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ABSTRACT

The aim of this article is to analyse the relation between the second law of thermody-

namics and the so-called arrow of time. For this purpose, a number of different aspects

in this arrow of time are distinguished, in particular those of time-(a)symmetry and of

(ir)reversibility. Next I review versions of the second law in the work of Carnot, Clausius,

Kelvin, Planck, Gibbs, Carathéodory and Lieb and Yngvason, and investigate their con-

nection with these aspects of the arrow of time. It is shown that this connection varies a

great deal along with these formulations of the second law. According to the famous for-

mulation by Planck, the second law expresses the irreversibility of natural processes. But

in many other formulations irreversibility or even time-asymmetry plays no role. I there-

fore argue for the view that the second law has nothing to do with the arrow of time.

KEY WORDS: Thermodynamics, Second Law, Irreversibility, Time-asymmetry, Arrow of

Time.

1 INTRODUCTION

There is a famous lecture by the British physicist/novelist C. P. Snow about the cultural abyss

between two types of intellectuals: those who have been educated in literary arts and those

in the exact sciences. This lecture, the Two Cultures (1959), characterises the lack of mutual

respect between them in a passage:

A good many times I have been present at gatherings of people who, by the standards

of the traditional culture, are thought highly educated and who have with considerable
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gusto been expressing their incredulity at the illiteracy of scientists. Once or twice I have

been provoked and have asked the company how many of them could describe the Second

Law of Thermodynamics. The response was cold: it was also negative. Yet I was asking

something which is about the equivalent of: have you read a work of Shakespeare?

Snow stands up for the view that exact science is, in its own right, an essential part of civili-

sation, and should not merely be valued for its technological applications. Anyone who does

not know the Second Law of Thermodynamics, and is proud of it too, exposes oneself as a

Philistine.

Snow’s plea will strike a chord with every physicist who has ever attended a birthday

party. But his call for cultural recognition creates obligations too. Before one can claim that

acquaintance with the Second Law is as indispensable to a cultural education as Macbeth

or Hamlet, it should obviously be clear what this law states. This question is surprisingly

difficult.

The Second Law made its appearance in physics around 1850, but a half century later it

was already surrounded by so much confusion that the British Association for the Advancement

of Science decided to appoint a special committee with the task of providing clarity about the

meaning of this law. However, its final report (Bryan 1891) did not settle the issue. Half a

century later, the physicist/philosopher Bridgman still complained that there are almost as

many formulations of the second law as there have been discussions of it (Bridgman 1941,

p. 116). And even today, the Second Law remains so obscure that it continues to attract new

efforts at clarification. A recent example is the work of Lieb and Yngvason (1999).

This manifest inability of the physical community to reach consensus about the formula-

tion and meaning of a respectable physical law is truly remarkable. If Snow’s question had

been: ‘Can you describe the Second Law of Newtonian Mechanics?’ physicists would not

have any problem in producing a unanimous answer. The idea of installing a committee for

this purpose would be just ridiculous.

A common and preliminary description of the Second Law is that it guarantees that all

physical systems in thermal equilibrium can be characterized by a quantity called entropy,

and that this entropy cannot decrease in any process in which the system remains adiabati-

cally isolated, i.e. shielded from heat exchange with its environment. But the law has many

faces and interpretations; the comparison to a work of Shakespeare is, in this respect, not

inappropriate.1 One of the most frequently discussed aspects of the Second Law is its re-

lation with the ‘arrow of time’. In fact, in many texts in philosophy of physics the Second

1Actually, in the second edition of The Two Cultures, Snow expressed regret for comparing the Second Law to a
work of Shakespeare, due to the formidable conceptual problems connected with the former.
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Law figures as an emblem of this arrow. The idea is, roughly, that typical thermodynamical

processes are irreversible, i.e. they can only occur in one sense only, and that this is relevant

for the distinction between past and future.

At first sight, the Second Law is indeed relevant for this arrow. If the entropy can only

increase during a thermodynamical process, then obviously, a reversal of this process is not

possible. Many authors believe this is a crucial feature, if not the very essence of the Second

Law. Planck, for example, claimed that, were it not for the existence of irreversible processes,

‘the entire edifice of the second law would crumble [. . . ] and theoretical work would have to

start from the beginning.’ (Planck 1897, §113), and viewed entropy increase as a ‘universal

measure of irreversibility’ (ibid. §134). A similar view is expressed by Sklar in his recent book

on the foundations of statistical mechanics (1993, p. 21): ‘The crucial fact needed to justify the

introduction of [. . . ] a definite entropy value is the irreversibility of physical processes.’

In this respect, thermodynamics seems to stand in sharp contrast with the rest of classical

physics, in particular with mechanics which, at least in Hamilton’s formulation, is symmetric

under time reversal. The problem of reconciling this thermodynamical arrow of time with a

mechanical world picture is usually seen as the most profound problem in the foundations

of thermal and statistical physics; see Davies (1974), Mackey (1992), Zeh (1992), Sklar (1993)

and Price (1996).

However, this is only one of many problems awaiting a student of the Second Law. There

are also authors expressing the opposite viewpoint. Bridgman writes:

It is almost always emphasized that thermodynamics is concerned with reversible pro-

cesses and equilibrium states and that it can have nothing to do with irreversible processes

or systems out of equilibrium . . . (Bridgman 1941, p. 133)

It is not easy to square this view, —and the fact that Bridgman presents it as prevailing among

thermodynamicists— with the idea that irreversibility is essential to the Second Law.

Indeed, one can find other authors maintaining that the Second Law has little to do with

irreversibility or the arrow of time; in particular Ehrenfest-Afanassjewa, (1925, 1956, 1959),

Landsberg (1956) and Jauch (1972, 1975). For them, the conflict between the irreversibility

of thermodynamics and the reversible character of the rest of physics is merely illusory, due

to a careless confusion of the meaning of terms. For example, Landsberg remarks that the

meaning of the term ‘reversible’ in thermodynamics has nothing to do with the meaning of

this term in classical mechanics. However, a fundamental and consistent discussion of the

meaning of these concepts is rare.
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Another problem is that there are indeed many aspects and formulations of the Second

Law, which differ more or less from the preliminary circumscription offered above. For ex-

ample, consider the so-called ‘approach to equilibrium’. It is a basic assumption of thermody-

namics that all systems which are left to themselves, i.e. isolated from all external influences,

eventually evolve towards a state of equilibrium, where no further changes occur. One often

regards this behaviour as a consequence of the Second Law. This view is also suggested by

the well-known fact that equilibrium states can be characterised by an entropy maximum.

However, this view is problematic. In thermodynamics, entropy is not defined for arbitrary

states out of equilibrium. So how can the assumption that such states evolve towards equi-

librium be a consequence of this law?

Even deliberate attempts at careful formulation of the Second Law sometimes end up

in a paradox. One sometimes finds a formulation which admits that thermodynamics aims

only at the description of systems in equilibrium states, and that, strictly speaking, a system

does not always have an entropy during a process. The Second Law, in this view, refers to

processes of an isolated system that begin and end in equilibrium states and says that the

entropy of the final state is never less than that of the initial state (Sklar 1974, p. 381). The

problem is here that, by definition, states of equilibrium remain unchanged in the course of

time, unless the system is acted upon. Thus, an increase of entropy occurs only if the system

is disturbed, i.e. when it is not isolated.

It appears then that it is not unanimously established what the Second Law actually says

and what kind of relationship it has with the arrow of time. The aim of the present pa-

per is to chart this amazing and confusing multifariousness of the Second Law; if only to

help prevent embarrassment when, at a birthday party, the reader is faced with the obvious

counter-question by literary companions. Or, if the reader wishes to be counted as a person

of literary culture, and guard against arrogant physicists, one can also read this article as a

guide to how to bluff your way in the Second Law of Thermodynamics.

The organization of the article is as follows. In section 2, I will describe a few general

characteristics of thermodynamics, and its status within physics. Section 3 is devoted to the

distinction between several meanings one can attribute to the arrow of time. Next, in sec-

tions 4, 5 and 6, I will trace the historical development of the orthodox versions of the Second

Law, focussing at each stage on its relation to the arrow of time. This historical development

finds its climax in the intricate arguments of Planck, which I review in section 7.

Then I address two less orthodox but perhaps more vital versions of the Second Law, due

to Gibbs (section 8) and Carathéodory (section 9). I will argue that these versions do not carry

implications for an arrow of time (with a slight qualification for Carathéodory). In section 10,
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I discuss the debate in the 1920’s between Born, Planck and Ehrenfest-Afanassjewa, which

was triggered by the work of Carathéodory.

Despite a number of original defects, the approach pioneered by Carathéodory has in

recent years turned out to be the most promising route to obtain a clear formulation of the

Second Law. Section 11 is devoted to the work of Lieb and Yngvason, which forms the most

recent major contribution to this approach. Finally, in section 12, I will discuss some conclu-

sions. In particular, I will discuss the prospects of giving up the idea that the arrow of time is

crucially related to the Second Law.

2 THE STATUS OF THERMODYNAMICS

Classical thermodynamics can be described as the study of phenomena involved in the pro-

duction of work by means of heat; or, more abstractly, of the interplay of thermal and me-

chanical energy transformations. The theory is characterised by a purely empirical (often

called ‘phenomenological’) approach. It avoids speculative assumptions about the micro-

scopic constitution or dynamics of the considered systems. Instead, a physical system is

regarded as a ‘black box’ and one starts from a number of fundamental laws (Hauptsätze),

i.e. generally formulated empirical principles that deny the possibility of certain conceivable

phenomena, in particular various kinds of perpetual motion. The goal is then to introduce

all specific thermodynamical quantities and their general properties by means of these laws.

This is the approach to the theory taken by Carnot, Clausius, Kelvin, and Planck, and with

some differences also by Gibbs and Carathéodory.

Anyone who studies classical thermodynamics today will encounter a wide range of

views on its status. In the eyes of many modern physicists, the theory has acquired a some-

what dubious status. They regard classical thermodynamics as a relic from a bygone era. In

particular the refusal to adopt the atomic hypothesis is seen as typical nineteenth century

cold feet. Also, one often reads that thermodynamics is really a subject for engineers and

therefore(?) not an appropriate vehicle for fundamental knowledge about nature. Further,

the ‘negative’ character of its laws, i.e. the fact that they state what is impossible rather than

what is possible, seems offensive to many authors.2

Indeed, the view that thermodynamics is obsolete is so common that many physicists

2This objection, expressed again and again by many commentaries, is not easy to comprehend. Elsewhere in
physics one also finds ‘negatively’ formulated principles (like the light postulate, the uncertainty principle, etc.)
but one never encounters this reproach. Besides it is obvious that every negative lawlike statement, can also be
rephrased positively by a change of vocabulary. The issue is therefore only cosmetic. A more substantial problem
that probably lurks in the background is ambivalence in the meaning of ‘possible’.
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use the phrase ‘Second Law of Thermodynamics’ to denote some counterpart of this law

in the kinetic theory of gases or in statistical mechanics. However, I will not embrace this

manoeuvre. In this article, the term ‘Second Law of Thermodynamics’ refers to an ingredient

of classical thermodynamics, and not some other theory.

On the other hand, even in the twentieth century one can find prominent physicists who

appreciated thermodynamics. Einstein, whose earliest publications were devoted to the

foundations of the Second Law, remained convinced throughout his life that thermodynam-

ics is the only universal physical theory that will never be overthrown. He recommended

this remark ‘for the special attention of those who are skeptics on principle’ (Einstein 1948,

p. 33). Other important physicists who devoted part of their work to thermodynamics are

Sommerfeld, Born, Schrödinger, Pauli, Chandrasekhar and Wightman. Planck in particular

reported (1948, p. 7) how strongly he was impressed by the universal and irrefutable validity

of thermodynamics. As a schoolboy, he already experienced his introduction to the First Law

of Thermodynamics as an evangelical revelation (‘wie eine Heilsbotschaft’). The Second Law

became, mainly through his own contributions, a proposition of comparable stature; (see e.g.

Planck (1897, §136)).

Similar veneration is expressed in a famous quotation by Eddington:

The law that entropy always increases, —the second law of thermodynamics—holds, I

think, the supreme position among the laws of Nature. If someone points out to you that

your pet theory of the universe is in disagreement with Maxwell’s equations—then so

much the worse for Maxwell’s equations. If it is found to be contradicted by observation—

well, these experimentalists bungle things sometimes. But if your theory is found to be

against the second law of thermodynamics I can give you no hope; there is nothing for it

but to collapse in deepest humiliation (Eddington 1935, p. 81).

Apparently there is, apart from the view that thermodynamics is obsolete, also a widespread

belief among physicists in its absolute authority.

Apart from its authority, thermodynamics is also often praised for its clear and rigorous

formulation. Maxwell (1877) regarded the theory as a ‘a science with secure foundations,

clear definitions and distinct boundaries’. Sommerfeld (1952) called it a ‘Musterbeispiel’ of an

axiomatised theory. It is also well-known that Einstein drew inspiration from thermodynam-

ics when he formulated the theory of relativity and that he intended to construct this theory

in a similar fashion, starting from similar empirical principles of impossibility (Klein 1967).

But there are also voices of dissent on this issue of clarity and rigour. The historian Brush

notes:
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As anyone who has taken a course in thermodynamics is well aware, the mathematics used

in proving Clausius’ theorem [i.e. the Second Law] is of a very special kind, having only

the most tenuous relation to that known to mathematicians (1976, Vol. 1, p. 581).

He was recently joined by the mathematician Arnold (1990, p. 163):

Every mathematician knows it is impossible to understand an elementary course in ther-

modynamics.

Von Neumann once remarked that whoever uses the term ‘entropy’ in a discussion always

wins:

. . . no one knows what entropy really is, so in a debate you will always have the advantage

(cited by Tribus and McIntire, 1971, p. 180).

an invaluable piece of advice for the true bluffer!

The historian of science and mathematician Truesdell made a detailed study of the histor-

ical development of thermodynamics in the period 1822–1854. He characterises the theory,

even in its present state, as ‘a dismal swamp of obscurity’ (1980, p. 6) and ‘a prime example to

show that physicists are not exempt from the madness of crowds’ (ibid. p. 8). He is outright

cynical about the respect with which non-mathematicians treat the Second Law:

Clausius’ verbal statement of the second law makes no sense [. . . ]. All that remains is a

Mosaic prohibition; a century of philosophers and journalists have acclaimed this com-

mandment; a century of mathematicians have shuddered and averted their eyes from the

unclean. (ibid. p. 333).

Seven times in the past thirty years have I tried to follow the argument Clausius offers

[. . . ] and seven times has it blanked and gravelled me. [. . . ] I cannot explain what I cannot

understand (ibid. p. 335).

From this anthology it emerges that although many prominent physicists are firmly con-

vinced of, and express admiration for the Second Law, there are also serious complaints,

especially from mathematicians, about a lack of clarity and rigour in its formulation.3 At the

very least one can say that the Second Law suffers from an image problem: its alleged emi-

nence and venerability is not perceived by everyone who has been exposed to it. What is it

that makes this physical law so obstreperous that every attempt at a clear formulation seems

to have failed? Is it just the usual sloppiness of physicists? Or is there a deeper problem?

3But here too there are dissidents: ‘Clausius’ . . . definition [of entropy] . . . appeals to the mathematician only.’
(Callendar 1911).
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And what exactly is the connection with the arrow of time and irreversibility? Could it be

that this is also just based on bluff?

Perhaps readers will shrug their shoulders over these questions. Thermodynamics is ob-

solete; for a better understanding of the problem we should turn to more recent, statistical

theories. But even then the questions we are about to study have more than a purely histori-

cal importance. The problem of reproducing the Second Law, perhaps in an adapted version,

remains one of the toughest, and controversial problems in statistical physics. It is hard to

make progress on this issue as long as it remains unclear what the Second Law says; i.e. what

it is that one wishes to reproduce. I will argue, in the last section, using the example of the

work of Boltzmann, how much statistical mechanics suffered from this confusion.

Since there is no clear-cut uncontroversial starting point, the only way to approach our

problem is by studying the historical development of the Second Law. I will further assume

that respect ought to be earned and from now on write the second law without capitals.

3 POSSIBILITY, IRREVERSIBILITY, TIME-ASYMMETRY, ARROWS AND RAVAGES

In order to investigate the second law in more detail, it is necessary to get a tighter grip on

some of the philosophical issues involved, in particular the topic of the arrow of time itself.

But first there is an even more general issue which needs spelling out. As we have seen, the

basis of the second law is a claim that certain processes are impossible. But there are various

senses in which one can understand the term ‘possible’ or related dispositional terms. At

least three of these are relevant to our enterprise.

(i) ‘Possible’ may mean: ‘allowed by some given theory’. That is, the criterium for calling

a process possible is whether one can specify a model of the theory in which it occurs. This

is the sense which is favoured by modern philosophers of science, and it also seems to be the

most fruitful way of analysing this notion. However, thermodynamics has a history of more

than 150 years in which it did not always have the insights of modern philosophy of science

at hand to guide it. So, one should be prepared to meet other construals of this term in the

work of our main protagonists.

(ii) The term ‘possible’ may be taken to mean: ‘available in the actual world’ (or in ‘Na-

ture’). This is the view that Planck and many other nineteenth century physicists adopted.

For them, e.g. the statement that it is possible to build a system which exhibits a particular

kind of perpetual motion means that we can actually build one.

An important aspect of reading ‘possibility’ in this way is that the question of whether a

process is possible or not, is not decided by the theory, but by ‘the furniture of the world’, i.e.
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the kinds of systems and interactions there actually are. This includes the systems and forms

of interactions which we have not even discovered and for which we lack an appropriate

theory. So, the claim that such a process is impossible, becomes a statement that transcends

theoretical boundaries. It is not a claim to be judged by a theory, but a constraint on all

physical theories, even those to be developed in the future. Clearly, the idea that the second

law is such a claim helps explaining why it inspired such feelings of awe.

(iii) A third sense of ‘possible’ is ‘available to us’. We shall see that some authors, in

particular Kelvin, were concerned with the loss of motive power ‘available to man’. This

reading makes the notion dependent on the human condition. This is generally considered

as a drawback. If the second law would be merely a statement expressing a human lack of

skills or knowledge, it would cease to be interesting, both physically and philosophically.4

Next we consider the arrow of time. What exactly does one mean by this and related

terms? For this question one can consult the relevant literature on the philosophy of time

(Reichenbach 1956, Grünbaum 1967, Earman 1967, Kroes 1985, Horwich 1987).

An important aspect of time that is distinguished in this literature is the idea of the flow

or progress of time. Human experience comprises the sensation that time moves on, that

the present is forever shifting towards the future, and away from the past. This idea is often

illustrated by means of the famous two scales of McTaggart. Scale B is a one-dimensional

continuum in which all events are ordered by means of a date. Scale A is a similar one-

dimensional continuous ordering for the same events, employing terms like ‘now’, ‘yester-

day’, ‘next week’, etc. This scale shifts along scale B as in a slide rule.

Another common way of picturing this idea is by attributing a different ontological status

to the events in the past, present and future. Present events are the only ones which are

‘real’ or ‘actual’. The past is gone, and forever fixed. The future is no more actual than the

past but still ‘open’, etc. The flow of time is then regarded as a special ontological transition:

the creation or actualisation of events. This process is often called becoming. In short, this

viewpoint says that grammatical temporal tenses have counterparts in reality.

Is this idea of a flow of time related to thermodynamics? Many authors have indeed

claimed that the second law provides a physical foundation for this aspect of our experi-

ence (Eddington 1935, Reichenbach 1956, Prigogine 1980). But according to contemporary

4However, this not to say that the viewpoint is unviable. In fact, it seems to be very close to Maxwell’s views. He
often emphasized the importance of the human condition (as opposed to the ‘demonic condition’) in writings like:
‘. . . the notion of dissipated energy would not occur to a being who . . . could trace the motion of every molecule and
seize it at the right moment. It is only to a being in the intermediate stage, who can lay hold of some forms of energy
while others elude his grasp, that energy appears to be passing inevitably from the available to the dissipated state.’
(Maxwell 1878). Planck strongly opposed this view; see (Planck 1897, §136).
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understanding, this view is untenable (Grünbaum 1967, Kroes 1985). In fact the concept of

time flow hardly ever enters in any physical theory.5 In a physical description of a process, it

never makes any difference whether it occurs in the past, present or future. Thus, scale B is

always sufficient for the formulation of physical theory 6 and the above-mentioned ontolog-

ical distinctions only play a metaphysical role. Thermodynamics is no exception to this, and

therefore unable to shed any light on this particular theme.

A second theme, which is much closer to the debate on the second law, is that of symmetry

under time reversal. Suppose we record some process on film and play it backwards. Does

the inverted sequence look the same? If it does, e.g. a full period of a harmonic oscillator, we

call the process time-symmetric. But such processes are not in themselves very remarkable.

A more interesting question concerns physical laws or theories. We call a theory or law time-

symmetric if the class of processes that it allows is time-symmetric. This does not mean that

all allowed processes have a palindromic form like the harmonic oscillator, but rather that a

censor, charged with the task of banning all films containing scenes which violate the law,

issues a verdict which is the same for either direction of playing the film.

More formally, the criterion can be phrased as follows. Many theories employ a state

space Γ which contains all possible states of a system. The instantaneous state is thus repre-

sented as a point s in Γ and a process as a parametrised curve:

P = {st ∈ Γ : ti ≤ t ≤ t f}

The laws of the theory only allow a definite class of processes (e.g. the solutions of the equa-

tions of motion). Call this class W , the set of all possible worlds (according to this theory).

Let now R be a transformation that turns a state s into its ‘time reversal’ Rs. It is always

assumed that RRs = s (i.e. R is an involution). In classical mechanics, for example, R is the

transformation which reverses the sign of all momenta and magnetic fields. In a theory like

classical thermodynamics, in which the state does not contain velocity-like parameters, one

may simply take R to be the identity transformation.

Further, the time reversal P ∗ of a process P is defined as:

P ∗ = {(Rs)−t : −t f ≤ t ≤ −ti}.

5Newton’s conception of absolute time which ‘flows equably and of itself’ seems the only exception.
6This statement holds strictly speaking only for non-relativistic theories. Nevertheless, for special-relativistic

theories an analogous statement is valid, when the one-dimensional scales of McTaggart are replaced by partial
orderings (Dieks 1988, Muller 1992).
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The theory is called time-symmetric if the class W of possible worlds is closed under time

reversal, i.e. if the following holds:

If P ∈ W then P ∗ ∈ W . (1)

Note that this criterion is formulated without recourse to metaphysical notions like ‘be-

coming’ etc. The mathematical form of the laws themselves (and a given choice for R) deter-

mines whether the theory is time-symmetric or not. Note also that the term ‘time-reversal’

is not meant literally. That is to say, we consider processes whose reversal is or is not allowed

by a physical law, not a reversal of time itself. The prefix is only intended to distinguish the

term from a spatial reversal. Furthermore, note that we have taken ‘possibility’ here in sense

(i) above; that is, it is not relevant here whether the reversed processes P ∗ occur in the actual

world. It is sufficient that the theory allows them. Thus, the fact that the sun never rises in

the west is no obstacle to celestial mechanics qualifying as time-symmetric.7

Is this theme of time-(a)symmetry related to the second law? Even though the criterion

is unambiguous, its application to thermodynamics is not a matter of routine. In contrast

to mechanics, thermodynamics does not possess equations of motion. This, in turn, is due

to the fact that thermodynamical processes only take place after an external intervention

on the system. (Such as: removing a partition, establishing thermal contact with a heat bath,

pushing a piston, etc.) They do not correspond to the autonomous behaviour of a free system.

