $91.66 (4)
11 $106.78 (2) $103.98 (3) $103.98 (3) $108.75 (1) $103.78 (5)
12 $98.61 (2) $98.61 (2) $98.61 (2) $103.81 (1) $98.61 (2)
13 $109.40 (2) $106.82 (4) $106.82 (4) $107.40 (3) $112.61 (1)
14 $104.94 (1) $104.94 (1) $104.94 (1) $95.95 (4) $83.14 (5)
15 $105.59 (2) $120.29 (1) $105.59 (2) $105.59 (2) $73.66 (5)
16 $120.96 (2) $129.28 (1) $115.81 (4) $111.05 (5) $120.28 (3)
17 $102.32 (1) $96.41 (4) $96.31 (5) $102.32 (1) $102.32 (1)
18 $94.59 (3) $95.31 (2) $96.98 (1) $94.59 (3) $94.59 (3)
19 $119.00 (1) $112.76 (3) $112.76 (3) $119.00 (1) $108.53 (5)
20 $105.97 (3) $113.28 (1) $105.97 (3) $97.36 (5) $108.74 (2)
21 $120.99 (4) $126.11 (1) $126.11 (1) $104.69 (5) $125.81 (3)
22 $108.32 (1) $108.32 (1) $101.93 (3) $98.61 (5) $99.66 (4)
23 $119.69 (2) $126.43 (1) $118.30 (4) $118.62 (3) $118.30 (4)
24 $116.31 (1) $116.31 (1) $116.31 (1) $116.31 (1) $116.31 (1)
25 $91.32 (5) $101.93 (1) $101.93 (1) $101.41 (4) $101.92 (3)
26 $112.46 (4) $113.38 (2) $112.59 (3) $101.88 (5) $114.15 (1)
27 $118.60 (1) $118.60 (1) $118.60 (1) $110.12 (5) $118.60 (1)
28 $105.72 (1) $105.72 (1) $84.41 (3) $84.41 (3) $84.41 (3)
29 $103.83 (3) $105.15 (2) $103.60 (4) $96.02 (5) $107.40 (1)
30 $105.62 (3) $100.64 (5) $105.62 (3) $105.74 (2) $117.07 (1)
31 $108.16 (1) $108.16 (1) $108.16 (1) $88.85 (5) $98.81 (4)
32 $109.79 (2) $109.79 (2) $109.79 (2) $110.90 (1) $109.79 (2)
33 $105.99 (1) $105.99 (1) $105.99 (1) $105.99 (1) $105.99 (1)
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B Finite-Sample Behavior of the Resampled Correlation-

Based Measures

We investigate the power properties of the resampled moment-based measures of dependence

used in our paper. To do this, 1; 000 samples were drawn from independent data, fY;Xg,

and from dependent data de¯ned by

yi = xi + ui (5)

where x » N(0; 1) and u » N(0; 1), while for the independent data

yi = ui (6)

For each of the 1,000 resamples we compute the values of each of CORR, SIGN, MAE,

MAPE, and RMSE, and we bootstrap their distribution under the null of independence. The

null distribution is obtained by applying a random shu²e to x to `break' any dependence

between x and y, and we then compute the values of CORR, SIGN, MAE, MAPE, and

RMSE for this independent data and repeat this 1,000 times obtaining the percentiles under

the null. Sample sizes considered were n = 100, 250, and 500.

The mean values of the resampled statistics were computed and their percentiles over

the 1,000 Monte Carlo draws are reported in Table 10. We do not intend this to be an

exhaustive examination of the ¯nite-sample properties of this method, rather, we intend this

to be helpful to the interested reader who wishes to examine the ¯nite-sample properties of

our approach under the scenarios of independent versus (linearly) dependent processes.

It is clear from this modest experiment that when the data are truly linearly independent

our resampling approach is capable of picking this up (asymptotically). It is also clear
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from this experiment that if there exists linear dependence then our resampling approach is

capable of detecting this asymptotically.

However, we note that the moment-based measures are indeed point estimates of a

model's performance, thus they are subject to sampling variability. It is desirable to dif-

ferentiate between models in a statistically meaningful manner when using these measures.

That is, while one might be tempted to state that `Model A' is preferable to `Model B'

since its RMSE is lower, it could be the case that there is no statistically signi¯cant di®er-

ence between these models. Alternatively, as we suggest here, a relevant question would be

whether or not the out-of-sample predictions di®er signi¯cantly from those from a model

with no predictive power. We therefore caution users against comparison of models on the

basis of any of the standard measures of model performance unless one also constructs their

sampling distributions in the manner implemented herein. We also caution readers to note

that MAPE does not appear to be well-suited to this task. We are currently examining this

issue as the measure enjoys widespread use in the economics and ¯nance literature.