This is not to say that time plays no role. Classical thermodynamics in the formulation of

Clausius, Kelvin or Planck is concerned with processes occurring in the course of time, and its

second law does allow only a subclass of possible worlds, which is indeed time-asymmetric.

However, in the formulations by Gibbs and Carathéodory this is much less clear. We shall

return in due course to the question of whether thermodynamics in these versions is time-

asymmetric.

As a side remark, I note that the discussion about the relation between the second law and

time-asymmetry is often characterized by a larger ambition. Some authors are not satisfied

with the mere observation that a theory like thermodynamics is time-asymmetric, but claim

that this theory can be held responsible, or gives a physical foundation, for the distinction

between past and future. This claim has been advanced in particular by Reichenbach. He

7Of course one may also develop notions of time-(a)symmetry in other senses. It is interesting to mention, in this
context, the distinction between Loschmidt’s and Kelvin’s arguments for the time-symmetry of classical mechanics,
i.e. their versions of the Umkehreinwand. Loschmidt observed that for every mechanical process P a time reversed
process is also a model allowed by classical mechanics. This is possibility in sense (i). Kelvin, on the other hand,
discussed the issue of actually obtaining the time reversal of a given molecular motion, by means of a physical
intervention, namely by collisions with ‘molecular cricket bats’. This is closer to sense (ii).
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argued that by definition we could identify our concept of ‘future’ with the direction of time

in which entropy increases.

Reichenbach’s claim has been criticized by (Sklar 1981). The main objections, in my opin-

ion, are that the claim would entail that all other forms of time-asymmetry which might

be found in other physical theories (such as cosmology, elementary particles physics, etc.)

should also be characterizable in terms of a thermodynamical asymmetry. The question

whether this is really the case, has often been discussed (Landsberg 1984, Savitt 1995) but

an affirmative answer is not yet established. Another objection is that even if humans are

placed in a local environment in which entropy decreases, e.g. in a refrigerator cell, this does

not seem to affect their sense of temporal orientation. More important perhaps is the objec-

tion that the programme to define the distinction between past and future by means of the

second law is only sensible if it turns out to be possible to introduce the second law itself

without presupposing this distinction. The classical formulations of the second law certainly

do not meet this criterion.

Another theme concerns ‘irreversibility’. This term is usually attributed to processes rather

than theories. In the philosophy of science literature the concept is however intimately con-

nected with time-asymmetry of theories. More precisely, one calls a process P allowed by

a given theory irreversible if the reversed process P ∗ is excluded by this theory. Obviously,

such a process P exists only if the theory in question is time-asymmetric. Conversely, ev-

ery time-asymmetric theory does admit irreversible processes in this sense. These processes

constitute the hallmark of time-asymmetry and, therefore, discussions about irreversibility

and time-asymmetry in the philosophy of science coincide for the most part. However, in

thermodynamics, the term is commonly employed with other meanings. Therefore, in an

attempt to avoid confusion, I will not use the term ‘(ir)reversibility’ in this sense.

In the thermodynamics literature one often uses the term ‘irreversibility’ to denote a dif-

ferent aspect of our experience which, for want of a better word, one might also call irrecov-

erability. Our experience suggests that in many cases the transition from an initial state si to a

final state s f , obtained during a process, cannot be fully undone, once the process has taken

place. Ageing and dying, wear and tear, erosion and corruption are the obvious examples.

In all such cases, there is no process which starts off from the final state s f and restores the

initial state si completely. As we shall see in more detail in Section 7, this is the sense of

irreversibility that Planck intended, when he called it the essence of the second law.

Many writers have followed Planck’s lead and emphasised this theme of irrecoverability

in connection with the second law. Indeed, Eddington introduced his famous phrase of ‘the

arrow of time’ in a general discussion of the ‘running-down of the universe’, and illustrated

12



it with many examples of processes involving ‘irrevocable changes’, including the nursery

rhyme example of Humpty-Dumpty who, allegedly, could not be put together again after his

great fall. In retrospect, one might perhaps say that a better expression for this theme is the

ravages of time rather than its arrow.

This present concept of irreversibility is different from that of time-asymmetry in at least

three respects. In the first place, for a ‘recovery’ the only thing that counts is the retrieval of

the initial state. It is not necessary that one specifies a process P ∗ in which the original process

is retraced step by step in the reverse order. In this respect, the criterion for reversibility is

weaker than that for time-symmetry, and irreversibility is a logically stronger notion than

time-asymmetry.

A second difference is that in the present concept, one is concerned with a complete re-

covery. As we shall see, Planck repeatedly emphasised that the criterium for a ‘complete

recovery’ of the initial state involves, not only the system itself, but also its environment, in

particular all auxiliary systems with which it interacted.

This reference to states of the environment of a system already lends a peculiar twist to

classical thermodynamics that we do not meet in other theories of physics.8 The problem is

that the theory aims at stating conditions which allow the introduction of the notions tem-

perature, entropy and energy, which are needed to characterise the thermodynamical state

of a system. This entails that one cannot assume —on pains of circularity— that (auxiliary

systems in) the environment already possess a thermodynamical state. We will meet several

instances where this problem raises its head.

However, assuming for the moment that it makes sense to attribute, at least formally,

a state Z to the environment, one may give a formal criterion for the present concept of

reversibility as follows. Since we are not interested in the intermediate stages of a process

here, we adopt an abbreviated representation. Let P be a process that produces the transition:

〈si, Zi〉 P−→ 〈s f , Z f 〉.

(Such an abbreviated representation of a process is often called a ‘change of state’.) Then P

8The reason for this is, again, that in thermodynamics processes are due to an external intervention on the system;
whereas in mechanics it is natural —or at least always possible— to study autonomous processes of a system which
is isolated from its environment. That is to say: even in those cases where interactions with external environment
occur it is in principle possible to include their mechanical behaviour into the description, in order to obtain a larger,
isolated system.
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Figure 1: Illustrating the distinction between time-(a)symmetry and irreversibility in the sense of irrecover-
ability. Consider some processes of a fictional system in an otherwise empty universe, characterised by the time
evolution of some quantity f . Process (a) is time-symmetric and recoverable; (b) is time-asymmetric and recov-
erable. The processes (c) and (d) are both time-asymmetric and irrecoverable. A theory allowing only these two
irrecoverable processes is time-symmetric.

is reversible iff another process P ′ is possible which produces the state change

〈s f , Z f 〉 P ′−→ 〈si, Zi〉.

The third respect in which Planck’s concept of irreversibility differs from time-asymmetry

concerns the notion of ‘possible’. As we shall see, Planck insisted that the ‘recovery process’

P ′ is available in our actual world, not merely in some model of the theory. That is, in the

question of whether the recovery of an initial state is possible, one wishes to obtain this

recovery in our actual world. The idea, e.g., that a return to our youth would be permitted by

a particular theory, (i.e. the theory allows a possible world in which it occurs) is a too meager

solace for those who would like to see the effects of ageing undone in the actual world.

In this reading, the notion of theoretically allowed models plays no role. In this respect,

recoverability is stronger than time-symmetry. Taking the first and third respect together,

we see that (ir)recoverability does not imply, and is not implied by time-(a)symmetry. See

Figure 1 for illustrations.

However, the thermodynamical literature also uses the term ‘reversible’ in yet another

meaning, which is not straightforwardly connected with the arrow of time at all. It is used
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to denote processes which proceed so delicately and slowly that the system remains close

to an equilibrium state during the entire process. This is comparable to, say, moving a cup

of tea filled to the brim, without spilling. We shall see in section 6 that this is the meaning

embraced by Clausius. Actually, it seems to be the most common meaning of the term, at

least in the physical and chemical literature; see e.g. (Hollinger and Zenzen 1985, Denbigh

1989). A modern and more apt name for this kind of processes is quasi-static.9

The present concept makes no direct reference to a direction of time. Indeed, the concept is

neutral with respect to time reversal, because the time reversal of a (non-)quasi-static process

is obviously again a (non-)quasi-static process. Still, one can easily see, at least roughly, how

the terminology arose. Indeed, for simple systems, thermodynamics allows all quasi-static

processes. That is to say, for any two equilibrium states s and t, and every smooth curve in

the space of equilibrium states which connects them, there always is a quasi-static process

(in an appropriate environment, of course) which always remains close to this curve, but

also one which closely follows the curve in the opposite direction (i.e. from t to s). In this

sense, the time reversal of a quasi-static process is allowed by the theory.10 This, clearly, is

why quasi-static processes are traditionally called reversible. This conclusion does not hold

generally for non-quasi-static curves, and, therefore, they are considered as irreversible.

Note that in the present sense, a process is ‘irreversible’ if and only if it involves non-

negligible deviations from equilibrium. Obvious examples are turbulence and life processes.

It is well-known that classical thermodynamics is inadequate to give a detailed description

of such processes (or, indeed, of their time reversal). From this perspective, Bridgman’s view

that thermodynamics has little to say about irreversible processes becomes less puzzling.

In fact, Bridgman is one of few authors who recognise a distinction between notions of

(ir)reversibility:

[. . . ] reversible engines and reversible processes play an important role in the conventional

thermodynamical expositions. I would like to make the comparatively minor point that

the emphasis on reversibility is somewhat misplaced. [. . . ] It is not the reversibility of the

process that is of primary importance; the importance of reversibility arises because when

9Yet another term employed for this type of process is adiabatic. This terminology probably originates from the
so-called ‘adiabatic theorem’ of P. Ehrenfest (1916). This usage is highly confusing, because in the terminology of
thermodynamics (which is adopted here) a process is called adiabatic if it takes place without heat exchange be-
tween the system and its environment. I note that Ehrenfest formulated his theorem for what he at first called
‘adiabatic-reversible changes’ (with reversible in the sense of quasi-static). A few pages later he dropped the ad-
jective ‘reversible’ as being superfluous when the process is periodic or quasi-periodic. (Obviously, he was now
interpreting reversible in the sense of recoverable.) As a result, ‘adiabatic’ became the stand-in terminology for
quasi-static.

10However, one should be careful not to take this statement literally. The ‘reversal’ of the quasi-static process is
generally not the exact time reversal of the original process, but remains close to it within a small error.
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we have reversibility, we also have recoverability. It is the recovery of the original situation

that is important, not the detailed reversal of steps which led to the original departure from

the initial situation. (Bridgman 1941, p. 122)

Note, however, that at the same instant at which he makes the distinction Bridgman also

draws a close connection between the two: he claims that reversibility implies recoverability.

We shall see later that this inference is incorrect.

The above discussion of meanings of irreversibility is not exhaustive. Part of the physi-

cal literature on (ir)reversibility employs the term in order to denote (in)determinism of the

evolutions allowed by a theory. A deterministic process is then called reversible because the

evolution Ut : s → Ut(s) = st is an invertible mapping (Landauer 1961, Mackey 1992). In-

deterministic evolutions arise in classical mechanics in the description of open systems, i.e.

systems that form part of a larger whole, whose degrees of freedom are not included in the

state description.

Indeed, one important approach to the foundations of thermal and statistical physics aims

at explaining irreversibility by an appeal to open systems (Bergmann and Lebowitz 1955,

Davies 1976, Lindblad 1983, Ridderbos and Redhead 1998). In this article, however, this view

is not discussed.11 Other ramifications, even farther removed from our subject, can be found

in the literature on the so-called ‘principle of microscopic reversibility’.

In his the Nature of the Physical World Eddington introduced the catch phrase ‘the arrow

of time’. Actually he employed the term as a metaphor that could cover the whole array

of themes discussed above. It is perhaps best to follow him and use the ‘arrow of time’ as a

neutral term encompassing both time-asymmetry and irreversibility.

4 THE PREHISTORY OF THERMODYNAMICS: CARNOT

Sadi Carnot’s Réflexions sur la Puissance motrice du Feu appeared in 1824. It was this work

which eventually led to the birth of thermodynamics. Still, Carnot’s memoir itself does

not belong to what we presently understand as thermodynamics. It was written from the

point of view that heat is an indestructible substance, the so-called calorique. This assump-

tion proved to be in conflict with empirical evidence.12 However, Carnot’s main theorem did

11Yet it is somewhat ironic that, whereas some of the above formulations of the second law pertains exclusively to
isolated systems, this view regards it as essential condition for irreversible processes that the system is interacting
with an environment.

12After his death, papers were found in which Carnot expressed doubt about the conservation of heat. These
notes were only published in 1878 and did not influence the factual development of the theory.
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agree with experience. Classical thermodynamics was born from the attempts around 1850

to save Carnot’s theorem by placing it on a different footing.

Even though Carnot’s work does not belong to thermodynamics proper, it is important

for our purpose for three reasons. First, his theorem became, once encapsulated in that later

theory, the first version of a second law. Secondly, the distinction between reversible and

irreversible processes can already be traced back to his work. And most importantly, many

commentators have claimed that Carnot’s work already entails an arrow of time.

Carnot was concerned with heat engines: devices which operate in a cycle and produce

work by absorbing heat from one heat reservoir (the ‘furnace’) with high temperature θ1 and

ejecting heat in another (the ‘refrigerator’) with a lower temperature θ2. Both reservoirs are

assumed to be so large that their state is unaltered by their heat exchange with the engine.

The engine is then capable of repeating the cycle over and over again.

The operation of such an engine is comparable to that of a water mill: its power to produce

work results from the transport of heat from high to low temperature, just as a mill works

by transporting water from a higher to a lower level. And just as the mill does not consume

water, no more does the heat engine reduce the amount of calorique.

Naturally, Carnot was interested in the efficiency of such heat engines: i.e., the ratio of

the total work produced during a cycle and the amount of heat transported from the furnace

to the refrigerator. He obtained a celebrated result, which in a modern formulation, can be

stated as follows:13

CARNOT’S THEOREM: Let the furnace and refrigerator temperatures θ1 and θ2 be given

(with θ1 > θ2). Then:

(i) all heat engines operating in a reversible cycle have the same efficiency. Their efficiency

is therefore a universal expression depending only on the temperatures θ1 and θ2.

(ii) all other heat engines have an efficiency which is less than or equal to that obtained by

reversible cycles.

Thus, the efficiency obtained by the reversible cycle is a universal function, often called the

Carnot function: C(θ1, θ2).

Carnot obtained his theorem from a principle that states the impossibility of a perpetuum

mobile: it is not possible to build an apparatus that produces an unlimited amount of work

without consumption of calorique or other resources.14

13An elaborate analysis and reconstruction of his argumentation has been given by Truesdell and Baharatha
(1977),Truesdell (1980). This reconstruction differs, however, from the formulation adopted here. See also foot-
note 16 below.

14Carnot’s principle states the impossibility of what is today called the ‘perpetuum mobile of the first kind’. This
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His argument is a well-known reductio ad absurdum: If there were a heat engine A,

performing a reversible cyclic process between the reservoirs with temperatures θ1 and θ2,

having less efficiency than some other engine B, which also performs a cycle between these

two reservoirs, then we should be able to combine them in a composite cycle in which the

reversible engine A is employed backwards, pumping the same amount of heat from the

refrigerator back into the furnace, that B had used in producing work. But since A is assumed

to have a lower efficiency, it needs less work to restore the heat to the furnace than produced

by B. In other words, we would obtain a surplus of work, which can be used for any purpose

we like. Moreover, this composite process is cyclic, because both engines and heat reservoirs

return to their initial states. It is can thus be repeated as often as we like, and we would have

constructed a perpetuum mobile.

The most striking point about this theorem, at least for Carnot himself and for those who

continued his work, was the implication that the maximum efficiency should be independent

of the medium used in the heat engine. It remains the same, whether the engine employs

steam, air, alcohol or ether vapour, etc. This was not at all obvious to his contemporaries.

The obvious next question is then to determine the function C(θ1, θ2). Because the effi-

ciency of a reversible cyclic process is independent of the construction of the engine or details

of the process, one may restrict attention to the simplest version: the Carnot cycle. This is a

reversible cyclic process consisting of four steps: two isothermal steps, where heat exchange

takes place with the reservoirs of temperature θ1 and θ2, alternating with two steps in which

the system is adiabatically isolated.

Carnot realised that the analogy with the water mill could not be stretched too far. Thus,

while the maximal efficiency of a mill depends only on the difference in the height of the

levels, we have no grounds for assuming that the efficiency of a Carnot cycle simplifies to a

function of θ1 − θ2 alone.

To avoid this difficulty, Carnot specialised his consideration to Carnot cycles where the

heat reservoirs have infinitesimally different temperatures θ and θ + dθ. Let the efficiency of

such a cycle be µ(θ)dθ where

µ(θ) :=
∂C(θ, θ2)

∂θ2

∣∣∣∣
θ2=θ

. (2)

fact is remarkable because it has often been claimed that this principle immediately entails the first law of thermo-
dynamics (Joule’s principle of equivalence of work and heat), e.g. by Von Helmholtz (1847) and Planck (1897). The
caloric theory employed by Carnot, which violates the first law, is a manifest counterexample for this claim.
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Assuming the cycle is performed on an ideal gas, he obtained the result:

µ(θ) =
R
Q

log
V2

V1
, (3)

where Q is the amount of heat absorbed by the gas when its volume is expanded from V1 to

V2 at constant temperature θ, and R is the gas constant. Thus, µ(θ) can be determined from

experimentally accessible quantities. This is the closest Carnot got to the actual determination

of C(θ1, θ2).

The main question for my purpose is now to what extent the work of Carnot is connected

with the arrow of time. I cannot find any passage in his work in which he mentions such a

connection. But it is true that his theorem introduced the dichotomy between two types of

cycles, which are today called ‘reversible’ and ‘irreversible’. However, he does not actually

use these terms.15 So we should be cautious about the meaning of this dichotomy in this

context.

In actual fact, Carnot’s own discussion starts by giving an explicit description of a Carnot

cycle for steam. In passing, he mentions that: ‘The operations we have just described might

have been performed in an inverse direction and order (Mendoza, 1960, p.11).’ Next, he

formulates his theorem by claiming that ‘the maximum of motive power resulting from

the employment of steam is also the maximum of motive power realizable by any means

whatever.’ (ibid. p. 12)

However, he realised that a more precise formulation of this conclusion was desirable. He

continued:

We have a right to ask, for the proposition just enunciated, the following questions: what

is the sense of the word maximum? By what sign can it be known that this maximum is

attained? By what sign can it be known whether the steam is employed at the greatest

possible advantage in the production of motive power? (ibid. p. 12)

In answer to this question, he proposes a necessary and sufficient criterion (Mendoza 1960,

p. 13): it should be avoided that bodies of different temperature come into direct thermal

contact, because this would cause a spontaneous flow of heat. In reality, he says, this criterion

cannot be met exactly: in order to exchange heat with a reservoir the temperature of the

system needs to be slightly different from that of the reservoir. But this difference may be as

small as we wish, and therefore we can neglect it. In modern terms: the condition is that the

process should be quasi-static at all stages which involve heat exchange.

15The name ‘reversible’ is apparently due to Kelvin (1851).
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Carnot explicitly mentions cases where the condition is not met (p. 12,14), and argues that

the spontaneous heat flow occurring there is unaccompanied by the production of work, and

that thus motive power is lost, just as in a mill that spills its water.

Accordingly, even at this early stage, there are two plausible options for a definition of the

‘reversible cycle’. Either we focus on the property of the Carnot cycle that it can also be run

backwards, and use this as a definition. This is the option later chosen by Kelvin in 1851. Of

course, this is a natural choice, since this property is essential to the proof of the theorem. Or

else, one can view the necessary and sufficient condition which Carnot offers as a definition

of reversibility. As we shall see, this is more or less the option followed by Clausius in 1864.

In that case, a cyclic process is by definition irreversible if, and only if, it involves a direct

heat exchange between bodies with different temperature.

However this may be, let me come back to the main question: does Carnot’s work imply

an arrow of time, either in the sense of time-asymmetry, or in the sense of irrecoverability?

Let us take these questions one by one.

Is Carnot’s theory time-asymmetric? That is: does it allow the existence of processes while

prohibiting their time reversal? And more precisely, are the above irreversible cycles exam-

ples of such processes? The answer to the first question is easy. Carnot’s principle forbids

devices which produce work without consuming some kind of resources. It has no qualms

about their time reversals, i.e. devices that consume work without producing any effect, or

leaving any trace on other resources. We conclude that the theory is time-asymmetric.

The answer to the last-mentioned question, however, is less obvious. Still, I think it is

affirmative. Consider some cycle C which violates Carnot’s criterion, and may therefore be

called ‘irreversible’. This cycle has less than maximum efficiency. Now, suppose that its

time reversal C ∗ is also allowed. Does this entail a contradiction? We may assume that the

efficiency of the reverse process C ∗ is the same as that of C . After all, process C ∗ would not be

considered as the reversal of C , unless it requires the same amount of work to transport the

same amount of heat back to the furnace. Its efficiency is therefore also less than maximal.

Clearly, the supposition that C ∗ exists does not by itself violate Carnot’s theorem. However,

we do obtain a contradiction by a very similar argument. Indeed, the cycle C ∗ operates

as a heat pump. Thus, ‘less than maximum efficiency’ means that it requires less work to

transport a given amount of heat from the refrigerator into the furnace than a Carnot cycle.

Hence, combining the heat pump C ∗ with a Carnot cycle in ordinary mode one obtains a

perpetuum mobile of the first kind. Thus C ∗ is not allowed by this theory.16

16 I note, however, that Truesdell and Baharatha (1977) and Truesdell (1980) reach the opposite conclusion. They
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Yet it seems to me that Carnot’s work gives no indications of an irreversibility of physical

processes, in the sense of irrecoverability discussed in section 3. In the first place, Carnot’s

theory does not imply the existence of irreversible processes: his principle and theorem

would remain equally valid in a world were all cyclic processes have maximum efficiency.

However, this is clearly not the world we live in. Carnot explicitly acknowledged, that as a

matter of fact, irreversible cycles do exist, and that, moreover, it is rather the reversible cycle

which is an ideal that cannot be constructed in reality.

Even so, even if we accept this fact, it is not evident whether these irreversible processes

bring about irrecoverable changes. Carnot is concerned only with cycles. At the end of a

cycle, all changes in the system have become undone, even if the cyclic process was (in his

sense) irreversible. There is no question of a quantity of the system that can only increase. The

only option for find irreversible (irrecoverable) changes must then lie in the environment, i.e.

in the heat reservoirs employed. But these are conceived of as buffers of fixed temperature,

whose states do not change as a result of the working of the engine.

I admit that it is possible to adopt a more liberal reading of the link between Carnot’s

work and irreversibility. The spontaneous flow of heat, arising when two bodies of different

temperatures come in thermal contact constitutes, in his words, a ‘loss of motive power’

(p.13, 14). One may think that this denotes a loss in the course of time; i.e. that during the

operation of an irreversible cycle, motive power somehow disappears. In this reading —

adopted e.g. by Kelvin, and also by later commentators e.g. Brush (1976)— the power of

the reservoirs to produce useful work is decreased by irreversible cycles. Irreversible cyclic

processes thus bring about irrecoverable changes: a ‘degradation’ of energy from useful to

less useful forms.17

Apart from the fact that it is hard to make this reading precise, in view of the construal

of the reservoirs as unchanging buffers, there is to my eyes a more natural explanation of

argue that Carnot implicitly relied on a background theory of calorimetry, which involves standard differential
calculus for heat and work and in which processes are always representable as differentiable curves in some state
space. They call this ‘the doctrine of specific and latent heat’. Truesdell points out that all processes which can be
handled by this approach are by definition reversible (by which he means that the curve can be traversed in either
direction). Thus, their reconstruction of Carnot’s theory is completely time symmetric. As a consequence, Truesdell
denies that the dichotomy between cycles with maximum efficiency and those with less than maximal efficiency
should be identified with that between reversible and irreversible processes. His interpretation of Carnot’s theorem
is rather that it states that Carnot cycles attain the maximum efficiency among all those reversible cycles where θ1
and θ2 are the extreme temperatures; see (Truesdell 1980, p. 117,168,303) for details.

17The problem is here, that one would like to see this change in the environment reflected in the state of the heat
reservoirs. There are specific cases were this is conceivable. For example, consider a case where the heat reservoirs
are systems of two phases, say a water/ice mixture and a liquid/solid paraffine mixture. These heat reservoirs
maintain their fixed temperature, while at the same time, one can register the heat absorbed or lost by the heat
reservoir by a shift of the boundary surface between the two phases. However, it is not easy to generalise this to
arbitrary heat reservoirs.
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these passages. One can understand the term ‘loss’ as expressing only the counterfactual

that if an ideal, reversible machine had been employed, a higher efficiency would have been

achieved. There is only loss in an irreversible cyclic process in the sense that the potential of

the heat reservoirs to produce work has not been fully exploited. We are then concerned with

a comparison of the actual irreversible cycle and another reversible cycle in a possible world,

not with irretrievable changes in this world.

But even if one accepts the liberal view, we still cannot say, in my opinion, that this ir-

reversibility is a consequence of the theorem of Carnot. Maybe a comparison with mechanics

clarifies the point. The first law of Newtonian mechanics states that a free body persists in

a state of uniform rectilinear motion. But free bodies are, just like the reversible cyclic pro-

cess of Carnot, only an idealisation. ‘Real’ bodies, as is often said, always experience friction

and do not persevere in a state of uniform motion. In fact, in the long run, they lose their

speed. Here too, if one so desires, one can discern an irreversibility or one-sided tendency of

nature.18 But even so, it is clear that this view is an addition to, and not a consequence of,

Newton’s first law. Similarly, the idea that the reversible cycle is only an idealisation, and all

actual cycles are irreversible, is an addition to and not a consequence of Carnot’s theorem.

Another argument to the same effect is the following. If Carnot’s theory implies irre-

versibility then this should also be the case when we actually apply it to water mills. The

theorem that all reversible water mills operating between two given water levels have the

same efficiency (and that this efficiency is larger than that of any irreversible mill) can be ob-

tained by an analogous argument. But there are few authors willing to draw the conclusion

that there is an arrow of time in purely mechanical/hydrodynamical systems; even if such a

hydrodynamical arrow is also not excluded by this theorem (e.g. the principle: ‘water always

seeks the lowest level’).

5 CLAUSIUS AND KELVIN

5.1 THE INTRODUCTION OF THE SECOND LAW

The main contributions towards the development of thermodynamics are those by Kelvin (W.

Thomson) and Clausius.19 Kelvin had noted in 1848 that Carnot’s theorem allows the design

of an absolute scale for temperature, i.e. a scale that does not depend on the properties of

18One can even adduce the authority of Newton himself for this point of view: ‘Motion is much more apt to be
lost than got and is always on the decay’; (cited by (Price 1996, p. 23)).

19Of course the work of several other authors was also highly significant, such as Rankine, Reech and Clapeyron.
And although I agree with those historians who argue that the role of these lesser-known authors is commonly
underestimated in the traditional historiography of thermodynamics, I will not attempt to do justice to them.
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some special substance (water, mercury, alcohol, the ideal gas). But at this time, he was still

convinced of the caloric view of heat which Carnot had adopted.

The birth of the second law, or indeed of thermodynamics itself, is usually located in an

article by Clausius (1850). In this work one finds, for the first time, a clear rejection of the

conservation of heat, while the validity of Carnot’s theorem is maintained. Clausius showed

that this theorem could also be derived from another argument, in which the conservation of

heat was replaced by the equivalence principle of Mayer and Joule, stating that from work

heat can be produced, and vice versa, with a universal conversion rate (J =4.2 Nm/Cal). This

is the ‘first law’ of thermodynamics.

In order to obtain Carnot’s theorem the argument employing the perpetuum mobile had

to be adapted. Clausius’ reasoning assumed the impossibility of what we today call the

perpetuum mobile of the second kind: a periodically operating machine producing no other effect

but the transport of heat from a lower to a higher temperature.

The argument rests, just like Carnot’s, on a reductio ad absurdum. If Carnot’s theorem

were false, Clausius argues, we could build a combined machine that works in a cycle and

whose only effect would be that heat is transported from a cold to a hot reservoir. But this

would be absurd, says Clausius, because:

[. . . ] das widerspricht dem sonstigen Verhalten der Wärme, indem sie überall das Bestre-

ben zeigt, vorkommende Temperaturdifferenzen auszugleichen und also aus den wärmeren

Körpern in die kaltern uberzugehen20 (Clausius 1864a, p. 50).

This particular statement of Clausius is often regarded as the first formulation of the second

law. But, remarkably, Clausius offers the statement more or less en passant, as if it were

obvious, and not as a new principle or law in the theory.21 According to the view of this

paper, there are indeed two fundamental laws (Grundsätzen) for the theory. But they are: (i)

the Joule-Mayer principle and (ii) a (somewhat obscure) formulation of what he takes to be

Carnot’s theorem:

Der Erzeugung von Arbeit [entspricht] als Aequivalent ein blosser Uebergang von Wärme

aus einem warmen in einen kalten Körper22 ((Clausius 1864a, p. 48)).

In the context, he makes clear that this equivalence is intended to refer to the maximum

amount of work that can be produced in a cycle by a heat transfer between two reservoirs of

20‘[. . . ]this contradicts the further behaviour of heat, since it everywhere shows a tendency to smoothen any oc-
curring temperature differences and therefore to pass from hotter to colder bodies.’

21The passage is apparently so inconspicious that in a recent compilation of historical papers on the second law
(Kestin 1976) this article by Clausius is abridged before the author had a chance to state his seminal contribution.

22The production of work [has] as its equivalent a mere transition of heat from a warm into a cold body.’

23



given temperatures. The previous statement about the natural behaviour of heat is only an

element in his argument to establish this ‘zweiten Grundsatz’.

Note that although Clausius’ argument in order to establish this theorem only deals with

cyclic processes, his statement about the natural behaviour of heat flow does not explicitly

mention this restriction (and nor does his version of Carnot’s theorem). This is our first

indication that the second law might develop into something more general.

One year later, Kelvin (1851) also accepted the validity of the first law, and similarly

sought to put Carnot’s theorem on this new footing. In his article On the Dynamical Theory of

Heat he paraphrased Clausius’ argument, and raised his incidental remark to an axiom:

It is impossible for a self-acting machine, unaided by any external agency, to convey heat

from one body to another at a higher temperature(Kelvin) 1882, p. 181).

He also formulated a variant by means of which Carnot’s theorem could likewise be ob-

tained:

It is impossible, by means of inanimate material agency, to derive mechanical effect from

any portion of matter by cooling it below the temperature of the coldest of the surrounding

objects (ibid. p. 179).

Either of these axioms allows one to derive what Kelvin calls ‘the second fundamental

proposition’ of the theory:

PROP. II. (Carnot and Clausius) If an engine be such that, when it is worked backwards, the

physical and mechanical agencies in every part of its motions are all reversed, it produces

as much mechanical effect as can be produced by any thermo-dynamic engine, with the

same temperatures of source and refrigerator, from a given quantity of heat (ibid. p.178).

This is a clear formulation of the first part of Carnot’s theorem, i.e. the part pertaining to

reversible cycles.23 In fact, Kelvin introduces this term here, referring to the condition men-

tioned above as the ‘condition of complete reversibility’.

Kelvin then applies this proposition to an infinitesimal Carnot cycle performed on an

arbitrary fluid, where the temperature varies between θ and θ + dθ, and the volume between

V and V + dV. He shows that the function (2) can be written as

µ(θ) =
1

M(V, θ)
∂p(V, θ)

∂θ
, (4)

23Although Kelvin does not explicitly mention the restriction to cyclic processes, this restriction was intended.
At the beginning of the article he writes: ‘Whenever in what follows, the work done or the mechanical effect produced
by a thermo-dynamic engine is mentioned without qualification, it must be understood that the mechanical effect
produced, either in a non-varying machine, or in a complete cycle, or any number of complete cycles of a periodical
engine, is meant.’ (Kelvin 1851b, p. 177).
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where M is the latent heat capacity.24 He calls this result the ‘complete expression’ of ‘the

second fundamental proposition’ (ibid. p. 187) and emphasises the remarkable fact that the

right-hand side of (4) is the same for all substances at the same temperature.

Next, Kelvin considers Carnot cycles with a finite range of variation for temperature and

volume. He analyses these cycles into an infinite number of cycles operating in an infinitesi-

mal temperature range. Integrating the above result, he obtains the following expression for

the ratio of the work produced by the engine and the heat supplied by the source (i.e. the

Carnot function):

C(θ1, θ2) =
W
Q

= J
(

1 − exp
(
−1

J

Z θ2

θ1

µ(θ)dθ

))
.

Choosing the absolute temperature scale T(θ) such that

T(θ) = exp
1
J

Z θ

θ0

µ(θ′)dθ ′

(a step only taken by Kelvin in 1854) and units such that J = 1, the result takes the simpler

and more familiar form:
W
Q

= 1− T(θ2)
T(θ1)

= 1− T2

T1
. (5)

The rest of his article is mainly devoted to an attempt to determine the values of
R
µ(θ)dθ

from the steam tables collected in the experiments by Regnault.

Thus, for Kelvin too, the ‘second fundamental proposition’ of the theory is still the Carnot

theorem, or its corollaries (4) and (5) for Carnot cycles. The axioms only serve to derive these

propositions. But today nomenclature has shifted. The two axioms are usually themselves

seen as versions of ‘the second law’. They are commonly presented as follows (see e.g. (Born

1921, Zemansky 1937, Buchdahl 1966)).

CLAUSIUS’ PRINCIPLE: It is impossible to perform a cyclic process which has no other

result than that heat is absorbed from a reservoir with a low temperature and emitted into

a reservoir with a higher temperature.

KELVIN’S PRINCIPLE: It is impossible to perform a cyclic process with no other result than

that heat is absorbed from a reservoir, and work is performed.

The most striking difference from the original formulation is obviously that the explicit ex-

clusion by Kelvin of living creatures has been dropped. Another important point is that they

are concerned only with cyclic processes. It is not hard to devise examples in which heat

24That is, M(V, θ)dV is the amount of heat the system takes in when its volume is changed from V to V + dV at
constant temperature θ.
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is transmitted from a lower to a higher temperature, or used up as work, when the condi-

tion that the system returns to its original state is dropped. A further noteworthy point is

the clause about ‘no other result’. A precise definition of this clause has always remained a

difficult issue, as we shall see in later sections. Another question is the definition of a heat

reservoir.25

Kelvin already claimed that these two formulations of the second law were logically

equivalent. An argument to this effect can be found in almost all text books: one shows

that violation of one principle would lead to the violation of the other, and vice versa. It

took three-quarters of a century before Ehrenfest-Afanassjewa (1925,1956) noticed that the

two formulations only become equivalent when we add an extra axiom to thermodynamics,

namely that all temperatures have the same sign. When we allow systems with negative ab-

solute temperature —and there is no law in thermodynamics that disallows that— one can

distinguish between these two formulations. Her observation became less academic when

Ramsey (1956) gave concrete examples of physical systems with negative absolute tempera-

tures.26

With hindsight, it is easy to see that the two formulations are not equivalent. Clausius’

principle makes recourse to the distinction between low and high temperature. That is to

say, his formulation makes use of the idea that temperatures are ordered, and it is therefore

sensitive to our conventions about this ordering. If, for example we replace T by −T the

statement is no longer true. The modern formulation of Kelvin’s principle on the other hand

only mentions the withdrawal of heat from a reservoir and does not rely on the ordering of

temperatures. This principle is thus invariant under a change of conventions on this topic.

How is it possible that so many books prove the equivalence of these two formulations?

A short look at the argumentation makes clear where the weak spot lies: one argues e.g.

that the violation of Clausius’ formulation implies the violation of Kelvin’s formulation by

coupling the ‘anti-Clausius engine’ to a normal Carnot cycle. Such a coupling is assumed to

be always possible without restriction. The idea is apparently that everything which has not

25Hatsopoulos and Keenan (1965, p. xxv) argue that the definition of the concept of a heat reservoir can only be
given such a content that the second law becomes a tautology. Although I have doubts about this claim I agree that
the question of the definition of a heat reservoir is not trivial. The most natural conception seems to be that a heat
reservoir is a system in thermal equilibrium which can take in or give off a finite amount of heat without changing
its temperature or volume. This means that it must have an infinite heat capacity. The question is then whether
the thermodynamical state of such a system changes if it absorbs or emits heat, and how this can be represented
theoretically. That is, if an infinite heat reservoir exchanges a finite quantity of heat, does its own state change or
not?

26Ehrenfest-Afanassjewa argued that when we allow systems with both positive and negative temperatures the
principle of Clausius, but not that of Kelvin is violated. At present, common opinion seems to be the opposite (Ram-
sey 1956, Marvan 1966).
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been said to be impossible must be possible. But in an unusual application (such as a world

in which negative temperatures occur) such an assumption is not at all evident.

However this may be, let us return to the main theme of our essay. What are the impli-

cations of the second law for the arrow of time in the early papers of Clausius and Kelvin?

If we consider their own original statements (the ‘zweite Grundsatz’ of 1850 or the ‘second

fundamental proposition’ of 1851), there is none. For these are just statements of the part of

Carnot’s theorem concerning reversible cycles. This part is time-symmetric.

But what if we take the more modern point of view that their formulation of the second

law is to be identified with Clausius’ and Kelvin’s principle? We can largely repeat the earlier

conclusions about the work of Carnot. Both are explicitly time-asymmetric: they forbid the

occurrence of cyclic processes of which the time reversals are allowed. It is much harder to

connect them to the idea of irreversibility. Both versions refer exclusively to cyclic processes

in which there occur no irrecoverable changes in the system. The only option for finding

such changes must lie in the environment. But also in the work of Kelvin and Clausius it

is not clear how the environment can be described in thermodynamical terms.27 A connec-

tion with this aspect of the arrow of time is therefore simply not present at this stage of the

development of the second law.

Also the negative character of both formulations gives rise to this conclusion. Brush ob-

serves that ‘it is clear that both [Kelvin’s and Clausius’ principles] are negative statements

and do not assert any tendency toward irreversibility’ (Brush 1976, p. 571). The objection is

here that these versions of the law would also be valid in a world in which all cyclic processes

were reversible.

6 FROM THE STEAM ENGINE TO THE UNIVERSE (AND BACK AGAIN)

6.1 UNIVERSAL DISSIPATION

After the original introduction in 1850/1851 by Clausius and Kelvin the second law under-

went a number of transformations before it was given the form in which we recognise it

today, i.e. as the entropy principle. A development which, indeed, is no less impressive

27The conceptual problem that is created when the properties of the environment (a heat reservoir or perhaps the
whole universe) play a role in the argument is —with some sense of drama— expressed by Truesdell: ‘This kind
of argument [requires that ] properties of the environment are specified along with the properties of the bodies on
which it acts. Here the environment is not described by [the theory], so there is no place in the formal argument
where such a proof [. . . ] could start. [. . . ] Mathematicians instinctively reject such arguments, because they stand
above logic. [. . . ] This is the point in history where mathematics and physics, which had come together in the
sixteenth century, began to part company’ (Truesdell 1980, p. 98).
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than the psychological development of Macbeth, where the loyal and rather credulous gen-

eral evolves into a suspicious and cruel tyrant. Here too, the metamorphosis starts with the

prophecy of a foul future.

In 1852 Kelvin proposed the view that there exists a one-sided directedness in physical

phenomena, namely a ‘universal tendency in nature to the dissipation of mechanical energy’,

and argued that this is a necessary consequence of his axiom. He expressed this tendency in

the following words:

I. When heat is created by a reversible process (so that the mechanical energy thus spent

may be restored to its primitive condition), there is also a transference from a cold body

to a hot body of a quantity of heat bearing to the quantity created a definite proportion

depending on the temperatures of the two bodies.

II. When heat is created by an unreversible process (such as friction) there is a dissipation

of mechanical energy, and a full restoration of it to its primitive condition is impossible.

III. When heat is diffused by conduction, there is a dissipation of mechanical energy, and

perfect restoration is impossible.

IV. When radiant heat or light is absorbed, otherwise than in vegetation, or in chemi-

cal action, there is a dissipation of mechanical energy, and perfect restoration is impossi-

ble (Kelvin 1852).

He then considers the question how much energy is dissipated by friction when steam is

compressed in a narrow pipe, and estimates that even in the best steam engines no less than

3/4 of the available motive power is wasted. He draws from this and other unspecified

‘known facts with reference to the mechanics of animal and vegetable bodies’ the conclusions:

Any restoration of mechanical energy, without more than an equivalent of dissipation is

impossible in inanimate material, and probably never effected by organized matter, either

endowed with vegetable life or subjected to the will of an animated creature.

Within a finite period of time past, the earth must have been, and within a finite time to

come the earth must again be, unfit for the habitation of man as presently constituted,

unless operations have been, or are to be performed, which are impossible under the laws

to which the known operations going on at present in the material world are subject.

Here a number of important themes in the debate on the thermodynamical arrow of time

meet. It is the first time in the history of thermodynamics that a universal tendency of natural

processes is mentioned, and attributed to the second law. Thus this law obtains a cosmic

validity and eschatological implication: the universe is heading for what later became known
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as the ‘heat death’.28 All but one of the aspects that make the second law so fascinating and

puzzling are present in this short paper, the only exception being the concept of entropy.

At the same time the logic of Kelvin’s argumentation is astonishing. Many commentators

have expressed their surprise at his far-reaching conclusions about the fate of humankind

immediately following his consideration of the steam pipe. Further, his claim that the uni-

versal tendency towards dissipation would be a ‘necessary consequence’ of his axiom, is not

supported with any argument whatsoever.29 Instead, he simply reinterprets Carnot’s theo-

rem as ‘Carnot’s proposition that there is an absolute waste of mechanical energy available

to man when heat is allowed to pass from one body to another at a lower temperature, by

any means not fulfilling his criterion of a “perfect thermo-dynamic engine” ’. Kelvin thus

apparently adopts the ‘liberal’ reading of Carnot that we discussed in section 4. His addition

of the phrase ‘available to man’ blocks an otherwise reasonable reading of ‘waste’ in terms of

a comparison between possible worlds.

Note that Kelvin now uses the terms ‘reversible/unreversible’ in a sense which is com-

pletely different from that of the ‘condition of reversibility’ in his 1851 paper. He does not

consider cyclic processes but instead processes in which the final state differs from the ini-

tial state. Such a process is ‘unreversible’ if the initial state cannot be completely recovered.

A cyclic process is therefore by definition reversible in the present sense, even if it is irre-

versible in the sense of Carnot. Obviously the necessary and sufficient criterion of Carnot for

reversibility is no longer applicable to Kelvin’s 1852 usage of the term.30

6.2 THE SECOND LAW IN MATHEMATICAL, MODIFIED, ANALYTICAL AND EXTENDED FORM

In 1854 Kelvin published another instalment of his Dynamical Theory of Heat. Here he adopts

the absolute temperature scale defined in terms of the Carnot function, leading to the result

(5) for the Carnot process. If Q1 and Q2 denote the quantities of heat exchanged with the heat

28Parenthetically it may be remarked that Kelvin presented his conclusion in time-symmetric form: ‘. . . must have
been . . . and must again be. . . ’. The idea is here probably that the temperature differences on earth were too large in
the past and will be too small in the future to sustain life.

29The only explanation for this omission I can think of is that Kelvin thought that the implication had already
been demonstrated. Indeed one finds in his earlier article of 1851 (§22) in discussing the case of a non-ideal machine
the remark that the heat is only partly used for a useful purpose, ‘the remainder being irrecoverably lost to man,
and therefore “wasted,” although not annihilated.’ Here the idea of irrecoverable dissipation is apparently already
present. A draft of this article is even more explicit about his belief in the universal directedness: ‘Everything in the
material world is progressive’ ((Kelvin 1851a)). But here he does not connect this opinion with the second law. See
also the passage in Kestin (p. 64 = Kelvin 1849). Recent historical work suggests that Kelvin’s view on dissipation is
to be explained by his religious convictions (Russell 1981, Smith and Wise 1989).

30Note too that Kelvin does not consider the recovery of the state of the system but rather of the form of energy.
The idea that irreversibility is a characteristic aspect of energy remained alive for a long time, e.g. in the shape of the
principle of ‘degradation’ of energy. It was more or less extinguished by Planck.
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reservoirs, with Q1 = W + Q2, we can write this as

Q1

T1
− Q2

T2
= 0 (6)

Adopting the convention to take the sign of heat positive when heat is taken in by the system,

and negative when it is emitted, this becomes

Q1

T1
+

Q2

T2
= 0. (7)

He then expands the consideration to a reversible cyclic process of a system which can ex-

change heat with an arbitrary number of heat reservoirs, and obtains the result:

∑
i

Qi

Ti
= 0. (8)

He concludes:

This equation may be regarded as the mathematical expression of the second fundamental

law of the dynamical theory of heat (p. 237).

In a following instalment (part VII, from 1878) he even calls the result (8): ‘the full expression

of the Second Thermodynamic Law’ (Kelvin 1882, p. 295).

Thus, once again, the second law in Kelvin’s formulation, remains a time-symmetric state-

ment, that only pertains to reversible cycles. His doctrine of universal dissipation apparently

plays no role whatsoever!

Clausius too developed his point of view. Also in 1854, he presented a ‘modified version’

of the second law (now called: Hauptsatz). He put it in the form:

Es kann nie Wärme aus einem kälteren in einen wärmeren Körper übergehen, wenn nicht

gleichzeitig eine andere damit zusammenhängende Aenderung eintritt.31(Clausius 1864a,

p. 134)

The fact that Clausius offers this statement, which is closely related to what he had already

written in 1850, as a modified formulation of the second law underlines that at that time he

had not regarded this as a law. Nevertheless, his present formulation is indeed modified:

instead of a sweeping but vague statement about the natural tendency of heat to flow from

a hot to a cold body, he now says that heat never flows from cold to hot unless there is some

31‘Heat cannot of itself pass from a colder to a hotter body without some other change, connected herewith,
occurring at the same time.’
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accompanying change. Unfortunately, it remains unclear what one should understand by

such changes.

He then considers, just like Kelvin, reversible cycles in which a system exchanges heat

with an arbitrary finite number of heat reservoirs of different temperatures Ti and obtains

the equation (8) by an analogous argument.32 Clausius calls Qi/Ti the ‘equivalence value’

(‘Aequivalenzwerth’), of the heat exchange, and he reads the equation (8) as expressing that

the heat absorbed and ejected in a Carnot process possess equal equivalence value.

Clausius also discusses the case in which the heat reservoirs undergo a temperature

change during the cyclic process. In this case he replaces the sum by an integral:

I dQ
T

= 0 (9)

This is his ‘analytical expression’ of the second law for reversible (umkehrbare) cyclic pro-

cesses.33

In this formulation, T stands for the temperature of the heat reservoir with which the sys-

tem exchanges the heat dQ. But, because of Carnot’s criterion, the cyclic process is reversible

if and only if the heat reservoir and system have the same temperature during the exchange.

Thus, if the system has a uniform temperature, the integral can be considered as referring to

the system by itself, and no longer to properties of the heat reservoirs.

At the end of this paper (Clausius 1864a, p. 151) Clausius gives a brief treatment of irre-

versible (nicht umkehrbare) cyclic processes, for which case he obtains the equation

I dQ
T

≤ 0. (10)

His argument is as follows: for an umkehrbar cyclic process the result (9) rests on the argument

that according to the modified version of the second law the integral cannot be positive.