We refer readers interested in the performance of Ŝ½ in a wide variety of settings to

Granger et al. (2000). Of particular interest is the fact that traditional measures are shown to

fail for many models, sometimes badly. By way of example, Granger et al. (2000) demonstrate

that their model of a \chaotic process" (Model 10) has an autocorrelation function that is

indistinguishable from a white noise series, while Ŝ½ readily detects strong and signi¯cant

dependence when using the resampling approach applied here for traditional measures.
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Table 10: Linear Measures of Out-of-Sample Goodness of Fit and Bootstrap Percentiles
Under the Null of Independence.

Measure Value Pct0:005 Pct0:025 Pct0:05 Pct0:095 Pct0:975 Pct0:995
n = 100

Independent Data
CORR: -0.0043 -0.2596 -0.1973 -0.1659 0.1652 0.1958 0.2527
SIGN: 0.4978 0.3702 0.4019 0.4178 0.5817 0.5975 0.6260
MAE: 1.1356 0.9200 0.9706 0.9959 1.2736 1.3014 1.3547
MAPE: 8.4230 1.9681 2.2627 2.4518 19.1644 22.4119 29.5108
RMSE: 1.4191 1.1632 1.2235 1.2539 1.5770 1.6083 1.6688

Dependent Data
CORR: 0.7059 -0.2642 -0.2027 -0.1715 0.1568 0.1877 0.2452
SIGN: 0.7487 0.3726 0.4042 0.4204 0.5844 0.6001 0.6293
MAE: 0.8002 1.0998 1.1644 1.1973 1.5659 1.6035 1.6752
MAPE: 7.3249 2.6448 3.0571 3.3205 27.6059 32.0466 41.7175
RMSE: 0.9993 1.3903 1.4680 1.5076 1.9390 1.9814 2.0624

n = 250
Independent Data

CORR: 0.0003 -0.1647 -0.1243 -0.1045 0.1040 0.1235 0.1602
SIGN: 0.5004 0.4179 0.4380 0.4479 0.5518 0.5614 0.5800
MAE: 1.1270 0.9924 1.0245 1.0408 1.2148 1.2319 1.2647
MAPE: 7.5983 2.4581 2.7639 2.9617 16.7074 19.0975 24.3081
RMSE: 1.4112 1.2520 1.2902 1.3094 1.5127 1.5323 1.5696

Dependent Data
CORR: 0.7067 -0.1662 -0.1266 -0.1066 0.1008 0.1204 0.1573
SIGN: 0.7514 0.4189 0.4387 0.4487 0.5527 0.5626 0.5810
MAE: 0.7973 1.2012 1.2433 1.2646 1.4963 1.5192 1.5633
MAPE: 8.7442 3.3268 3.7667 4.0467 29.1595 33.6599 43.1593
RMSE: 0.9985 1.5148 1.5653 1.5905 1.8636 1.8904 1.9415

n = 500
Independent Data

CORR: -0.0009 -0.1165 -0.0881 -0.0739 0.0734 0.0872 0.1135
SIGN: 0.5001 0.4419 0.4561 0.4632 0.5368 0.5437 0.5568
MAE: 1.1305 1.0333 1.0567 1.0684 1.1918 1.2038 1.2264
MAPE: 11.7687 2.8632 3.1875 3.3929 33.8989 40.0101 54.6691
RMSE: 1.4161 1.3018 1.3294 1.3432 1.4875 1.5014 1.5277

Dependent Data
CORR: 0.7064 -0.1177 -0.0893 -0.0751 0.0719 0.0858 0.1118
SIGN: 0.7497 0.4423 0.4565 0.4636 0.5371 0.5440 0.5571
MAE: 0.7986 1.2539 1.2844 1.2998 1.4641 1.4799 1.5100
MAPE: 9.5904 3.8867 4.3369 4.6210 28.4413 32.8146 41.6754
RMSE: 0.9999 1.5786 1.6149 1.6334 1.8272 1.8458 1.8809
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Figure 1: Ŝ½ for lags K = 1; 3; : : : ; 10 and their 90th percentile under the null of serial
independence.
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Figure 2: Recursive one-step-ahead predicted and actual returns for the period 1960:1-
1992:12. The top left ¯gure is the NN in Qi (1999), the top right the replicated NN, the
middle left LR, middle right NP, and the bottom MN.
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Figure 3: Predicted versus actual returns for the period 1960:1-1992:12. The top left ¯gure is
the LR model, the top right the NN in Qi (1999), the middle left the replicated NN, middle
right NP, and the bottom MN.
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