The reversed cyclic process, where the integral has the opposite sign, must also satisfy this

condition, and the integral is therefore also not negative. Therefore it must vanish. In the

case of the nicht umkehrbar cyclic process the second part of this argument is not applicable,

but the first part remains valid. Hence we obtain (10).

32The only distinction between Clausius and Kelvin is that at this time the former did not accept Kelvin’s definition
for absolute temperature and therefore uses an indefinite function f (θ) instead of T. He restricts himself to a cyclic
process for an ideal gas, and expresses as a conjecture that f (θ) ∝ pV.

33Clausius had no special notation for cyclic integrals or non-exact differentials and wrote the left-hand side of (9)
as

R dQ
T .
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A further paper (Clausius 1862) presents what in his collected work is referred to as the

‘extended form’ of the second law. Here, he studies processes where the final state of the

system differs from the initial state. For convenience I will call these ‘open processes’. For this

purpose Clausius needs a number of assumptions about the possible change of states of that

system, and hence about its internal constitution. He characterizes the state of the system by

introducing two abstruse quantities: the ‘vorhandene Wärme’ H and the ‘Disgregation’ Z. The

definition of these quantities is not very clear (Clausius merely remarks about the Disgregation

that it represents a ‘degree of distribution’, which is related to the ordering of the molecules)

and for our purpose actually not very important.34

I only mention that Clausius here considers infinitesimal pieces of an open process and

formulates the second law as:
dQ + dH

T
+ dZ = 0 (11)

forumkehrbar and
dQ + dH

T
+ dZ ≥ 0 (12)

for nicht umkehrbar processes. He emphasizes (Clausius 1864a, p. 244) that this extension of

the second law rests on additional assumptions and does not follow from the earlier versions.

More important for our purpose is that, now the limitation to cyclic processes is dropped,

Clausius has to be more explicit than before in stating the criterion for what he means by the

term ‘umkehrbar’.

Wenn die Anordnungsänderung in der Weise stattfindet, dass dabei Kraft und Gegen-

kraft gleich sind, so kann unter dem Einflusse derselben Kräfte die Aenderung auch im

umgekehrten Sinne geschehen. Wenn aber eine Aenderung so stattfindet, dass dabei die

überwindende Kraft grösser ist als die überwundene, so kann unter dem Einflusse der-

selben Kräfte die Veränderung nicht im umgekehrten Sinne geschehen. Im ersteren Falle

sagen wir, die Veränderung habe in umkehrbarer Weise stattgefunden, im letzeren, sie habe

in nicht umkehrbarer Weise stattgefunden.

Streng genommen muss die überwindende Kraft immer stärker sein, als die überwundene;

da aber die Kraftüberschuss keine bestimmte Grösse zu haben braucht, so kann man ihn

sich immer kleiner und kleiner werdend denken, so dass er sich dem Werthe Null bis zu

jedem beliebigen Grade nähert. Mann sieht daraus, dass der Fall, wo die Veränderung in

34Apparently, Clausius was inspired by, and aimed to improve upon, Rankine’s 1853 formulation of thermody-
namics, which adopted the quantity H (‘actual heat’) and a quantity F which was intimately related to Z, known as
the ‘heat potential’ (see Hutchison, 1973). Unlike Clausius, however, Rankine employed an elaborate microscopic
picture of molecular vortices in terms of which these functions could be defined. Nevertheless, the idea of separat-
ing entropy into two distinct quantities was not so weird as it may seem to modern eyes. See Klein (1969) for a clear
exposition.
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umkehrbarer Weise stattfindet, ein Gränzfall ist, den man zwar nie vollständig erreichen,

dem man sich aber beliebig nähern kann35 (Clausius 1864a, p. 251).

This definition is clearly related to, and in a certain sense a sharpening of, the necessary

and sufficient criterion of Carnot. For both authors the reversible process may be regarded

as a limit of a series of processes in which the disturbance from the equilibrium state become

smaller and smaller. But Clausius’ condition is more stringent. Whereas Carnot only de-

manded equality of temperature for all bodies in thermal contact, Clausius demands equal-

ity for all kinds of ‘forces’. (Note that Clausius’ concept of ‘force’ is more or less Aristotelian.

It denotes any cause of change and includes temperature gradients). Thus, his criterion de-

mands also, e.g. in a compression process, that the piston is pushed very gently, with a force

which nearly balances the pressure exerted by the gas. Thus a Carnot process is not necessar-

ily reversible in Clausius’ sense. Indeed, in an experimental realisation of a Carnot process,

adiabaticity of the two adiabatic stages of the cycle is often secured by making them so fast

that the system has no chance to exchange heat with its environment. The main difference

with Carnot is, however, that Clausius applies the criterion to open processes.

More importantly, Clausius’ definition differs considerably from Kelvin’s 1852 notion of

reversibility. For Clausius, a process is called reversible when it proceeds very gently. This is

very close to what we today call ‘quasi-static’. Whether the initial state of such a process is

recoverable is another matter. We shall return to this distinction between Kelvin’s notion of

‘reversible’ and Clausius’ ‘umkehrbar’ below.

In his (Clausius 1864b), he embraced the idea that the second law has implications for

the direction of natural processes. For this occasion he adopts a more positive reading of

this law: heat transport from bodies with high to bodies with low temperature can occur ‘by

itself’, but is not possible from low to high temperature ‘without compensation’. These rather

vague clauses are intended to express the same idea as the phrase ‘without other associated

changes’ from 1854. (See in particular the footnote p. 134-5 in (Clausius 1864a).) The clause

serves to exclude both the possibility of changes of states in the environment as well as in the

system itself (when it does not perform a complete cycle).

35‘When a change of arrangement takes place in such a way that force and counterforce are equal, the change can
take place in the reverse direction also under the influence of the same forces. But if a change takes place in such a
way that the overcoming force is greater than that which is overcome, the transformation cannot take place in the
opposite direction under the influence of the same forces. We may say that the transformation has occurred in the
first case in a reversible manner, and in the second case in an irreversible manner.
Strictly speaking, the overcoming force must always be more powerful than the force which it overcomes; but as the
excess of force is not required to have any assignable value, we may think of it as becoming continually smaller and
smaller, so that its value may approach to nought as nearly as we please. Hence it may be seen that the case in which
the transformation takes place reversibly is a limit which in reality is never reached but to which we can approach
as nearly as we please.’
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He then proposes the view that his present formulation of the second law expresses a

universal tendency, that will end in the heat death of the universe:

In diesen Sätzen [. . . ] drückt sich eine allgemein in der Natur obwaltende Ten-

denz zu Veränderungen in einem bestimmten Sinne aus. Wendet mann dieses auf

das Weltall im ganzen an, so gelangt man zu einer eigenthümlichen Schlußfolge-

rung, auf welche zuerst W.Thomson aufmerksam machte, nachdem er [. . . ] sich

meiner Auffassung des zweiten Hauptsatzes angeschlossen hatte. Wenn nämlich

im Weltall [. . . ] die Wärme stets das Bestreben zeigt, ihre Vertheilung in der Wei-

se zu ändern daß dadurch die bestehenden Temperaturdifferenzen ausgeglichen

werden, so muß sich das Weltall allmählich mehr und mehr zu dem Zustand

nähern, wo die Kräfte keine neuen Bewegungen mehr hervorbringen können,

und keine Temperaturdifferenzen mehr existiren.”36(Clausius 1864a, p. 323)

In his next paper (Clausius 1865) introduces the concept of entropy. Again, he considers

cyclic as well as open processes. But this time, he does not resort to hypothetical physical

quantities. Instead he starts from the observation that the relation (9) implies that for an

open umkehrbar process, say from state si to s f , the integral

Z s f

si

dQ
T

is independent of the integration path, i.e. depends only on the initial and final state. By a

standard argument, one can show that this implies the existence of a state function S such

that Z s f

si

dQ
T

= S(s f )− S(si). (13)

Thus, the equivalence value of a transformation can be determined as the change of entropy

between initial and final state.

Now Clausius considers a nicht umkehrbar open process P , say, again, from si to s f . He

assumes that it can be closed into a cycle by some umkehrbar process R . from s f to si. For

36‘These statements [. . . ] express a generally prevailing tendency in Nature towards changes in a definite sense.
If one applies this to the universe in total, one reaches a remarkable conclusion, which was first pointed out by W.
Thomson, after [. . . ] he had accepted my view of the second law. Namely, if, in the universe, heat always shows the
endeavour to change its distribution in such a way that existing temperature differences are thereby smoothened,
then the universe must continually get closer and closer to the state, where the forces cannot produce any new
motions, and no further temperature differences exist.’
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the cycle thus obtained he uses the result (10):

I dQ
T

=
Z s f

si P

dQ
T

+
Z si

s f R

dQ
T

≤ 0.

For the reversible piece R of the cycle one has

Z si

s f

dQ
T

= S(si)− S(s f ). (14)

Thus, for the nicht umkehrbar process P one gets:

Z s f

si

dQ
T

≤ S(s f )− S(si). (15)

If this process is adiabatic, i.e. if there is no heat exchange with the environment, we have

dQ = 0 for the entire duration of the process and it follows that

S(s f ) ≥ S(si). (16)

Hence we obtain:

THE ENTROPY PRINCIPLE (Clausius’ version) For every nicht umkehrbar process in an adia-

batically isolated system which begins and ends in an equilibrium state, the entropy of the

final state is greater than or equal to that of the initial state. For every umkehrbar process

in an adiabatical system, the entropy of the final state is equal to that of the initial state.

This is the first instance of a formulation of the second law as a statement about entropy

increase. Note that only the ‘≥’ sign is established for nicht umkehrbar processes. One often

reads the stronger view that for irreversible processes the strict inequality, i.e. with the ‘¿’

sign in (ref5), holds but this has no basis in Clausius’ work. Note also that, in contrast to the

common view that the entropy principle obtains for isolated systems, Clausius’ result applies

to adiabatically isolated systems.

Clausius concludes

Der zweite Hauptsatz in der Gestalt, welche ich ihm gegeben habe, sagt aus, dass alle in der

Natur vorkommenden Verwandlungen in einem gewissen Sinne, welche ich als den posi-

tiven angenommen habe, von selbst, d.h. ohne Compensation, geschehen können, dass sie

aber im entgegengesetzten, also negativen Sinne nur in der Weise stattfinden können, dass

sie durch gleichzeitig stattfindende positive Verwandlungen compensirt werden. Die An-

wendung dieses Satzes auf das gesammte Weltall führt zu einem Schlusse, auf den zuerst
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W. Thomson aufmerksam gemacht hat [. . . ] Wenn nämlich bei allen im Weltall vorkom-

menden Zustandsänderungen die Verwandlungen von einem bestimmten Sinne diejeni-

gen vom entgegengesetzten Sinne an Grösse übertreffen, so muss die Gesammtzustand

des Weltalls sich immer mehr in jenem ersteren Sinne ändern, und das Weltall muss sich

somit ohne Unterlass einem Grenzzustande nähern.37 (Clausius 1867, p. 42)

He next notes that his theory is still not capable of treating the phenomenon of heat radia-

tion. Therefore, he ‘restricts himself’ —as he puts it— to an application of the theory to the

universe:

[. . . ] man [kann] die den beiden Hauptsätzen der mechanischen Wärmetheorie entspre-

chenden Grundgesetze des Weltalls in folgender einfacher Form aussprechen:

1.) Die Energie der Welt ist constant.

2.) Die Entropie der Welt strebt einem Maximum zu.38 (ibid. p. 44)

These words of Clausius are among the most famous and most often quoted in the history

of thermodynamics. Perhaps they are also the most controversial. Even Planck, in many

regards a loyal disciple of Clausius, admitted that the entropy of the universe is an undefined

concept (Planck 1897, § 135). For example, in order to define the entropy difference between

two states of a system we need the integral (14). But if that system is the universe, it is unclear

where the heat absorbed by the system might come from. Van der Waals and Kohnstamm

(1927) even argued that the universe cannot be the subject of scientific study . Ironically,

Clausius could have avoided this objection if he had not ‘restricted’ himself to the universe

but generalised his formulation to an arbitrary adiabatically isolated system (but at least

beginning and ending in equilibrium).

A more important objection, it seems to me, is that Clausius bases his conclusion that

the entropy increases in a nicht umkehrbar process on the assumption that such a process can

be closed by an umkehrbar process to become a cycle. This is essential for the definition of

the entropy difference between the initial and final states. But the assumption is far from

obvious for a system more complex than an ideal gas, or for states far from equilibrium, or

37‘The second law in the form I have given it says that all transformations taking place in nature go by them-
selves in a certain direction, which I have denominated the positive direction. They can thus take place without
compensation. They can take place in the opposite direction, that is, the negative, only when they are compensated
at the same time by positive transformations. The application of this law to the universe leads to a conclusion to
which W. Thomson first called attention [. . . ] namely, if in all changes of state in the universe the transformations in
one direction surpass in magnitude those taking place in the opposite direction, it follows that the total state of the
universe will change continually in that direction and hence will inevitably approach a limiting state.’

38‘One can express the fundamental laws of the universe that correspond to the two main laws of thermodynamics
in the following simple form:
1. The energy of the universe is constant.
2. The entropy of the universe tends to a maximum.’
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for processes other than the simple exchange of heat and work. Thus, the generalisation to

‘all transformations occurring in Nature’ is somewhat rash.

Another problem is what T refers to in an nicht umkehrbar process. As noted above, in

the integral (9) this temperature refers to the environment of the system (the reservoirs with

which it is in contact). In an umkehrbar process the temperature of system and environment

must be the same, and one is allowed to consider T as referring to the system itself. But for

arbitrary processes we cannot take this step. Moreover, Clausius applies the integral to an

adiabatically isolated system, i.e. one which does not interact with any reservoir. Thus the

T in the left-hand side of inequality (15) is not properly defined. This paradox is somewhat

mitigated by the fact that since dQ = 0, the value of T does not matter anyway.

On many occasions Clausius was criticised by his contemporaries. I do not know if, in

his own time, he was criticised in particular for his famous formulation of the second law

as the increase of the entropy of the universe.39 However, Kuhn (1978, pp. 13-15, p. 260)

has pointed out the remarkable fact that in the book (Clausius 1876) he eventually composed

from his collected articles, every reference to the entropy of the universe and even to the

idea that entropy never decreases in irreversible processes in adiabatically isolated systems

is deleted! The most general formulation given to the second law in this book, which may be

regarded as the mature presentation of Clausius’ ideas, is again the relation (10), where the

system is supposed to undergo a cycle, and entropy increase is out of the question.40

We must conclude that in the work of Clausius and Kelvin the connection between the

second law and irreversibility is extremely fragile. Kelvin claimed that the irreversibility of

all processes in nature is a necessary consequence of his principle, but gave not a shred of

39One can find some indications for this. Planck notes in his Wissenschaftliche Selbstbiographie (Planck 1948) that
prominent German physicists in the 1880s rejected the application of the second law to irreversible processes. The
book by Bertrand (1887) is also skeptical about the validity of the second law for irreversible (cyclic) processes: ‘Je
serai trés bref sur les cycles irreversibles; les démonstrations et les énoncés mêmes de leur proprietés me paraisent
jusqu’ici manquer de rigueur et de precision’. (‘I will be brief about irreversible cycles. It appears to me that the
demonstrations, and even the descriptions of their properties lack rigour and precision.’ He discusses two favorable
examples for the statement that ‘L’entropie de l’univers tend vers un maximum’, but concludes: ‘Les examples [. . . ]
n’autorisent pas a regarder le théorème general comme démontré. Il faudrai commencer par préciser l’énoncé, et,
dans beaucoup de cas, cela paraı̂t fort difficile.’ (‘Examples do not warrant regarding the general theorem as proved.
One should start by making the statement more precise, and in many cases, that appears to be very difficult.’

There are also more general complaints about the writings of Clausius. Mach writes: ‘Die Darstellung von Clau-
sius hat immer einen Zug von Feierlichkeit und Zurückhaltung. Man weiss oft nicht ob Clausius mehr bemüht ist
etwas mitzutheilen oder etwas zu verschweigen’ (Mach 4th edition, 1923). (‘The presentation by Clausius always
has a touch of ceremoniousness and reservation. One often does not know whether Clausius is concerned more
with communicating something or with concealing something.’) Maxwell too had difficulty swallowing the work
of Clausius: ‘My invincible ignorance of certain modes of thought has caused Clausius to disagree with me (in the
digestive sense) so that I failed to boil him down and he does not occupy the place in my book on heat to which his
other virtues entitle him’ ((Garber e.a 1995, p. 222)).

40That is, of course, for the system itself. For the heat reservoirs this may be different. But since Clausius’ argument
has the purpose of establishing the existence of the property to be called the ‘entropy’ of the system, we cannot
suppose without further ado that the reservoirs already possess entropies or even thermodynamical states.

37



argumentation for this claim. His later versions of the second law were even completely

disconnected from the arrow of time. Clausius does give argumentation, but it is so un-

transparent and dependent on implicit assumptions that his famous general conclusion (all

processes in nature proceed in the ‘positive’ direction, i.e. the direction of entropy increase)

cannot be considered as established.

Further, we have noted that Clausius employs a definition of ‘umkehrbar’ that largely

coincides with ‘quasistatic’. This concept is very different from Kelvin’s concept of irre-

versibility (i.e the irrecoverability of the initial state). The question then arises whether the

(Un)umkehrbarheit of processes (in the sense of Clausius) has anything at all to do the arrow

of time. The deceptive nomenclature may make this seem self-evident. But Clausius also

explicitly draws such a connection: in the quotation on p. 32 he claims that every umkehrbar

process can be performed in the reversed direction, but a nicht umkehrbar process cannot, at

least not under influence of the same forces.

An example to the contrary was given by Sommerfeld (1952, p. 17). Consider a charged

condensor which is short-circuited by a resistance submersed in a heat reservoir. When the

resistance is very large the discharge will take place by an arbitrarily small current, and neg-

ligible disturbance of electrostatic equilibrium. Thus, such a process is umkehrbar in the sense

of Clausius. The reverse process, however, is not allowed by the second law.

An example from relativistic mechanics shows that the converse is also conceivable: an

‘unumkehrbar’ process of which the reversal is allowed by the theory. In order to bring a rod

into motion it must be accelerated. In general this will bring about internal stress in the rod,

depending on its constitution, the point where the force is applied, etc. In order to determine

the relativistic length contraction, one considers a change of velocity performed so slowly

that at every moment the force remains negligible, so that the rod remains almost in internal

equilibrium. This is analogous to Clausius’ criterion for an umkehrbar change of state. Further,

the time reverse of this transformation (the Lorentz transformation) is again a Lorentz trans-

formation. Now consider the analogue of what Clausius called an irreversible change: the

measuring rod is suddenly put in motion, causing internal deformations and shock waves in

the rod. The length of this rod is not described by the Lorentz transformation. Still, the time

reversal of this process, i.e. a sudden deceleration, is also dynamically possible, even under

the influence of the same external forces. Clearly the claim that umkehrbar processes can be

reversed, but nicht umkehrbar not, is not a tautological truth.

At the same time it is undeniable that the idea of grounding the irreversibility of processes

in a law of nature is very suggestive and attractive. Even if for Kelvin and Clausius the

idea may have been nothing more than a short flirtation, many later authors, starting with
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Boltzmann (1872) and Gibbs (1875), have built upon Clausius’ famous formulation of the

second law as the tendency of the universe towards an entropy maximum. In particular

Planck propagated the view that the essence of the second law lies in the principle of the

increase of entropy.

An example of the confusion that entered thermodynamics as a result of the confusing

terminology is provided by the fate of a criticism by Rankine (1852). Rankine denied the

validity of Kelvin’s dissipation doctrine, in particular the claim that heat radiation is an ex-

ample of an irrecoverable process. His argument was straightforward. Imagine that mirrors

are placed on a huge sphere around the sun, that would reflect the solar radiation billions

of years after its emission. The radiation would reconcentrate and reheat the sun to its orig-

inal temperature, even after it had become cold and extinct, and thus undo the apparently

irreversible dissipation.

A response to this objection came from Clausius (1864b). Since the dissipation principle

was seen as a necessary consequence of the second law, Clausius understood the objection as

an attack on his own work. Clausius believed that Rankine wanted to propose a construction

in which a body which absorbs radiation could be made hotter than the bodies emitting the

radiation. This, of course, would be in conflict with Clausius’ claim about the natural be-

haviour of heat flow and lead to a perpetuum mobile of the second kind. He argued that such a

construction is impossible. But clearly Clausius had not understood Rankine. The latter was

concerned with a recovery of the original state, not a perpetuum mobile of the second kind. That

is, his intension was to make a radiating body just as hot as it originally was, by refocussing

its own radiation. Clearly, Kelvin’s dissipation principle and the second law in the form of a

perpetuum mobile principle are not equivalent: the supposition that the processes mentioned

by Kelvin as examples of dissipation are in fact reversible does not entail the possibility of a

perpetuum mobile of the second kind.

7 THE ATTEMPT AT CLARIFICATION BY PLANCK

If someone can be said to have codified the second law, and given it its definitive classical

formulation, that someone is Max Planck. His Vorlesungen über Thermodynamik went through

eleven successive editions between 1897 and 1966 and represent the authoritative exposition

of thermodynamics par excellence for the first half of this century.41 It is no exaggeration to

41But even the Vorlesungen have not received unanimous acclaim. Truesdell (1968, p. 328) describes the work as
‘gloomy murk’, Khinchin (1949, p. 142) calls it an ‘aggregate of logical and mathematical errors superimposed on
a general confusion in the definition of the basic quantities’. Still, apart from a review by Orr (1904) of the first
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claim that all later writers on the topic have been influenced by this book. Planck puts the

second law, the concepts of entropy and irreversibility at the very centre of thermodynamics.

For him, the second law says that for all processes taking place in nature the total entropy

of all systems involved increases, or, in a limiting case, remains constant. In the first case

these processes are irreversible, in the second case reversible. Increase of entropy is therefore

a necessary and sufficient criterion for irreversibility.

Before Planck’s work there were also alternative views. We have seen that Kelvin at-

tributed irreversibility to processes involving special forms of energy conversion. This view

on irreversibility, which focuses on the ‘dissipation’ or ‘degradation’ of energy instead of an

increase in entropy was still in use at the beginning of the century; see e.g. Bryan (1904).

Planck’s work extinguished these views, by pointing out that mixing processes are irre-

versible even though there is no energy being converted or degraded.

Because of the enormous historical influence of Planck’s formulation of the second law

I will attempt to analyse his arguments. However, this is not a simple task. The eleven

editions of the Vorlesungen show considerable differences, in particular in the addition of

footnotes. Also, the last English translation (Planck 1945) (of the seventh German edition of

1922) contains some unfortunate errors. Moreover, from the eighth edition onwards, Planck

replaced his argument with a completely different one. Below, I will analyse the argument

up to the seventh edition, because this is presumably the most widely known today. In

section 10.1, I will consider Planck’s later revision of the argument. Let us first distinguish

the meaning of two concepts that Planck uses.

7.1 PLANCK’S CONCEPT OF Umkehrbarheit

We have already noted that the concept of a reversible process was used by Clausius and

Kelvin with very different meanings. In Planck’s work we encounter a passage which is

quite similar to Clausius (1862), cited above on page 32:

Von besonderer theoretische Wichtigkeit sind diejenigen thermodynamischen Prozesse,

welche, wie man sagt, unendlich langsam verlaufen, und daher aus lauter Gleichgewichts-

zuständen bestehen. Wörtlich genommen ist zwar diese Ausdrucksweise undeutlich, da

ein Prozeß notwendig Veränderungen, also Störungen des Gleichgewichts zur Voraus-

setzung hat. Aber man kann diese Störungen, wenn es nicht auf die Schnelligkeit, son-

dern nur auf das Resultat der Veränderungen ankommt, so klein nehmen wie man irgend

will, namentlich auch beliebig klein gegen die übrigen Größen, welche im Zustand des be-

English translation, I do not know of any attempt to analyse the arguments in this book in some detail.

40



trachteten Systems eine Rolle spielen. [. . . ] Die hohe Bedeutung dieser Betrachtungsweise

besteht darin, daß man jeden “unendlich langsamen” Prozeß auch in entgegengesetzer

Richtung ausgeführt denken kann. Besteht nämlich ein Prozeß bis auf minimale Abwei-

chungen aus lauter Gleichgewichtszuständen, so genügt offenbar immer eine ebenso mi-

nimal passend angebrachte Änderung, um ihn in entgegengesetzter Richtung ablaufen zu

lassen, und diese minimale Änderung kann durch einen Grenzübergang ebenso ganz zum

verschwinden gebracht werden. (§71–73)42

Obviously, Planck’s ‘disturbance of equilibrium’ is intended to mean the same thing as Clau-

sius’ ‘inequality of forces’. In fact, Planck immediately proceeds to call his infinitely slow

processes umkehrbar, just as Clausius had done before. Indeed, this name turns out to be his

favourite and he uses the term ‘infinitely slow’ only rarely.

On a closer reading there is a distinction between the passages from Clausius and Planck.

Consider a container filled with gas and closed by a piston so tight that when it moves it

experiences friction with the walls of the container. When we compress the gas extremely

slowly, the force on the piston must be large enough to overcome this friction; but reversal

of the process is not physically possible under the same force, because friction always op-

poses the motion. Such processes are not umkehrbar according to Clausius, even if they are

performed infinitely slowly, in contrast to the criterion of Planck (and Carnot).

However, one may wonder whether this distinction was intended by Planck. His claim

that infinitely slow processes can also be performed in the opposite direction with some suit-

able minimal adaptions, which can be as small as we wish, suggests that the example just

mentioned would not qualify as ‘infinitely slow’ or umkehrbar.

Another difficult issue is how to judge when deviations of equilibrium are small. How

to compare e.g. a small variation in the temperature of the whole system with a larger tem-

perature variation in a small part? It is obvious that there are many ways to quantify the

‘disturbance’ of equilibrium, and we cannot speak of a well-defined limit by making the dis-

turbances smaller and smaller.43

42‘Of particular theoretical importance are those thermodynamical processes which, as one says, proceed infinitely
slowly, and which, therefore, consist purely of equilibrium states. Strictly speaking, this terminology is unclear,
because a process presupposes changes, i.e. disturbances of equilibrium. But when only the result of the changes
matters, and not their speed, one can make these disturbances as small as one wishes, namely, arbitrarily small
compared with the other quantities which play a role in the state of the considered system. [. . . ] The high significance
of this viewpoint is that one can think of every ‘infinitely slow’ process as being carried out in the opposite direction.
Indeed, if a process consists purely of equilibrium states, then, obviously, a minimal change, appropriately applied,
will suffice to make it proceed in the opposite direction, and this minimal change can also be made to vanish by a
limiting procedure.’

43For example, consider a container, half of which contains gas, the other half being vacuum and partitioned by a
large number n of parallel membranes into tiny empty volumes. If one ruptures the membranes, one by one, one can
let the gas expand in n steps, until it fills the entire container. If we take n very large, so that at each rupture the gas
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7.2 PLANCK’S CONCEPT OF REVERSIBILITY

Planck also defines the term reversibel.

Ein Prozeß der auf keine einzige Weise vollständig rückgängig gemacht werden kann,

heißt “irreversibel”, alle andere Prozesse “reversibel”. Damit ein Prozeß irreversibel ist,

genugt es nicht, daß er sich nicht von selbst umkehrt, —das ist auch bei vielen mecha-

nische Prozessen der Fall, die nicht irreversibel sind— sondern es wird erfordert daß es

selbst mit Anwendung alle in der Natur vorhandenen Reagentien kein Mittel gibt, um,

wenn der Prozeß abgelaufen ist, allenthalben genau den Anfangszustand wiederherzu-

stellen, d.h. die gesamte Natur in den Zustand zurückzubringen, die sie am Anfang des

Prozesses besaß.44 (§112)

‘Reversibel’ denotes of possibility of undoing processes. It deals with the recoverability of

the initial state, and is obviously closer to Kelvin’s (1852) ‘reversibility’ than to Clausius’

‘Umkehrbarheit’. The unfortunate fact that the English translation of Planck’s work (but also

that of Clausius (1862)) uses reversible in both cases surely bears part of the blame for the

widespread confusion in the meaning of this term. The English reader of Planck is faced

with a curious text which apparently ventures to define a term in §112 that has already been

used on many previous occasions, but in a different meaning. In order to keep the distinction

between these two concepts, as well as with previous notions of irreversibility, I will in the

sequel denote Planck’s concept of reversibility by his own phrase ‘reversibel’, and, for ease,

treat it and its conjuncts as if it were an English word. (Thus I will also write ‘(ir)reversibelity’,

etc.)

Three remarks are in order. In the first place, Planck speaks about a complete recovery of

the initial situation in ‘die gesamte Natur’. This does not merely refer to the initial state of

the system. He emphasizes:

Die in dem Worte ‘vollständig’ ausgesprochene Bedingung soll nur die sein daß

schließlich überall wieder genau die bekannte Anfangszustand [. . . ] hergestellt ist

wozu auch notwendig gehört daß alle etwa benutzten Materialien und Apparate

am Schluß sich wieder in demselben Zustand befinden wie am Anfang, als man

expands over a tiny volume, and wait between ruptures until the gas attains equilibrium, there is a sense in which
the disturbance from equilibrium is small at each step. Still it would be undesirable to allow this as an ‘infinitely
slow’ process; see e.g. Callen (1960, p. 99).

44‘A process which can in no way be completely undone is called “irreversible”, all other processes “reversible”.
In order for a process to be irreversible, it is not sufficient that it does not reverse by it self, —this is also the case
for many mechanical processes, which are not irreversible— rather, it is demanded that, once the process has taken
place, there is no means, even by applying all the agencies available in Nature, of restoring exactly the complete
initial state, i.e. to return the totality of Nature to the state which it had at the start of the process.’
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sie in Benutzung nahm.45 (§109)

Obviously it is no mean feat to restore the initial state everywhere in the ‘totality of Nature’.

Suppose we perform some process on a thermodynamical system. In the meantime, the

Earth rotates, an atom on Sirius emits a photon, etc. Do we have to be able to undo all of this,

before we can say that the process is reversibel? In that case Planck’s completeness condition

would become grotesque. It appears reasonable to assume that the recovery is complete

when we restrict the ‘gesamte Natur’ to all bodies that have interacted with the system in

the original process. That is to say, I will understand the clause mentioned by Planck (after

‘wozu auch notwendig gehört’ in the above explanation of the completeness condition as not

only necessary but also sufficient.

Secondly, Planck emphasises that the way in which the initial state is restored may be cho-

sen freely; i.e. it is not necessary that the system retraces every stage of the original process in

reverse order. Any procedure whatsoever that restores the initial state will do. He says: ‘Was

dabei an technischen Hilfsmitteln, Maschinen mechanischer, thermischer, elektrischer Art

verwendet wird, ist ganz gleichgültig’46 (§109). On many occasions (Planck 1905a, Planck

1948), he emphasised the importance of this aspect of his concept of irreversibelity. It im-

plies that the statement that a particular thermodynamical process is irreversibel has conse-

quences, not only for thermodynamical processes, but for all types of interactions occurring

in nature, including even those not yet discovered. In this respect too the concept ‘reversibel’

differs from ‘umkehrbar’!

In the third place, it should be noted that for Planck’s criterion of ‘reversibelity’ it is nec-

essary that recovery can be obtained with “in der Natur vorhandenen Reagentien”. That we

might conceive of a recovery process as in a thought experiment, (i.e. a process allowed by

the theory in some possible world) is not good enough for Planck.

An example (given by Planck himself) of a reversibel process is the motion of a harmonic

oscillator. This system returns after every period to its initial state without demanding any

change occurring anywhere else in nature. The motion is therefore reversibel; it is not in-

finitely slow, because the deviation from equilibrium (rest) is not negligible.47

45‘The condition expressed in the word “completely” will be only this: that eventually the given initial state [. . . ]
is restored everywhere, and this includes necessarily that all materials and apparatuses employed are returned to
the same state as they occupied initially, before they were used.’

46‘Whatever technical resources, apparatuses of a mechanical, thermal, electrical nature are used here is com-
pletely indifferent.’

47The harmonic oscillator can be realised as a thermodynamic system e.g. as a cylinder containing two ideal gases
separated by an adiathermal frictionless piston.
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As another example, consider a non-periodic mechanical process, say a free particle in

uniform motion through empty space. To bring it back to a previous state, we must interfere

with it, e.g. by means of a collision with another body. This will return the particle to its orig-

inal position. Then we must also reverse its velocity, e.g. by a collision with a third body, to

obtain the original mechanical state. But is this a complete restoration? The answer is not so

obvious. The body has gone through at least two collisions, and thus exchanged momentum

with two other bodies in its environment. In order to realize complete restoration, this ex-

change must be undone. One can do this, e.g., by arranging a rigid connection between these

two auxiliary bodies, e.g. they are walls of a rigid box, so that the total momentum exchange

vanishes. Then, the particle simply bounces to and fro periodically, and we have complete

reversibelity.

Planck claims that all mechanical processes are, in fact, reversibel. But it is not clear to me

whether they always comply with Planck’s condition of complete recoverability, especially if

one demands that restoration should be achieved by ‘in der Natur vorhandenen Reagentien’.

It would not seem far-fetched to me, if one argues that, by Planck’s criterion, the motion of

the solar system is irreversibel.

These subtle aspects of Planck’s concept of reversibelity have not always been noticed.

The unfaithful English translation (although sanctioned by the author) surely contributed to

the proliferation of confusion. It is no surprise, therefore, to find Planck at the end of his life

complaining about confusion on the true meaning of reversibelity:

der Fehler, [. . . ] den ich mein ganzes Leben hindurch unermüdlich bekämpft habe, ist,

wie es scheint nicht auszurotten. Denn bis auf den heutigen Tag begegne ich statt der obi-

gen Definition der Irreversibilität der folgenden: “Irreversibel ist ein Prozeß, der nicht in

umgekehrter Richtung verlaufen kann.” Das ist nicht ausreichend. Denn von vornherein

ist es sehr wohl denkbar, daß ein Prozeß, der nicht in umgekehrte Richtung verlaufen kann,

auf irgendeine Weise sich vollständig rückgängig machen läßt.48 (Planck 1948, p. 10)

7.3 THE SECOND LAW FOR IDEAL GASES

In part 3 of his book, Planck sets the aim of demonstrating that the second law in the form of

the principle of increase of entropy follows from Kelvin’s principle. At this stage he has

already announced that this proof “bei dem heutigen Stande der Forschung nicht leicht

48‘the error which I have battled against my entire life with tiring appears to be inextinguishable. Untill this very
day I meet, in stead of the above definition of irreversibility the following: “An irreversible process is one which
cannot proceed in the reverse order.” This is insufficient. Indeed, it is very well conceivable that a process which
cannot proceed in the reverse direction can be fully undone in some other way.’
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sorgfältig genug geführt werden kann, da theils seine Allgemeingültigheit noch mehrfach

bestritten, theils seine Bedeutung, auch von seinen Anhängern, noch recht verschieden beur-

theilt wird.’49 (§55).

This task is finally taken up in §106–136. For clarity, I have organized the argument into

a number of Lemmas. Consider n moles of ideal gas in a state of equilibrium, characterized

by the temperature T and volume V. Planck defines the entropy of the gas straight away as

a function of these equilibrium states:

S(V, T) := n(cV log T + R log V + K) (17)

where R is the gas constant and cV is the specific heat capacity at constant volume. The choice

of the constant K is arbitrary, as long as it does not depend on V and T.50

Planck shows

Lemma 1 In every adiabatic umkehrbar process performed on an ideal gas its entropy S remains

constant.

Such a process can be approximated by a succession of equilibrium states, and thus be rep-

resented as a curve in state space (i.e. (T, V)-diagram). For each infinitesimal element of

such a curve one can write dQ = pdV + dU = 0. For an ideal gas one has, by definition,

pV = nRT and U = ncVT. Substitution gives: dQ = n(RT dV
V + cVdT) = TdS = 0, which proves

the lemma.

Next, Planck considers a system consisting of N ideal gases in separate containers. Its

state is characterised by the 2N variables: s = (V1, T1, . . . , VNTN). The total entropy of such a

system is defined as

Stot(s) := ∑
i

ni(cVi log Ti + R log Vi + Ki). (18)

Planck shows (§121– §123)

Lemma 2 In every adiabatic umkehrbar process performed on a system consisting of N ideal gases,

which are connected by diathermal walls and remain in thermal equilibrium, the total entropy Stot
remains constant.

This lemma is proven as follows: when the gases are connected by diathermal walls, the

condition of thermal equilibrium implies that their temperatures are equal at each stage of

49‘cannot easily be demonstrated carefully enough, at the present stage of research, partly because its general
validity is sometimes denied and partly because even its adherents interpret its meaning very differently.’

50However, K may depend on n and the units used for V and T.
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the process: Ti = Tj =: T. In an adiabatic process the gases can exchange heat only with each

other. If the amount of heat absorbed by gas i is dQi, one has

T ∑
i

dSi = ∑
i

dQi = 0,

which implies that Stot is constant.

Combining the previous Lemmas, he then argues for

Lemma 3 Every pair of states s, s′ of a system consisting of N ideal gases in which the total entropy

is the same can be transformed into each other by means of an adiabatic umkehrbar process.

Proof: let s = (V1, T1, . . . , VN, TN) and s′ = (V ′
1, T′

1 . . .V ′
N, T′

N) be two arbitrary states such that

Stot(s) = Stot(s
′). We first assume that each gas is adiabatically isolated from the others. By

umkehrbar expansion or compression, we can change the volumes V1, . . . , VN to any desired

set of values. Since the entropies Si remain constant in such an expansion or compression, the

temperatures change and can also be made to attain any desired set of (positive) values. In

particular, we can perform a series of adiabatic umkehrbar expansions or compressions until

all the temperatures are equal.

Next, one introduces a diathermal connection between the gases, while the whole sys-

tem remains adiabatically isolated. Continuing with umkehrbar changes of volume, the gases

will now exchange heat and entropy, while, according to lemma 2 the total entropy remains

constant. Perform such changes of volume until the entropies Si have attained the values

S′
i = S(V ′

i , T′
i ). At that point, one removes the diathermal contacts, so that each gas becomes

adiabatically isolated as before. Finally we change the volumes again (adiabatically and

umkehrbar) until they attain the values V′
i . Since the entropies S′

i are conserved in this stage

too (according to lemma 1), both the volumes and the entropies of all gases are the same as

in the state s′. But then this holds for their temperatures too, and the final state is identical

to s′. Thus we have constructed a series of adiabatic umkehrbar processes starting from s and

resulting in s′.

Up till here the development of the argument has been straightforward. The only point

worth mentioning is that the argument is constructive and relies on the availability of umkehrbar

adiabatic processes by which the volume or the temperature can be made to attain any value

desired. For the ideal gas this assumption is of course unproblematic, but for more general

fluids it is not.

But now Planck argues (§122, 123:)

Lemma 4 All processes considered in Lemmas 1, 2 and 3 are reversibel.

46



It is here that Planck’s concept of reversibelity enters into the argument. It is also here that

the argument becomes liable to confusion and misunderstanding. Planck’s argument for this

Lemma is exceedingly brief. Considering the processes of Lemma 2 (with N = 2) he writes:

Ein jeder derartiger mit den beiden Gasen ausgeführter Prozeß ist offenbar in allen Theilen

reversibel, da er direkt in umgekehrter Richting ausgeführt werden kann, ohne in anderen

Körpern irchendwelche Veränderungen zu hinterlassen.51 (§122)

The claim that such processes are ‘directly’ and ‘in all parts’ reversibel obviously relies on

the claim that every ‘infinitely slow’ process can be performed in the opposite direction after

some minimal suitable adaptions. But in order to qualify the process as reversibel, one needs

a complete restoration of the initial state of the system as well as its environment. Planck’s

claim that the considered processes do not leave any changes in other bodies is somewhat

rash, because the argument up till now did not pay any attention to the environment of the

system.

Perhaps worries about the environment of the system are most easily expressed by for-

mally assigning a state to the environment. We can then denote the complete situation with

a pair of states and represent a process by a transformation (change of state)

〈s, Z〉 P−→ 〈s′, Z′〉, (19)

where s is the thermodynamical state of the system, and Z the formal state of the (relevant

part of) the environment. A process P is then reversibel just in case there exists a process P ′

which produces the transformation:

〈s′, Z′〉 P ′−→ 〈s, Z〉. (20)

Apparently, Planck assumed that the processes considered in the previous Lemmas simply

do not require any changes outside of the system.52 That is, one can put Z = Z′ in (19) and

(20). In that case, Lemma 4 would be an immediate consequence of the symmetry of Lemma

3 under the interchange of s and s′.

However, the assumption is false. The point is, of course, that an adiabatic umkehrbar

change of volume involves work, and therefore an exchange of energy with the environment.

Something or somebody has exchanged mechanical energy with the system and in order to

51‘Every process of this kind performed on the two gases is obviously in all parts reversibel, because it can be
performed directly in the opposite direction without leaving any changes in other bodies.’

52It is clearly Planck’s intention to consider such interventions as the establishing or breaking of a diathermal
connection as operations requiring no or negligible effects on the environment.
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call the process reversibel there must be a restoration process which returns that energy to its

previous owner.

According to Orr (1904), it was Ogg, the translator of the first edition into English, who

pointed this objection out to Planck. In response, Planck included a couple of footnotes in

the second edition in which the matter is discussed further. Appended to the phrase ‘ohne

in anderen Körpern irchendwelche Veränderungen zu hinterlassen’53 of §122 quoted above,

he adds the footnote:

Hier ist das Wort “in” zu beachten. Lagenänderungen starrer Körper (z.B. Hebung oder

Senkung von Gewichten) sind keine inneren Änderungen; wohl aber der Temperatur und

der Dichte.54 (Planck 1905b, p. 89)

and when the phrase reappears one page later in the same paragraph we read the footnote:

‘Denn die Leistung der erforderlichen mechanischen Arbeiten kann durch Heben oder

Senkung von unveränderlichen Gewichten erfolgen, bedingt also keine innere Verände-

rung.55

(In later editions the exact phrasing of these footnotes is altered, but their essential content

remains the same.) Clearly then, Planck’s strategy for avoiding the problem is to assume that

any exchange of work is done by means of weights, and that lifting or lowering weights is

not a relevant change in the environment because it is not ‘internal’.

I want to make three remarks about this manoeuvre. First, it does not completely save

Lemma 4, because the assumption is obviously special. One can also obtain work by means

of an electrical battery, by a combustion engine, by muscle, etc. In all these cases the re-

versibelity of the process is at least doubtful. Thus, the claim that every adiabatic umkehrbar

process in a system of ideal gases is reversibel is not proven.

Secondly, coupling a thermodynamical system to a weight obviously requires the pres-

ence of a gravitational field. This is often regarded as undesirable in thermodynamics.56 For

this reason, Giles (1964) proposed to replace the weight by a flywheel, as an alternative me-

chanical ‘work reservoir’. Of course, one may wonder whether a change of angular velocity

of a flywheel would be considered by Planck as an ‘internal’ change or not.

53‘without leaving any changes in other bodies’
54‘Here the word ‘in’ must be emphasised. Changes of place of rigid bodies (e.g. the raising or lowering of weights)

are not internal changes; in contrast to changes of temperature or density.’
555 ‘Since the mechanical work needed here can be obtained by the raising or lowering of inalterable weights, this

does not presuppose any internal changes.’
56An obvious problem is that an ideal gas in a gravitational field is no longer homogeneous with respect to pres-

sure and density, and therefore, strictly speaking, not a fluid. Some thermodynamicists even argue that the notion
of adiabatic isolation is applicable only when gravity is excluded (Pippard 1966, p. 5).
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But the most important remark is that the way out of the objection chosen by Planck seems

completely at odds with what he had written before. Just a few pages earlier, in his expla-

nation of the completeness requirement in his concept of reversibelity, Planck had explicitly

discussed a process where work is done on a system by means of descending weights and

heat is exchanged with a reservoir. To call that process reversibel, we need to achieve the

following conditions:

so müßte, damit der Prozeß vollständig rückgängig wird, dem Reservoir die empfangene

Wärme wieder entzogen und ferner das Gewicht auf seine ursprüngliche Höhe gebracht werden,

ohne daß anderweitige Veränderungen zurückbleiben57 (§ 110, emphasis added).

If we now decide that lowering or raising of a weight is not really a relevant change of state

at all, it seems puzzling, to say the least, why one should insist that it is undone in a recovery

process.

This leaves two options. Either one understands Planck’s footnotes as intending that any

discussion of changes of bodies in the environment, including the explanation of the concept

of reversibelity, is to be understood as restricted to internal changes This would mean that

one no longer requires the restoration of work done on or by the system. This interpretation

of Planck’s intention was adopted by Orr, who accused Planck of effectively using a different

definition than the one he had stated:

It appears, then, that the enunciation of the propositions should be amended by changing

the phrase “without leaving changes in other bodies” into “without interchanging heat

with other bodies”, and that there should be a corresponding change in the definition of

“reversibility”. The definition which is used by Planck appears in fact to be this, that a

process is reversible (“reversibel”) if it is possible to pass the system back from the final

state to the initial state without interchanging heat with external bodies (Orr, 1904, p. 511).

However, Planck’s reply (1905a) makes clear that he rejected this reading of his work.

The other option is that one sticks to Planck’s original definition of reversibelity, but al-

lows for an exception in the formulation of the Lemmas, whenever the phrase ‘ohne zurück-

bleibende Änderungen in anderen Körpern’ or similar words appear. I will choose this sec-

ond option, but for clarity, will insert the exception explicitly in the formulation. Instead of

‘without leaving changes in other bodies’ I will speak of processes which leave no changes

in other bodies except the possible displacement of a weight.

57‘in order for the process to become completely undone, the reservoir should give back the heat it received and
the weight should be returned to its original heigth.’
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In order to bring this out in the notation, I will add the height of the weight to the total

state. Thus the state of the environment is from now on specified by the pair 〈Z, h〉. A process

P can then be represented as a transition

〈s, Z, h〉 P−→ 〈s′, Z′, h′〉, (21)

and P is reversibel just in case there is another process P ′ such that:

〈s′, Z′, h′〉 P ′−→ 〈s, Z, h〉. (22)

Thus I read Planck as establishing the lemma:

Lemma 4′ All processes considered in Lemma 1, 2 and 3 which do not leave any changes in other

bodies except the displacement of a weight are reversibel.

This lemma follows from the assumption that these processes do not leave any changes in

other bodies except the displacement of a weight, i.e. they are of the form

〈s, Z, h〉 P−→ 〈s′, Z, h′〉, (23)

and, as shown by Lemma 1 and 2, they obey

S(s) = S(s′).

The existence of a restoration process P ′ with

〈s′, Z, h′〉 P ′−→ 〈s, Z, h〉

is now no longer trivial on grounds of the symmetry of the premise in lemma 3. (This only

entails the existence of a process with 〈s, Z, h′′〉 as final state.) But the proposition is still true

due to the conservation of energy. That is, every process which restores the original energy

to the system must also bring back the weight to its previous position. Note however, that

it is crucial here that the energy is delivered by a single weight. When two or more weights

are employed, or more generally, if their are more mechanical degrees of freedom in the

environment than conservation laws, this argument fails.

Planck concludes this stage of his argument with:
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Lemma 5 Every pair of states of a system consisting of N ideal gases in which the total entropy is

the same can be transformed into each other by a reversibel process, without leaving any change in the

environment, except the displacement of a weight.

This conclusion follows by application of Lemma 3. Indeed, that Lemma showed that every

two states of equal entropy can be transformed into each other by means of a umkehrbar

adiabatic process. When this process is assumed to be of the form (23), Lemma 4′ shows it is

reversibel.

Planck now (§118 and 124) appeals to Kelvin’s principle for the next step in the argument:

Lemma 6 Adiabatic expansion of an ideal gas without performance of work is an irreversibel process.

Adiabatic expansion without performance of work is a process in which T is constant and

V increases. One can think of a gas expanding into a vacuum after a partition has been

removed in a two-chamber container. The process proceeds without requiring any change in

the environment.

The lemma is arrived at by a reductio ad absurdum. Suppose the process were reversibel.

Then there is a process in which the expanded gas is driven back into its initial volume, which

similarly proceeds without producing any changes in the environment. Planck argues that

by means of this process one could construct a perpetuum mobile of the second kind.

Let us represent the adiabatic expansion process without performance of work by

〈si, Z, h〉 P−→ 〈s f , Z, h〉

where si = (T0, V0), s f = (T0, V1) and V1 > V0, and we have assumed that 〈Zi, hi〉 = 〈Z f , h f 〉 =

〈Z, h〉, i.e. the expansion occurs without any changes in the environment. Let the hypoth-

esis be that this process is reversibel. Then there is another process P ′ which produces the

transition:

〈s f , Z, h〉 P ′−→ 〈si, Z, h〉. (24)

The combination of these two gives rise to a cycle:

〈si, Z, h〉 P−→ 〈s f , Z, h〉 P ′−→ 〈si, Z, h〉

which establishes complete recovery. But this, of course, is not yet a perpetuum mobile.

Planck’s argument is therefore more subtle. He assumes that the same hypothetical re-

covery process (24) can also be combined with another process, P̂ in which the gas expands

isothermally with performance of work and simultaneous heat transfer. This is a process
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in another environment, in which the gas is not adiabatically isolated but rather in thermal

contact with a heat reservoir. Let the transition in this process be:

〈si, Ẑi, ĥi〉 P̂−→ 〈s f , Ẑ f , ĥ f 〉. (25)

The final state of the environment 〈Ẑ f , ĥ f〉 differs from 〈Ẑi, ĥi〉 because the system has ab-

sorbed heat from a heat reservoir and has done work by raising the weight. In order to

combine the process (25) with the hypothetical process (24) into a cycle, the final state of pro-

cess (25) must be equal to the initial state of (24). We should therefore assume that Ẑ f = Z

and ĥ f = h. In that case, performing the processes (25) and (24) one after another yields

〈si, Ẑi, ĥi〉 P̂−→ 〈s f , Ẑ f , ĥ f 〉 = 〈s f , Z, h〉 P ′−→ 〈si, Z, ĥ f〉 = 〈si, Ẑ f , ĥ f〉

and we have indeed constructed a perpetuum mobile of the second kind: the system undergoes

a cycle and the only effect on the environment is conversion of heat into work. Thus, we see

that a crucial assumption in the argument is that states of the system and environment can

be chosen independently.

Planck argues next (§126) that:

Lemma 7 Every process in a system of gases in which entropy increases and which does not leave any

changes in the environment other than the displacement of a weight is irreversibel. In other words,

there is no process in which the entropy of a system of ideal gases is decreased without leaving any

changes in the environment other than the displacement of a weight.

The argument again proceeds by a reductio ad absurdum. Suppose there were two states

s and s′ of the system which could be joined by a process obeying the mentioned conditions.

Thus, suppose there exists a process

〈s, Z, h〉 P ′−→ 〈s′, Z, h′〉 with S(s′) < S(s).

Let now s′′ be a third state of the system which differs from s only in the sense that one single

gas has a smaller volume, and which has the same total entropy as s′. That is, if the state s of

the system is:

s = (V1, T1, V2, T2, , . . . , VN, TN),

the state s′′ has the form, say,

s′′ = (V ′′
1 , T1, V2, V2 . . . , VN, TN),
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where

V ′′
1 = V1 expStot(s′)−Stot(s))/(n1 R),

so that Stot(s′′) = Stot(s). According to Lemma 3, there is an adiabatic umkehrbar process which

connects s′ and s′′:

〈s′, Z, h′〉 Q−→ 〈s′′, Z, h′′〉.

Performing P ′ and Q in succession yields a process

〈s, Z, h〉 −→ 〈s′′, Z, h′′〉

in which the only changes are that a single ideal gas has reduced its volume and a weight has

been displaced. Since the energy of an ideal gas is independent of its volume, one concludes

U(s) = U(s′′) so that by energy conservation one has also h = h′′. This would be a process

that brings about the complete recovery of the adiabatic expansion of an ideal gas without

performance of work. The impossibility of this process has already been demonstrated by

Lemma 6.

His conclusion is now that equality of entropy is not only a sufficient but also a necessary

condition for the reversibelity of a process if it proceeds without leaving changes in other

bodies, except for the possible displacement of a weight.

7.4 THE SECOND LAW FOR ARBITRARY SYSTEMS

The above argument has still only yielded a formulation of the entropy principle for the

ideal gas, whose entropy was introduced by a conventional definition. The question is then

of course how to proceed for other systems. Planck considers an arbitrary homogeneous

system for which the thermodynamical state is determined by two variables (say temperature

and volume). Such a system is often called a fluid. By exchange of work and heat, the system

can undergo cyclic processes, either reversibelly or irreversibelly. Planck assumes that the

heat exchange is obtained by means of ideal gases, which act as heat reservoirs. (He does not

consider the exchange of work, but it is probably easiest to assume that it is again obtained

by means of an auxiliary weight.) The relevant environment then consists, apart from the

weight, only of ideal gases, and this allows us, by means of definition (17) to speak about the

entropy of the environment.

At the end of the cyclic process the fluid has returned to its initial state; but the states of

the heat reservoirs have changed: at least one of them has absorbed heat and another one has

lost heat. If dQ is the amount of heat absorbed by the system during an infinitesimal element
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of the cycle from the heat reservoir with temperature T one has:

I dQ
T

≤ 0

In particular, if there are only two heat reservoirs involved, heat must have flown from the

hotter to the colder gas.

If the cycle is umkehrbar the special case

I dQ
T

= 0

obtains. This implies that dQ/T is an exact differential, which we may call dS. We can

express this differential in the state variables of the fluid. Since the umkehrbar process obeys

dQ = dU + pdV, one obtains:

dS = (dU + pdV)/T (26)

The function S(T, V) cannot be written explicitly, if the equation of state for the fluid (or

rather: the equations expressing U and p as functions of V and T) is unknown. But —and

this is the main point according to Planck— one can still conclude that for arbitrary fluids

there exists some function S with properties analogous to (17) for the ideal gas, which enable

us to repeat the proof of the previous Lemmas.58 He is satisfied with stating the result:

Es ist auf keinerlei Weise möglich die Entropie eines System von Körpern zu ver-

kleinern, ohne daß in andere Körpern Aenderungen zurückbleiben.59 (§132)

This last clause about other bodies is simply lifted by including these other bodies in the

system. The conclusion is then:

THE ENTROPY PRINCIPLE (PLANCK’S VERSION) Jeder in der Natur stattfindende physikalische

und chemische Prozeß verläuft in der Art, daß die Summe der Entropieen sämtlicher an dem Prozeß

irgendwie betheiligten Körper vergrößert wird. Im Grenzfall, für reversible Prozesse, bleibt

jene Summe ungeändert. Dies ist der allgemeinste Ausdruck des zweiten Hauptsatzes der

Wärmetheorie. (§132)

[. . . Es] ist hier ausdrücklich zu betonen daß die hier gegebene Form [des zweiten Haupt-

satzes] unter allen die einzige ist, welche sich ohne jede Beschränkung für jeden beliebige

58Obviously, to extend the proof of Lemma 3 to an arbitrary fluid, one needs to assume that an ample choice of
adiabatic umkehrbar processes is available by which one can change its volume from any given value to any other
desired value. This is not self-evident. This tacit assumption is brought out explicitly in the formulation of Cara-
théodory (see section 9).

59‘It is in no way possible to decrease the entropy of a system of bodies, without leaving changes in other bodies.’
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endlichen Prozeß aussprechen läßt, und daß es daher für die Irreversibilität eines Prozes-

ses kein anderes allgemeines Maass gibt als den Betrag der eingetretenen Vermehrung der

Entropie.60 ( §134)

Shortly thereafter (§136) Planck raises the question whether there are any restrictions to the

validity of the second law. In principle, he recognises two possible restrictions. Either the

starting point of his argument could turn out to be false. That is, a perpetuum mobile of the

second kind can be realised after all. Or else, there might be a logical defect in his argu-

mentation. Planck dismisses this last possibility light-heartedly. It ‘erweist sich bei näherer

Untersuchung als unstichhaltig’.61 On the former option only experience can give the final

answer. But Planck is full of confidence. He predicts that future metaphysicians will assign

the entropy principle a status even higher than empirical facts, and recognise it as an a priori

truth. The quotation from Eddington in section 2 confirms that Planck was right about that.

7.5 EVALUATION

Let us summarise the weak and strong aspects of Planck’s argument. A good point is that

Planck, by assuming that the heat reservoirs in the environment of the system consist of ideal

gases allows for an explicit thermodynamical description of their state. Thus, in contrast

to previous approaches, it is now possible to conclude that, at least in this case, if a system

performs an unumkehrbar cycle, the entropy of its environment increases.

Less good aspects are the following. When he wants to show that one can assign an en-

tropy to arbitrary systems, Planck restricts his discussion to ‘beliebige homogene Körper von

der Art wie wir in §67 ff. betrachtet haben’62 (§128). The text in §67 makes clear that this

refers to fluids. In the course of the argument, this restriction is never mentioned again. He

simply refers to these systems as ‘Körper’. But fluids are not to be confused with the arbitrary

bodies mentioned in the recurring phrase about ‘zurückbleibende Änderungen in anderen

Körpern’63. These other bodies in the environment include heat reservoirs, rigid bodies like

stirrers and pistons, weights, and ‘technische Hilfsmittel, Maschinen mechanischer, thermis-

cher, elektrischer Art’64 and maybe living creatures.

60‘Every physical or chemical process occurring in nature proceeds in such a way that the sum of the entropies of all bodies
which participate in any way in the process is increased. In the limiting case, for reversibel processes, this sum remains
unchanged. This is the most general expression of the second law of thermodynamics.. . . [It] must be explicitly
emphasised that the formulation [of the second law] given here is the only one of them all which can be stated
without any restriction, and that, therefore, there is no other general measure for the irreversibelity of a process than
the amount of increase of entropy.’

61It ‘turns out, after closer examination, to be untenable’.
62‘arbitrary bodies of the kind we considered in §67 and further.’
63‘remaining changes in other bodies’
64‘technical devices, apparatuses of mechanical, thermal, electrical nature’
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The step of regarding all such bodies in the environment simply as parts of the thermo-

dynamical system, —without considering the question how their entropy is to be defined—

does not appear very plausible: when these bodies are more complex than a fluid, or if they

are not in equilibrium or if their environment is more complex than a system of ideal gases,

their entropy still remains undefined.65

Another objection is that Planck’s general formulation of the second law states that the

law is valid for arbitrary physical and chemical processes. This is surprising. Only one page

earlier Planck (rightly) emphasised that the expression (26) for entropy could not be applied

to chemical processes: ‘Denn von Änderungen dieser Art [i.e. changes of mass or chemical

composition] ist bei der Definition der Entropie nicht die Rede gewesen (§131).’66 Indeed, the

entropy function (17) is defined up to a constant which may depend on the chemical nature

of the substance. How this restriction can suddenly be lifted remains unclear.67

In my opinion, Planck’s argumentation allows no more general conclusion than the fol-

lowing statement.

For any system consisting of fluids which are capable of exchanging work with the envi-

ronment by means of single mechanical coupling (a weight) and which can be placed at

will in a heat bath or in adiabatic isolation: if irreversibel processes take place in the system

whose final result is only a change of volumes and/or temperatures of the system, leav-

ing no changes in auxiliary systems other than the displacement of the weight, its entropy

increases. And conversely, if entropy increases during such a process, it is irreversibel.

There is no argument that all natural processes are of this kind. Examples mentioned by

Planck such as mechanical friction are already outside this category.

Yet, there is another remarkable aspect of Planck’s result worth mentioning. His version

of the entropy principle is not restricted to adiabatically isolated systems, as in Clausius’

version. Instead, it applies to all processes performed by a system which proceed under

the condition that all auxiliary systems in the environment which are employed during the

process return to their initial state, with the possible exception of a single weight.

In one sense, this condition is much more general than the condition of adiabatic isolation,

because it allows for heat exchange between the system and its environment. In another

65Planck emphasises that the attribution of entropy is not restricted to systems in equilibrium. But concrete ap-
plications of such a non-equilibrium entropy remain restricted to the remark that as long as a system is locally in
equilibrium its total entropy can be identified with a sum or integral of local entropies. But this is a meager harvest.
For this application one still needs recourse to equilibrium states. For systems far from equilibrium this approach
does not work.

66‘Because changes of this kind were not considered in the definition of entropy’.
67In the seventh and later editions of the Vorlesungen this problem is avoided by simply dropping the reservation

about chemical processes!
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sense, it is more restricted, because processes in adiabatic isolation may very well proceed by

interaction with auxiliary systems which do not return to their initial state. We shall see in a

later section how Lieb and Yngvason adopted Planck’s condition to devise a new definition

of the term ”adiabatic”

Conclusion: the goal of Planck’s approach is to take the phenomenon of irreversibility of

natural processes as the essential element of the second law. But his claim to have derived

a formulation of universal generality cannot withstand scrutiny. Besides, this emphasis on

irreversibelity and the universal validity of the second law actually remains sterile in Planck’s

own work. The final part of his book, which is devoted to applications of the second law, only

discusses equilibrium problems.

8 GIBBS

The work of Gibbs in thermodynamics (written in the years 1873-1878) is very different from

that of his European colleagues. Where Clausius, Kelvin and Planck were primarily con-

cerned with processes, Gibbs concentrates his efforts on a description of equilibrium states.

He assumes that these states are completely characterised by a finite number of state vari-

ables like temperature, energy, pressure, volume, entropy, chemical potentials etc. He makes

no effort to prove the existence or uniqueness of these quantities from empirical principles.

Gibbs proposes:

THE PRINCIPLE OF GIBBS: For the equilibrium of any isolated system it is necessary and

sufficient that in all possible variations of the state of the system which do not alter its

energy, the variation of its entropy shall either vanish or be negative. (Gibbs 1906, p.56)

He writes this necessary and sufficient condition as:

(δS)U ≤ 0

Actually, Gibbs did not claim that this statement presents a formulation of the second law.

But, intuitively speaking, the Gibbs principle, often referred to as principle of maximal entropy,

does suggest a strong association with the second law. Gibbs corroborates this suggestion by

placing Clausius’ famous words (‘Die Entropie der Welt strebt ein Maximum zu’) as a slogan

above his article. Indeed, many later authors do regard the Gibbs principle as a formulation

of the second law.

Gibbs claims that his principle can be seen as ‘an inference naturally suggested by the gen-

eral increase of entropy which accompanies the changes occurring in any isolated material

57



system’. He gives a rather obscure argument for this inference.68 But fortunately there is no

need for us to fret about the exact meaning of his words, as we did in the case of Planck. His

approach has been followed by many later authors, e.g.˙ (Maxwell 1876, van der Waals and

Kohnstamm 1927, Callen 1960, Buchdahl 1966). We can follow the lead of these Gibbsians

and Truesdell (1986) about how the principle is to be understood.

The first point to note is that in this view the principle of Gibbs is not literally to be seen

as a criterion for equilibrium. Indeed, this would make little sense because all states char-

acterisable by the state variables are equilibrium states. Rather, it is to be understood as a

criterion for stable equilibrium. Second, the principle is interpreted as a variational principle,

analogous to other variational principles known in physics such as the principle of least ac-

tion, the principle of virtual work, etc. Here, a ‘variation’ is to be understood as a comparison

between two conceivable models or possible worlds (i.e. states or processes). The variations

are virtual. That is to say, one should not think of them as (part of) a process that proceeds in

the course of time in one particular world. Instead, the variational principle serves to decide

which of these possible worlds is physically admissible.

In the case of the principle of least action the compared worlds are mechanical processes,

and ‘admissible’ means: ‘obeying the equations of motion”. (The circumstance that the

worlds are here themselves processes of course immediate blocks the idea that variations

could be considered as processes too.) In the principle of virtual work, one considers me-

chanical states, and ‘admissible’ means: ‘being in mechanical equilibrium’. In the case of

68His argument that the principle is a sufficient condition for equilibrium contains the following passage:

Let us suppose [. . . ] that a system may have the greatest entropy consistent with its energy without
being in equilibrium. In such a case, changes in the state of the system must take place, but these will
necessarily be such that the energy and entropy will remain unchanged and the system will continue
to satisfy the same condition, as initially, of having the greatest entropy consistent with its energy. Let
us consider the change which takes place in any time so short that the change may be regarded as
uniform in nature throughout that time. [. . . ] Now no change whatever in the state of the system,
which does not alter the value of the energy, and which commences with the same state in which the
system was supposed at the commencement of the short time considered, will cause an increase in
entropy. Hence, it will generally be possible by some slight variation in the circumstances of the case
to make all changes in the state of the system like or nearly like that which is supposed to actually
occur, and not involving a change of energy, to involve a necessary decrease of entropy, which would
render the change impossible.

His argument that the condition (or actually the equivalent condition (δU)S ≥ 0) is necessary reads:

whenever an isolated system remains without change, if there is any infinitesimal variation in its
state which would diminish its energy [. . . ] without altering the entropy [. . . ] this variation involves
changes in the system which are prevented by its passive forces or analogous resistances to change.
Now as the described variation in the state of the system diminishes its energy without altering its en-
tropy, it must be regarded as theoretically possible to produce that variation by some process, perhaps
a very indirect one, so as to favor the variation in question and equilibrium cannot subsist unless the
variation is prevented by passive forces (Gibbs 1906, p. 59–61).
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Gibbs, similarly, the possible worlds are equilibrium states of a thermodynamical system,

and ‘admissible’ means stable equilibrium.

According to this view, the principle of Gibbs tells us when a conceivable equilibrium

state is stable. Such a proposition obviously has a modest scope. In the first place, Gibbs’

principle is more restricted than previous statements of the second law in the sense that it

applies to systems which are isolated (i.e. no energy exchange is allowed) and not merely

adiabatically isolated. But more importantly, of course, it contains no information about

evolutions in the course of time; and a direction of natural processes, or a tendency towards

increasing entropy, cannot be obtained from it.69

To be sure, there is a long tradition in physics of regarding variational principles as ex-

pressing a tendency or preference, or even purpose, in Nature; see Yourgrau and Mandelstam

(1955). For example, the principle of least action has often been explained as a preference for

efficiency. But even so it would be a mistake to interpret this as a statement about evolution

in the course of time. The principle of least action does not say that mechanical processes

tends to loose ‘action’ during their course. Similarly, the principle of maximal entropy is no

basis for the idea that entropy will increase as time goes by.

In fact, a description of processes is simply not available in the approach of Gibbs. Indeed,

the resulting theory is sometimes called thermostatics (Van der Waals and Kohnstamm, 1927).

Obviously, there are no implications for the arrow of time in the second law as formulated

by Gibbs.

Of course this view is not completely coincident with Gibbs’ own statements. In some

passages he clearly thinks of variations not as virtual but as actual processes within a sin-

gle world, as in the quotation in footnote 68: ‘it must be regarded as generally possible to

produce that variation by some process’. Some sort of connection between virtual variations

and actual processes is of course indispensable if one wants to maintain the idea that this

principle has implications for time evolutions.

Probably the most elaborate attempt to provide such a connection is the presentation by

Callen (1960). Here, it is assumed that, apart from its actual state, a thermodynamic system is

characterised by a number of constraints, determined by a macroscopic experimental context.

These constraints single out a particular subset C of Γ, consisting of states which are consis-

tent with the constraints. It is postulated that in stable equilibrium, the entropy is maximal

69Another argument for the same conclusion is that Gibbs proposes another formulation of his principle, which
he claims to be equivalent. This is the principle of minimal energy, saying that in every variation which leaves the
entropy of the system unaltered, the variation of energy should be positive or vanish: (δU)S ≥ 0. Does this express
a tendency in Nature towards decrease of energy?
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over all states allowed by the constraints.

A process is then conceived of as being triggered by the cancellation of one or more of

these constraints. Examples are the mixing or expansion of gases after the removal of a par-

tition, loosening a previously fixed piston, etc. It is assumed that such a process sets in

spontaneously, after the removal of a constraint.

Now, clearly, the set of possible states is always enlarged by the removal of a constraint.

Hence, if we assume that the final state of this process is again a stable equilibrium state, and

thus characterised by a maximum value for the entropy among all states consistent with the

remaining constraints, one concludes that every process ends in a state of higher (or at best

equal) entropy.

I will not attempt to dissect the conceptual problems that this view brings along, except

for three remarks. First, the idea of extending the description of a thermodynamical system

in such a way that, apart from its state, it is also characterised by a constraint brings many

conceptual problems. For if the actual state is s, it is hard to see how the class of other states

contained in the same constraint set C is relevant to the system. It seems that on this ap-

proach the state of a system does not provide a complete description of its thermodynamical

properties.

Second, the picture emerging from Callen’s approach is somewhat anthropomorphic. For

example he writes, for the case that there are no constraints, i.e. C = Γ, that ‘the system is

free to select any one of a number of states’ (1960, p. 27). This sounds as if the system is

somehow able to ‘probe’ the set C and chooses its own state from the options allowed by the

constraints.

Third, the established result that entropy increases in a process from one equilibrium

state to another, depends rather crucially on the assumption that processes can be success-

fully modeled as the removal of constraints. But, clearly, this assumption does not apply to

all natural processes. For instance, one can also trigger a process by imposing additional con-

straints. Hence, this approach does not attain the universal validity of the entropy principle,

as in Planck’s approach.

9 CARATHÉODORY

Constantin Carathéodory was the first mathematician to work on thermodynamics and to

pursue its rigorous formalisation. For this purpose he developed a new version of the second

law in 1909. Apparently, he had no revolutionary intentions in doing so. He emphasised that

his purpose was merely to elucidate the mathematical structure of the theory, but that the
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physical content of his version of the second law was intimately related to the formulation

by Planck. However, as we shall see, his contribution was not received with a warm welcome,

especially not by Planck.

Before I consider this in more detail, I want to mention some further merits of Carathéodory’s

work. In the first place, he is the first to introduce the concept of ‘empirical temperature’, be-

fore the treatment of the first and second law. The empirical principle he proposed for this

purpose was later baptised as the zeroth law of thermodynamics (by Fowler). Also, Carathéo-

dory’s introduction of the first law is superior to the flawed version by Planck (cf. footnote

3). Most modern textbooks use his formulation of these two laws, often without mentioning

his name. However, I will not discuss these aspects of his work.

Carathéodory follows Gibbs in the idea that thermodynamics should be construed as a

theory of equilibrium states rather than (cyclic) processes. A thermodynamical system is

described by a space Γ consisting of its possible states, which are represented by n state vari-

ables. It is assumed that this state space can be represented as a (subset of an) n-dimensional

manifold in which these thermodynamic state variables serve as coordinates. Carathéodory

assumes that the state space is equipped with the standard Euclidean topology. However,

metrical properties of the space do not play a role in the theory. For example, it makes no

sense to ask whether coordinate axes are orthogonal. Further, there is no preference for a

particular system of coordinates.70

However the coordinates are not completely arbitrary. Carathéodory distinguishes be-

tween ‘thermal coordinates’ and ‘deformation coordinates’. (In typical applications, temper-

ature or energy are thermal coordinates, whereas volumes of the components of the system

are deformation coordinates.) The state of a thermodynamic system is specified by both types

of coordinates; the ‘shape’ (Gestalt) of the system by the deformation coordinates alone.

Although he does not mention this explicitly, it seems to be assumed that the deforma-

tion coordinates remain meaningful in the description of the system when the system is not

in equilibrium, whereas the thermal coordinates are generally defined only for equilibrium

states. In any case, it is assumed that one can obtain every desired final shape from every

initial state by means of an adiabatic process.

The idea is now to develop the theory in such a way that the second law provides a

70Some authors (Thomsen and Hartka 1962), (Truesdell 1986, p. 118) raise the objection that Carathéodory’s for-
mulation would demand the use of pressure and volume as coordinates for the state of a fluid. These are not always
suitable. For example, water of about 4oC possesses physically distinct states with the same values of (p, V). It is
true that, at the beginning of his paper, Carathéodory chooses this pair of coordinates to represent the state of a
system, but, as far as I can see, this is not essential to the theory. In fact he explicitly extends his treatment to general
coordinates.
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characteristic mathematical structure of state space. The fundamental concept is a relation

between pairs (s, t) of states that represents whether t can be reached from s in an adiabatic

process.71 This relation is called adiabatic accessibility, and I will denote it, following Lieb

and Yngvason (1999), by s1 ≺ s2. This notation of course suggests that the relation has the

properties of some kind of ordering. And indeed, given its intended physical interpretation,

such an assumption would be very natural. But Carathéodory does not state or rely on this

assumption anywhere in his paper.

In order to introduce the second law, Carathéodory starts from an empirical claim: from

an arbitrary given initial state it is not possible to reach every final state by means of adiabatic

processes. Moreover, such inaccessible final states can be found in every neighbourhood of

the initial state. However, he immediately rejects this preliminary formulation, because it

fails to take into account the finite precision of physical experiments. Therefore, he strength-

ens the claim by the idea that there must be a small region surrounding the inaccessible state,

consisting of points which are also inaccessible.

The second law thus receives the following formulation:

THE PRINCIPLE OF CARATHÉODORY: In every open neighborhood Us ⊂ Γ of an arbitrarily

chosen state s there are states t such that for some open neighborhood Ut of t: all states r

within Ut cannot be reached adiabatically from s. Formally:

∀s ∈ Γ ∀Us ∃t ∈ Us & ∃Ut ⊂ Us ∀r ∈ Ut : s ≺� r, (27)

where Us and Ut denote open neighborhoods of s and t.

He then specialises his discussion to so-called ‘simple systems’, obeying four additional

conditions. In the first place, it is demanded that the system has only a single independent

thermal coordinate. Physically speaking, this means that the system has no internal adiabat-

ically separated subsystems since in that case it would have parts with two or more indepen-

dent temperatures. For a simple system the state can thus be represented with coordinates

s = (x0, . . . , xn−1), where x0 is, by convention, the thermal coordinate.

Secondly, it is demanded that for any given pair of an initial state and final shape of

the system there is more than one adiabatic process P that connects them, differing in the

71A characteristic (but for our purpose not very important) aspect of the approach is that Carathéodory wishes
to avoid the concept of ‘heat’ as a primitive term. Therefore he gives a more cumbersome definition of the term
‘adiabatic process’. He calls a container adiabatic if the system contained in it remains in equilibrium, regardless
of what occurs in the environment, as long as the container is not moved nor changes its shape. Thus, the only
way of inducing a process in a system contained in an adiabatic vessel is by deformation of the walls of the vessel.
Examples of such deformation are compression or expansion and also stirring (the stirrer is also part of the walls).
Next, a process is called adiabatic if it takes place while the system is adiabatically isolated, i.e. contained in an
adiabatic container.
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amount of work done on the system during the process. For example, for a gas initially in

any given state one can obtain an arbitrary final value for its volume by adiabatic expansion

or compression. This change of volume can proceed very slowly or very fast, and these two

procedures indeed differ in the amount of work done. This assumption can also be found in

the argument by Planck (see page 51).

The third demand is that the amounts of work done in the processes just mentioned form

a connected interval. In other words, if for a given initial state and final shape there are adia-

batic processes P1, P2 connecting them, which deliver the work W(P1) and W(P2) respectively,

then there are also adiabatic processes P with any value of W(P ), for W(P1) ≤ W(P ) ≤ W(P2).

In order to formulate the fourth demand Carathéodory considers a more special kind of

adiabatic process. He argues that one can perform a process starting in any given initial state

and ending with any given final shape, where the changes of the deformation coordinates

follow some prescribed continuous functions of time:

x1(t), . . . , xn−1(t), (28)

Note that the system will in general not remain in equilibrium in such a process, and therefore

the behaviour of the thermal coordinate x0 remains unspecified.

Consider a series of such processes in which the velocity of the deformation becomes

infinitely slow, i.e. a series in which the derivatives

ẋ1(t), . . . , ẋn−1(t).

converge uniformly towards zero. Such a limit is called a quasi-static change of state.

For example, if the deformation coordinates (28) are prescribed on the interval 0 ≤ t ≤ 1,

one can consider the series of processes Pλ, defined on the time intervals [0, λ], where the

deformation coordinates change as:

x1(
t
λ

), . . . , xn−1(
t
λ

), (29)

with λ →∞.

The fourth demand is now that in such a series of processes the work done on the system

converges to a uniquely determined value, depending only on the given initial state and final
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shape, which can be expressed as a time integral:

W = lim
λ→∞

W(Pλ) =
Z t f

ti

dW

where dW denotes a differential form of the deformation coordinates:

dW = p1dx1 + · · ·+ pndxn,

and p1, . . . , pn denote some given functions on Γ, i.e. they may depend on x0, . . . , xn−1. This

value W is the work done on the system in a quasi-static adiabatic change of state. Physically,

this demand says that for adiabatic processes, in the quasi-static limit, there is no internal

friction or hysteresis.

By means of Carathéodory’s version of the first law (which I have not discussed here),

one can then show that

dW = dU, (30)

and hence W = U(s f ) − U(si), or in other words, the work done on the system equals the

energy difference between final and initial state. This means that for a quasistatic adiabatic

change of state between a given initial state and final shape the thermal coordinate of the

final state is also uniquely fixed. Since the choice of a final shape is arbitrary, this holds also

for all intermediate stages of the process.

Thus, a quasistatic adiabatic change of state is represented by a unique curve in Γ. That

is to say, it is what Planck called an ‘infinitely slow process’. It represents a limit of processes

performed so slowly that the system can be considered as if it remains in equilibrium for the

whole duration of the process.

With this concept of a ‘simple system’ he obtains:

CARATHÉODORY’S THEOREM: For simple systems, Carathéodory’s principle is

equivalent to the proposition that the differential form dQ := dU − dW possesses

an integrable divisor, i.e. there exist functions S and T on the state space Γ such

that

dQ = TdS. (31)

Thus, for simple systems, every equilibrium state can be assigned values for entropy and

absolute temperature. Obviously these functions are not uniquely determined by the relation

(31). Carathéodory discusses further conditions to determine the choice of T and S up to a

constant of proportionality. However, I will not discuss this issue.

64



Because of Carathéodory’s first law, i.e. relation (30), the curves representing quasi-static

adiabatic changes of state are characterised by the differential equation

dQ = 0,

and by virtue of (31) one can conclude that (if T �= 0) these curves lie on a hypersurface

S(x0, . . .xn−1) = const.

Thus, for simple systems, the entropy remains constant in adiabatic quasi-static changes of

state.

Next, Carathéodory argues that T is suitable to serve as a thermal coordinate. In such a

coordinate frame, states with the same entropy differ only in the values of the deformation

coordinates, so that all these states are mutually adiabatically accessible.

Before we proceed to the discussion of the relation of this formulation with the arrow of

time, I want to summarise a number of strong and weak points of the approach. Undoubt-

edly, a major advantage of the approach is that Carathéodory provides a suitable mathemat-

ical formalism for the theory, and brings it in line with other theories in modern physics.

The way this is done is comparable to the development of relativity theory. There, Einstein’s

original approach, which starts from empirical principles like the invariance of the velocity

of light, has been replaced by an abstract geometrical structure, Minkowski spacetime, where

these empirical principles are incorporated in local properties of the metric. Similarly, Cara-

théodory constructs an abstract state space where an empirical statement of the second law is

converted into a local topological property. Furthermore, all coordinate systems are treated

on the same footing (as long as there is only one thermal coordinate, and they generate the

same topology).72

Note further that the environment of the system is never mentioned explicitly in his treat-

ment of the theory. This too is big conceptual advantage. Accordingly, nearly all attempts

in the subsequent literature to produce an axiomatic formalism for thermodynamics take

the work of Carathéodory as their point of departure; e.g. (Giles 1964, Boyling 1972, Jauch

1975, Hornix 1993, Lieb and Yngvason 1999).

72Indeed, as Lieb and Yngvason have shown, the analogy with relativity theory can be stretched even beyond this
point. Let Fs = {t : s ≺ t} be the ‘forward cone’ of s. This is similar to the definition of the future lightcone of a
point p in Minkowski spacetime which can similarly be characterised as the set of all points q which are ‘causally
accessible’ from p. Thus, Carathéodory’s principle implies that s is always on the boundary of its own forward
cone.
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It is also remarkable that in contrast to previous authors, Carathéodory needs many spe-

cial assumptions, which are packed into his concept of a ‘simple’ system, in order to obtain

his theorem. The reason for this distinction, is of course that Carathéodoryaims to present

a formal theory, where the formalism decides what is possible. Thus, while Planck sim-

ply assumed without further ado that it is possible to perform some required process, e.g.

compressing or expanding a gas to any desired volume, this is because he took ‘possible’ in

sense (ii) of section 3 above. For him it suffices to observe that in the actual world provides

the means to do this. But for Carathéodory a process is possible if the formalism allows it.

For this purpose, the theoretical assumptions which are needed to complete such arguments

must be made explicit. Again, this is an important advantage of Carathéodory approach.

But Carathéodory’s work has also provoked less positive reactions among thermodynam-

icists, in particular because of its high abstraction. Many complain that the absence of an

explicit reference to a perpetuum mobile obscures the physical content of the second law. The

complaint is put as follows by Walter:

A student bursts into the study of his professor and calls out: “Dear professor, dear profes-

sor! I have discovered a perpetual motion of the second kind!’ The professor scarcely takes

his eyes of his book and curtly replies: “Come back when you have found a neighborhood

U of a state x0 of such a kind that every x ∈ U is connected with x0 by an adiabat (cited in

(Truesdell 1986, p. 118)).73

The question has been raised (e.g. by Planck (1926)) whether the principle of Carathéodo-

ry has any empirical content at all. However, Landsberg (1964) has shown that for simple

systems Kelvin’s principle implies Carathéodory’s principle, so that any violation of the latter

would also be a violation of the former.

Other problems in Carathéodory’s approach concern the additional assumptions needed

implicitly or explicitly to obtain the result (31). In the first place, we have seen that the

result is restricted to simple systems, a restriction which involves four additional auxiliary

conditions. Even the definition of quasi-static changes of states is confined to simple systems

alone. Falk and Jung (1959) objected that the division of these five assumptions into four

pertaining to simple systems and one ‘Principle’, intended to express a general law of nature,

seems ad hoc. Indeed, the question whether Carathéodory’s principle can claim empirical

support for non-simple systems still seems to be open.

Secondly, there is an implicit assumption that thermodynamic state variables can be used

as differentiable coordinates on Γ. For systems that possess phase transitions or critical states

73Note that Walter only states Carathéodory’s preliminary version of his principle here.
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Figure 2: Carathédory’s principle can be valid in a cylindrical phase space, even though there is no global
continuous entropy function.

this assumption is too strong. (This objection can obviously also be raised against other

approaches.) A generalization of Carathéodory’s work, encompassing certain non-simple

systems (namely, systems composed of simple subsystems) is given by Boyling (1972). A

different elaboration, avoiding assumptions of differentiability has been given by Lieb and

Yngvason (1999). This is discussed in section 11.

In the third place, Bernstein (1960) has pointed out technical defects in the proof of Cara-

théodory’s theorem. What Carathéodory’s principle actually implies for simple systems is

merely the local existence of functions S and T obeying (31). That is, for each state s there is

some environment Us in which one can find such functions. Ss, Ts But this does not mean

that there exists a single pair of functions, defined globally on Γ, that obey (31). In fact, a

purely local proposition like Carathéodory’s principle is too weak to guarantee the existence

of a global entropy function.

As a simple-minded counterexample, consider the case where Γ is the surface of a cylinder

(see Figure 2), with coordinates (φ, z), 0≤ φ < 2π. Let z represent the deformation coordinate.

For every point s ∈ Γ let Ds denote a narrow strip of points just below s: Ds := {t ∈ Γ : φ(s)−
ε < φ(t) ≤ φ(s) (mod 2π)} where ε is a positive number less than 2π. Now define the relation

≺ by: s ≺ t if and only if t ∈ Ds. This relation obviously satisfies the principle of Carathéo-

dory. Moreover the theorem of Carathéodory is also satisfied: adiabatic quasi-static changes

obey dφ = 0, and this differential equation is integrable. Further, for every point s, one can

find a continuous differentiable coordinate function (namely φ itself, plus, if necessary, an

appropriate constant) such that locally, in a small environment of s: s ≺� t if and only if φ(t) <
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φ(s). But there is no continuous function that does this globally. In fact, the relation ≺ is

intransitive in this example, and every point can be reached from every other point by a

series of adiabatic changes of state. Boyling (1968)) has given a more sophisticated example

of a two-dimensional state space with ordinary (contractible) topology, which satisfies the

principle of Carathéodory, without a global entropy function.

For the purpose of this essay, of course, we need to investigate whether and how this

work relates to the arrow of time. We have seen that Carathéodory, like Gibbs, conceives of

thermodynamics as a theory of equilibrium states, rather than processes. But his concept of

‘adiabatic accessibility’ does refer to processes between equilibrium states. The connection

with the arrow of time is therefore more subtle than in the case of Gibbs.

In §9 of Carathéodory (1909), he gives a discussion of the notorious notion of irreversibil-

ity. Consider, for a simple system, the class of all final states s′ with a given shape (x′
1, . . . , x′

n−1)

that are adiabatically accessible from a given initial state s = (x0, . . .xn−1). For example, an

adiabatically isolated gas is expanded from some initial state (T, V) to some desired final vol-

ume V′. The expansion may take place by moving a piston, slowly or more or less suddenly.

The set of final states that can be reached in this fashion differ only in the values of their

thermal coordinate x′
0. For this coordinate one may choose either energy U, temperature T

or entropy S. For simple systems, (due to demand 3 above) the class of accessible final states

constitutes a connected curve, parameterised by an interval on the U-axis. Carathéodory ar-

gues that, for reasons of continuity, the values of S attained on this curve will also constitute

a connected interval. Now among the states of the considered class there is the final state, say

t, of a quasi-static adiabatic change of state starting from s. And we know that S(s) = S(t). He

then claims that the entropy value S(s) cannot be an internal point of this interval. Indeed, if

it were an internal point, then there would exist a small interval (S(s)− ε, S(s) + ε) such that

the corresponding states on the curve would all be accessible from s. Moreover, it is always

assumed that we can change the deformation coordinates in an arbitrary fashion by means

of adiabatic state changes. By quasi-static adiabatic changes of state we can even do this with

constant entropy But then, all states in a neighborhood of s would be adiabatically accessible,

which violates Carathéodory’s principle.

Therefore, all final states with the final shape (x′
1, . . . , x′

n−1) that can be reached from the

given point s must have an entropy in an interval of which S(s) is a boundary point. Or in

other words, they all lie one and the same side of the hypersurface S = const. By reasons of

continuity he argues that this must be the same side for all initial states. Whether this is the

side where entropy is higher, or lower than that of the initial state remains an open question.

According to Carathéodory, a further appeal to empirical experience is necessary to decide
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this issue.

He concludes:

[Es] folgt aus unseren Schlüssen, daß, wenn bei irgend einer Zustandsänderung der Wert

der Entropie nicht Konstant geblieben ist, keine adiabatische Zustandsänderung gefunden

werden kann, welche das betrachtete System aus seinem End- in seinem Anfangszustand

überzuführen vermag.

Jede Zustandänderung, bei welcher der Wert der Entropie variiert, ist “irreversibel”74 (Carathéo-

dory 1909, p. 378).

Without doubt, this conclusion sounds pleasing in the ears of anyone who believes that irre-

versibility is the genuine trademark of the second law.75 But a few remarks are in order.

‘Irreversibel’ here means that the change of state cannot be undone in an adiabatic process.

This is another meaning for the term, different from those of Carnot, Kelvin, Clausius and

Planck. In fact, this definition is identical to the proposal by Orr, discussed on page 49. The

question is then of course whether changes of states that cannot be undone by an adiabatic

process, might perhaps be undone by some other process. Indeed, it is not hard to find

examples of this possibility: consider a container of ideal gas in thermal contact with a heat

reservoir. When the piston is pulled out quasi-statically, the gas does work, while it takes

in heat from the reservoir. Its entropy increases in this process, and the process would thus

qualify as irreversible in Carathéodory’s sense. But Planck’s book discusses this case as an

example of a reversibel process. Indeed, when the gas is recompressed equally slowly, the

heat is restored to the reservoir and the initial state is recovered everywhere, i.e. for both

system and environment. Thus, Carathéodory’s concept of ‘irreversibility’ does not coincide

with Planck’s.

The obvious next question is whether such counterexamples can be avoided by restricting

the proposition to all adiabatic changes of state of a simple system in which the entropy varies.

But this does not solve the problem. Planck says explicitly in his criterion for reversibelity

that in the recovery process, any auxiliary systems available may be employed. The system

certainly need not remain in an adiabatic container. Even if the original process were adia-

batic, it would remain reversibel as long as a non-adiabatic recovery process can be found.

There seems to be no guarantee that something like that is excluded in Carathéodory’s ap-

proach.

74‘[It] follows from our conclusions that, when for any change of state the value of the entropy has not remained
constant, one can find no adiabatic change of state, which is capable of returning the considered system from its final
state back to its initial state. Every change of state, for which the entropy varies is “irreversible”.’

75Carathéodory argues that his formulation of the second law imply Gibbs’ principle. I’d rather not go into this.
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There is also another way to investigate whether Carathéodory’s approach captures the

content of the second law à la Clausius, Kelvin or Planck, namely by asking whether the

approach of Carathéodory allows models in which these formulations of the second law are

invalid. An example is obtained by applying the formalism to a fluid while swapping the

meaning of terms in each of the three pairs ‘heat /work’, ‘thermal/deformation coordinate’

and ‘adiabatic’/‘without any exchange of work’. The validity of Carathéodory’s formalism

is invariant under this operation, and a fluid remains a simple system. Indeed, we obtain, as

a direct analog of (31): dW = pdV for all quasi-static processes of a fluid. This shows that,

in the present interpretation, pressure and volume play the role of temperature and entropy

respectively. Furthermore, irreversibility makes sense here too. For fluids with positive pres-

sure, one can increase the volume of a fluid without doing work by expansion into a vacuum,

but one cannot decrease volume without doing work on the system. But still, the analogues

of the principles of Clausius of Kelvin are false in this application. A fluid with low pressure

can very well do positive work on another fluid with high pressure by means of a lever or

hydraulic mechanism.

The next point worth remarking is that the conclusion of Carathéodory is formulated as a

time-symmetric statement: not only an increase of entropy, but also a decrease cannot be un-

done in an adiabatic process! As we shall discuss in section 10, Planck criticised the approach

by pointing out that a world where the time reverse of Kelvin’s principle holds, also obeys

the principle of Carathéodory. Although this does not mean that the principle of Carathéodo-

ry itself is time symmetrical (that would mean that the time reversal of every possible world

obeying the principle of Carathéodory obeys the same principle76), according to Planck it is

still not enough to characterise the direction of irreversible processes. In fact Carathéodory

admitted this point (Carathéodory 1925). He stressed that an additional appeal to experience

is necessary to conclude that changes of entropy in adiabatic processes are always positive (if

T > 0). In other words, in Carathéodory’s approach this is not a consequence of the second

law.

Finally it is remarkable that the converse statement (i.e. that every irreversible process in

76In order to judge the time-symmetry of the theory of Carathéodory according to the criterion on page 11 it is
necessary to specify a time reversal transformation R. It seems natural to choose this in such a way that Rs = s and
R(≺) = � . (That is to say: s ≺ t in P ∗ if t ≺ s in P .) Then the theory is not time-symmetric. Indeed, the principle of
Carathéodory forbids that state space contains a ‘minimal state’ (i.e. states s for which ∃Us ∀t ∈ Us : s ≺ t. It allows
models where state space possesses a ‘maximum’, i.e. a state s for which ∃Us∀t ∈ Us : t ≺ s. Time reversal of such a
model is in conflict with the principle of Carathéodory. However, this time-asymmetry manifests itself only in rather
pathological cases. (For a fluid, this would mean a local maximum for its temperature and volume.) If we exclude
the existence of such maxima, Carathéodory’s theory becomes time symmetric. Indeed a modern variation of the
theory (Giles 1964) has been given that is manifestly time-symmetric. (Giles calls this the ‘principle of duality’). The
same goes for the formulation by Lieb and Yngvason (see section 11).
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a simple system is accompanied by a change of entropy) is not expressed. In this respect too

the formulation of Carathéodory is less far-reaching than Planck.

10 THE DEBATE BETWEEN BORN, EHRENFEST-AFANASSJEWA AND PLANCK

Carathéodory’s work did not immediately have much impact on the physics community.

Only twelve years later, when Max Born (1921) formulated a popularised version of this work

and explicitly presented it as a critique of the traditional formulation of thermodynamics, did

the attention of the physicists awaken.

I first mention some of the simplifications introduced in this paper. In the first place,

Born’s formulation of Carathéodory’s principle is different:

CARATHÉODORY’S PRINCIPLE (BORN’S VERSION): In every neighborhood of each

state there are states that are inaccessible by means of adiabatic changes of state.

In other words

∀s ∈ Γ ∀ Us : ∃t ∈ Us s ≺� t.

In fact, this is the formulation of the principle which Carathéodory considered as a prelimi-

nary version, and then rejected in favour of (27). Nevertheless, Born’s formulation has since

been adopted generally as the statement of Carathéodory’s principle. This is unfortunate be-

cause it is evident that the statement by itself is inadequate for the derivation of the result

(31). Indeed, one’s first association, when reading that every neighborhood of a point con-

tains points of another kind, is about the way in which rational numbers are imbedded in

the real line. In fact, if we call a real number p ‘adiabatically inaccessible’ from number q just

in case p − q is irrational, Born’s version of Carathéodory’s principle is satisfied for Γ = IR.

But clearly such a model is not intended at all. So the formulation by Born does not suffice

to obtain an interesting second law. It presupposes additional tacit assumptions about the

continuity of ≺.

Next, Born does not mention the restriction to simple systems, and the subtle assump-

tions involved states bluntly that the approach is applicable, without any problems, to ‘ganz

beliebige Systeme, wie sie die Thermodynamik zu betrachten pflegt’77(Born 1921, p. 162)

Further, instead of using Carathéodory’s definition of irreversibility, Born calls a process

reversibel iff it is quasi-static:

77‘completely arbitrary systems, such as usually considered in thermodynamics’.
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Man leitet den Prozeß unendlich langsam, derart, daß der Zustand in jedem Momente als

Gleichgewicht angesehen werden kann. Man sollte solche Vorgänge quasi-statische nennen,

aber man gebraucht gewöhnlich das Wort reversibel, weil sie im allgemeinen die Eigen-

schaft haben umkehrbar zu sein. Wir wollen hier auf die Bedingungen, unter denen das

der Fall ist nicht näher eingehen, sondern annehmen daß sie erfüllt sind, und werden beide

Bezeichnungen als synonym verwenden.78 (Born 1921, p. 165)

That is, he employs the term in the sense of Clausius’ and Planck’s umkehrbar.

The most striking point of Born’s article is his claim that every differential form defined on

a two-dimensional state space has an integrating divisor. This provides a strong and elegant

objection against Planck’s presentation of the second law, because it implies that the exis-

tence of an entropy function for fluids, a topic which occupies a substantial part of Planck’s

laborious argument, is in fact trivial; i.e. an empirical justification of this result is not needed

at all! Planck’s work thus appears to be an ‘attempt to crash through an open door’ (Kestin

1976, p. 207). But this conclusion is not completely correct.79

A different analysis was given by Ehrenfest-Afanassjewa (1925). Her interpretation of

Carathéodory’s work also contains a few curious alterations. For example, she calls a process

adiabatic in case there is no net exchange of heat with the environment. Thus, in this sense,

a non-simple system, e.g. a composite system of gases in separate containers connected by

adiabatic pistons, undergoes an adiabatic process if one part absorbs heat from a reservoir,

while another ejects the same amount of heat to some other reservoir.

This choice of terminology leads her to the view that Carathéodory’s principle is violated

for non-simple systems. All states in a neighborhood of a given initial state can be ‘adiabati-

cally’ accessible for such a system. Obviously, this view can be maintained consistently, and

it inevitably leads to the conclusion that Carathéodory’s principle does not qualify as a law

of nature, but only as a special assumption for simple systems. The student mentioned in the

quotation from Walter would not have to search very far in order to surprise his professor!

But since Carathéodory used the term ‘adiabatic’ with a different meaning this should not

count as an objection against his work.

More important is that she correctly pointed out that Carathéodory’s principle is also

78‘One conducts the process infinitely slowly, in such a way that the state at every moment can by regarded as
an equilibrium. One should call such processes quasi-static, but one usually employs the word reversible, because, in
general, they have the property that they can be reversed. We do not want to discuss the conditions under which
this is the case, but rather assume that they are fulfilled, and use both terms as synonymous.’

79It is true that differential forms in two dimensions always have integrating divisors. But these can still attain the
value zero at some points. In such singular points the integral curves (i.e. the adiabats) can intersect. (An example
is the differential form ydx − xdy in IR2.) Kelvin’s principle disallows the intersection of adiabats globally. The
approach of Planck is thus not empirically empty, even for fluids.
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valid in models where the time reverse of the principles of Kelvin or Clausius hold, or in

worlds where only reversible processes occur. She saw this as an important advantage: it

means one is able to introduce the concepts of entropy and absolute temperature and the

equation (31), without being committed to a principle of universal entropy increase or ap-

pealing to the existence of irreversible processes.

Finally, Planck, the main representative of the tradition criticised by Born, also responded

(Planck 1926). He denied that Carathéodory’s version of the second law could serve as an

adequate replacement of the principle of Kelvin and rejected it as a ‘künstliche und unnötige

Komplikation (an artificial and unnecessary complication)’. He advanced two main objec-

tions.80

The first is that by speaking about arbitrarily small neighborhoods, Carathéodory ap-

peals to matters beyond the reach of observation. We cannot possibly know, with our finite

experimental faculties, whether every neighborhood always contains adiabatically inacces-

sible states. Hence the principle is speculative, and conflicts with the empiricist guidelines

along which thermodynamics ought to be developed, according to Planck’s point of view.

I don’t think this objection is fair. It may be true that the connection with experience is

less manifest in Carathéodory’s approach than in that of Planck. But to conclude that it is

therefore more speculative or less reliable seems incorrect. Planck too freely uses differential

calculus for thermodynamical quantities, presupposing that the state space has the topolog-

ical properties of a differential manifold. This is equally speculative: perhaps future experi-

ments will teach us that, on a very small scale, state space is discrete, or that it has some other

weird topology. The fact that Planck and previous authors ignored these questions should

not be mistaken for a sign of superiority by empiricist standards.

The second objection is more important for our purpose. Planck writes:

. . . das Prinzip [von Carathéodory] spricht nur von der Unerreichbarkeit gewisser Nach-

barzustände, es gibt aber kein Merkmal an, durch welches die erreichbaren Nachbar-

zustände von der unerreichbaren Nachbarzustände zu unterscheiden sind. Mit anderen

Worten: nach dem Prinzip von Carathéodory könnte es sehr wohl möglich sein, Wärme

ohne Kompensation in Arbeit zu verwandeln. Dann müßte nur der umgekehrte Vorgang,

die kompensationslose Verwandlung von Arbeit in Wärme, als unmöglich angenommen

werden. Oder es könnte auch sein, daß beide Arten von Verwandlung unmöglich wären.

Es ist selbstverständlich, daß auf einer solchen Grundlage der zweite Wärmesatz nicht

80A third objection voiced by Planck is that in contrast to that of Kelvin, Carathéodory’s principle would have to
be drastically reformulated when transposed into a statistical mechanical framework. He does not substantiate this
claim, however.
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vollständig aufgebaut werden kann und daß für diesen Zweck dem durch das Carathéo-

dorysche Prinzip ausgedrückten Axiom noch ein zweites von jenem unabhängiges Axiom,

das sich auf irreversible Vorgänge bezieht, hinzugefügt werden muß. . . .81 (Planck 1926,

p.455)

The observation that Carathéodory’s principle is neutral with respect to the irreversibility

of natural processes had already been noted by Ehrenfest-Afanassjewa. But whereas she

thought of this as a major advantage, in the eyes of Planck it is a serious defect. He diagnoses

the theory of Carathéodory as suffering from Ergänzungsbedürftigkeit (need of completion).

It is worthwhile to dwell on the exact nature of Planck’s criticism. The first point (viz. that

Carathéodory’s principle is also valid in a time reverse of our world) is rather mild: both

worlds could contain irreversible processes; Carathéodory only fails to provide a ‘Merkmal’

to indicate the direction in which they proceed. The second point is more serious: a principle

that allows worlds in which only reversible processes occur does not imply the existence

of irreversible processes. This point is correct; but it can also be raised against Kelvin’s or

Clausius’ formulations of the second law.

Planck then presents a new proof of the second law which, he claims, shares the advan-

tages of Carathéodory’s approach (namely: that no reference is made to the ideal gas or cyclic

processes), but also hinges essentially on irreversibility. In the eighth edition of the Vorlesun-

gen (Planck 1926), this proof replaces the ‘careful’ proof discussed in section 7.

10.1 PLANCK REVISITED

I will discuss Planck’s new proof only briefly. The main difference with the argument dis-

cussed in section 7 is that one does not start with the ideal gas. Instead, the existence of a

positive integrating divisor for the inexact heat differential dQ of a fluid is accepted unques-

tioningly. Thus, one writes immediately

dQ = TdS,

where the entropy S and temperature T are state variables of the fluid.

He then introduces the statement ‘friction is an irreversibel process’, which he considers

81‘. . . the principle [of Carathéodory] speaks only of the inaccesibility of certain neighbouring states, but it provides
no mark by which the accessible states can be distinguished from the inaccessible states. In other words, according
to Carathéodory’s principle it could very well be possible to transform heat into work without compensation. One
only needs to assume that the reverse process, i.e. the compensationless transformation of work into heat were
impossible. It is obvious that the second law cannot be built completely on this foundation and that for this purpose
one needs the addition of a second, independent axiom which refers to irreversible processes.’
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as a formulation of Kelvin’s principle. This view may need some explanation, because, at

first sight, this statement does not seem to address cyclic processes or the perpetuum mobile at

all. But for Planck, the statement is equivalent to the proposition that there exists no process

which ‘undoes’ the consequences of friction, i.e., a process which produces no other effect

than cooling a reservoir and doing work. The condition ‘no other effect’ here allows for the

operation of any type of machinery that operates in a cycle.

He then considers an adiabatically isolated fluid which can exchange energy with its en-

vironment by means of a weight. Planck asks whether it is possible to reach a state s′ of

the system from a given initial state s, in a process which brings about no changes in the

environment other than the displacement of the weight. Let us represent this as

(s, Z, h) ?−→ (s′, Z, h′).

He argues that, by means of ‘reversibel-adiabatic’82 transitions, starting from the state s, one

can always reach a state s∗ in which the volume equals that of state s′ and the entropy equals

that of s. That is, there is a change of state

(s, Z, h) −→ (s∗, Z, h∗),

with

V(s∗) = V(s′) and S(s∗) = S(s).

Whether the intended final state s′ can now be reached from the intermediate state s∗ depends

on the value of the only independent variable in which s∗ and s′ differ. For this variable one

can either choose the entropy S, energy U or temperature T.

There are three cases:

(1) h∗ = h′. In this case, energy conservation implies U(s∗) = U(s′). Because the coordinates

U and V determine the state completely, s∗ and s′ must coincide.

(2) h∗ > h′. In this case, the state s′ can be reached from s∗ by letting the weight perform work

on the system, e.g. by means of friction, until the weight has dropped to height h′. According

to the above formulation of Kelvin’s principle, this process is irreversible.

(3) h∗ < h′. In this case the desired transition is impossible. It would be the reversal of the

irreversible process just mentioned in (2), i.e. produce work by cooling the system and would

thus realise a perpetuum mobile of the second kind.83

82Apparently, Planck’s pen slipped here. He means: umkehrbar-adiabatic.
83Note how much Planck’s application of the perpetuum mobile differs from Carnot and Kelvin. The latter authors
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Now, Planck argues that in all three cases, a transition from s∗ to s′ is possible by means

of heat exchange in an umkehrbar process in which the volume remains fixed. For such a

process one can write

dU = TdS.

Using the assumption that T > 0, it follows that, in the three cases above, U must vary in the

same sense as S. That is, the cases U(s∗) < U(s′), U(s∗) = U(s′) or U(s∗) > U(s′), can also be

characterised as S(s∗) < S(s′), S(s∗) = S(s′) and S(s∗) > S(s′) respectively.

For a system consisting of several fluids the argument is analogous. Planck argues that,

here too, starting from a state s, a state s∗ can be reached by means of quasi-static-adiabatic

processes in which all variables except one are equal to the values of the variables in state s′,

while the entropy has remained constant, etc.84

Just as in earlier editions of his book, Planck generalises his conclusions (without a shred

of proof) to arbitrary systems and physical/chemical processes:

Jeder in the Natur stattfindende Prozeß verläuft in dem Sinne, daß die Summe der Entro-

pien aller an dem Prozeß beteiligten Körper vergrößert wird. Im Grenzfall, für einen re-

versibeln Prozeß, bleibt diese Summe ungeändert. [. . . ] Damit ist der Inhalt des zweiten

Hauptsatzes der Thermodynamik erschöpfend bezeichnet. . . .85 (Planck 1926, p. 463)

The argument just presented is Planck’s definitive formulation of the second law. Al-

though in some respects clearer and simpler than the earlier proof, I do not believe it gives a

substantial improvement. First, the assumption that for every fluid there always exist func-

tions S and T (with T > 0) such that dQ = TdS is problematic. (Although understandable,

being a concession to Born). Secondly the generalization to arbitrary processes in arbitrary

systems remains as dubious as it was in the earlier versions. There is nothing in Planck’s ar-

gument that indicates that the argument is valid beyond the simple systems of Carathéodory.

I conclude that Planck has not succeeded in his attempt to show that the theorem of Cara-

théodory is nothing but ‘an artificial and unnecessary complication’. All he shows is that

considered the engine, i.e. the device which performs the cycle, as the system of interest and the reservoir as part of
the environment. By contrast, for Planck, the reservoir is the thermodynamical system, and the engine performing
the cyclic process belongs to the environment. Related to this switch of perspective is the point that the reservoir
is now assumed to have a finite energy content. Thus, the state of the reservoir can change under the action of the
hypothetical perpetuum mobile device. As a consequence, the withdrawal of energy from the reservoir need not be
repeatable. This is in contrast to Carnot’s analysis (see section 4). Indeed, there is nothing ‘perpetual’ about Planck’s
present construal of the perpetuum mobile.

84This is comparable to Carathéodory’s assumption that from every initial state one can reach all values of the
deformation coordinates by an adiabatic process.

85‘Every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies taking
part in the process is increased. In the limiting case, for reversible processes this sum remains unchanged. [. . . ] This
provides an exhaustive formulation of the content of the second law of thermodynamics’
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by adding Kelvin’s principle to that of Carathéodory (which is still necessary to guarantee

the relation dQ = TdS), one obtains a time asymmetric statement that no longer admits both

entropy increases as well as decreases in adiabatically isolated systems. Further, although it

seems natural to understand the proposition ‘friction is an irreversibel process’ as intended

to imply that friction processes occur in our world, there is no need to assume the actual

existence of irreversibel processes in the argument. Thus, Planck’s formulation also allows

models in which all processes are reversible, and does not repair this defect which he diag-

nosed in Carathéodory’s work.

11 LIEB AND YNGVASON

It goes without saying that I cannot treat all the numerous reformulations of the second law

that have been attempted in the past 75 years. But this article would remain incomplete if

I did not deal with a very recent contribution by Lieb and Yngvason (1999). These authors

provide a new attempt to clarify the mathematical formulation and physical content of the

second law. However, I cannot do justice to this important work in the context of this article:

the paper is 96 pages long and employs no less than 15 axioms in order to obtain the second

law. I note, however, that these elaborate ramifications are partly due to the fact the authors

not only wish to obtain the second law in the form of an entropy principle but also the result

that entropy is an additive and extensive function and (up to additive and multiplicative

constants) unique, and numerous other results. Moreover, they wish to achieve most of these

results without assuming differentiability of the state space.

On the formal level, this work builds upon the approaches of Carathéodory (1909) and

Giles (1964). (In its physical interpretation, however, it is more closely related to Planck, as

we will see below.) A system is represented by a state space Γ on which a relation ≺ of adi-

abatic accessibility is defined. All axioms mentioned below are concerned with this relation.

Further, Lieb and Yngvason introduce a formal operation of considering two systems in state

s and t as a composite system in state (s, t), and the operation of ‘scaling’ a system, i.e. the

construction of a copy in which all its extensive quantities are multiplied by a positive factor

α. This is denoted by a multiplication of the state with α. These scaled states αs belong to a

scaled state space Γ (α).

The main axioms of Lieb and Yngvason apply to all states s ∈ ∪αΓ(α) (and compositions

of such states). They read:
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A1. REFLEXIVITY:

s ≺ s (32)

A2. TRANSITIVITY:

s ≺ t AND t ≺ r IMPLY s ≺ r (33)

A3. CONSISTENCY:

s ≺ s′ AND t ≺ t′ IMPLIES (s, t) ≺ (s′, t′) (34)

A4. SCALE INVARIANCE:

IF s ≺ t THEN αs ≺ αt FOR ALL α > 0 (35)

A5. SPLITTING AND RECOMBINATION:

FOR ALL 0 < α < 1 : s ≺ (αs, (1− α)s) AND (αs, (1− α)s) ≺ s (36)

A6. STABILITY: IF THERE ARE STATES t0 AND t1 SUCH THAT (s, εt0) ≺ (r, εt1) HOLDS FOR

A SEQUENCE OF ε’S CONVERGING TO ZERO, THEN s ≺ r.

The meaning of these axioms is, hopefully, largely self-evident. Axiom A1 and A2 de-

mand that adiabatic accessibility is a pre-ordering. Axiom A3 says that if subsystems of a

composite system can each go through certain adiabatic changes of state, it is also possible to

achieve these changes of states adiabatically in the composite system. Axiom A4 expresses

an analogous statement for inflated or shrunken copies of the system. Axiom A5 says that

separating and recombining subsystems are adiabatic processes. One can think of the in-

troduction or removal of a partition in a fluid. The stability axiom A6 expresses, roughly

speaking, the idea that if two states s and r of a system are adiabatically accessible whenever

the system is expanded by a negligibly small second system, e.g. a dust particle, these states

themselves must also be adiabatically accessible.

The axioms above seem intuitively plausible and physically acceptable for thermody-

namical systems. This is not to say that one must see them as the expression of empirical

principles. Some seem to follow almost immediately from the intended meaning of the rela-

tion, and have little empirical content; others seem very well capable of violation by arbitrary

physical objects. (Consider the application of Axiom 5 to near-critical masses of plutonium.)

It seems reasonable, however, to regard the axioms as an implicit definition of a ‘thermody-

namical system’.
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After stating the above axioms, Lieb and Yngvason formulate the following

7. COMPARABILITY HYPOTHESIS:

For all states s, t in the same space Γ: s ≺ t or t ≺ s. 86 (37)

The comparability hypothesis has, as its name already indicates, a lower status than the ax-

ioms. It is intended as a characterization of a particular type of thermodynamical systems,

namely, of ‘simple’ systems and systems composed of such ‘simple’ systems.87 A substantial

part of the effort by Lieb and Yngvason is devoted to an attempt to derive this hypothesis

from further axioms for these ‘simple’ systems and their compositions. I will, however, not

go into this.

The aim of the work is to derive the following result, which Lieb and Yngvason call

THE ENTROPY PRINCIPLE (LIEB AND YNGVASON VERSION): There exists a func-

tion S defined on all states of all systems such that

a. when s and t are comparable then

s ≺ t if and only if S(s) ≤ S(t). (38)

b. When s and t are states of (possibly different) systems

S((s, t)) = S(s) + S(t), (39)

S(αs) = αS(s). (40)

The relations (39) and (40) express that the entropy function is additive and extensive. For

our purpose, it is relation (38) that is particularly relevant. The authors interpret the result

(38) as an expression of the second law: ‘It says that entropy must increase in an irreversible

process.’ and: ‘the physical content of [(38)] . . . [is that]. . . adiabatic processes not only in-

crease entropy but an increase in entropy also dictates which adiabatic processes are possible

(between comparable states, of course).’ (Lieb and Yngvason 1999, p. 19,20)).

The question whether this result actually follows from their assumptions is somewhat in-

volved. They show that a special case of the entropy principle follows from the assumption of

86The clause ‘in the same space Γ’ means that the hypothesis is not intended for the comparison of states of scaled
systems. Thus, it is not demanded that we can either adiabatically transform a state of 1 mole of oxygen into one of
2 moles of oxygen or conversely.

87Beware that the present meaning of the term does not coincide with that used by Carathéodory. For simple
systems in Carathéodory’s sense the comparability hypothesis need not hold.
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axioms A1–A6 and the comparability hypothesis. In particular, special conditions are needed

which (physically speaking) express that mixing and chemical reactions are to be excluded.

To extend the principle beyond this restriction, an additional ten axioms are needed (three

of which serve to derive the comparability hypothesis). And even then, only a weak form of

the above entropy principle is actually obtained, where ‘if and only if’ in (38) is replaced by

‘implies’.

Before considering the interpretation of this result more closely, a few general remarks on

this approach are in order. This approach combines mathematical precision with clear and

plausible axioms and achieves a powerful and remarkable theorem. This is true progress

in the formulation of the second law. Of course it still holds that the result applies only for

special kinds of systems; but this is also the case for Carathéodory’s approach and, when

stripped from rhetorical claims, also for Planck’s.

It is remarkable that the theorem is obtained without appealing to anything remotely

resembling Carathéodory’s principle. This is undoubtedly an advantage for those who judge

that principle too abstract. In fact the axioms and hypothesis used above allow models which

violate the principle of Carathéodory (Lieb and Yngvason 1999, p. 91). For example, it may

be that all states are mutually accessible, in which case the entropy function S is simply a

constant on Γ.

However, there is an additional axiom in Lieb and Yngvason’s approach which makes

for a closer connection with Carathéodory’s principle. One of the special axioms invoked to

derive the comparability hypothesis reads:

S1: IRREVERSIBLE PROCESSES: for all s ∈ Γ there is a t ∈ Γ such that s ≺ t and

t ≺� s.

Here the prefix ‘S’ denotes that it is the first of a series of axioms intended to hold for simple

systems only. We shall have more to say about what this axiom has to do with irreversibility

below. For the moment, I only note that this axiom is the closest resemblance to Carathéo-

dory’s principle to be found in this approach: it says that for each state there is another

adiabatically inaccessible state. In fact, the authors prove that, in conjunction with other

axioms, it implies what they call ‘Carathéodory’s principle’.88

However, the present axiom is much more liberal than Carathéodory’s principle. First, of

course, it no longer demands that the states which are inaccessible from s occur in every local

neighborhood of s. Thus, this axiom evades Planck’s objection that we don’t have empirical

88Here, Lieb and Yngvason employ a formulation of Carathéodory’s principle which deviates from both Cara-
théodory’ own statement as well as from Born’s version. It reads: ∀s ∈ Γ,∀Us ∃t ∈ Us such that s ≺� t or t ≺� s.
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access to arbitrarily small neighborhoods. More importantly, this axiom is only intended

to characterise ‘simple’ systems, and actually serves as (part of) a definition of this notion.

This is in sharp contrast to Carathéodory’s principle, which was presented as a general law

of nature. Thus, Lieb and Yngvason also evade the objection of Falk and Jung (see p. 66).

Moreover, note that this axiom is not essential to the proof of the entropy principle, but only

to the attempt to derive the comparability hypothesis. Anyone who accepts this hypothesis

as physically plausible will obtain the above entropy principle without having to bother with

Carathéodory’s principle.

For the purpose of this paper, the pertinent question is whether there is a connection with

the arrow of time in this formulation of the second law. As before, there are two aspects

to this question: irreversibility and time asymmetry. We have seen that Lieb and Yngvason

interpret the relation (38) as saying that entropy must increase in irreversible processes. At

first sight, this interpretation (and also the name of the last-mentioned axiom) is curious. We

have found in the discussion of section 9 that adiabatic accessibility is not the same thing as

irreversibility. How then, can the present axioms on adiabatic accessibility be interpreted as

having implications for irreversible processes?

This puzzle is resolved when we consider the physical interpretation which Lieb and

Yngvason propose for the relation ≺:

ADIABATIC ACCESSIBILITY: A state t is adiabatically accessible from a state s, in symbols

s ≺ t, if it is possible to change the state from s to t by means of an interaction with some

device (which may consist of mechanical and electric parts as well as auxiliary thermody-

namic systems) and a weight, in such a way that the auxiliary system returns to its initial

state at the end of the process whereas the weight may have changed its position in a

gravitational field’ (Lieb and Yngvason 1999, p. 17).

This view is rather different from Carathéodory’s, or indeed, from anybody else’s: clearly,

this term is not intended to refer to processes occurring in a thermos flask. As the authors ex-

plicitly emphasise, even processes in which the system is heated are adiabatic, in the present

sense, when this heat is generated by an electrical current from a dynamo driven by descend-

ing weight. Actually, the condition that the auxiliary systems return to their initial state in

the present concept is strongly reminiscent of Planck’s concept of ‘reversibel’!

This is not to say, of course, that they are identical. Let Z be the state of the auxiliary

system and h the height of the weight. For Planck, a process P which produces the transi-

tion 〈s, Z, h〉 P−→ 〈s′, Z′, h′〉 is reversibel iff there exists a recovery process P ′ which produces

〈s′, Z′, h′〉 P ′−→ 〈s, Z, h〉. Here, the states Z and Z′ are allowed to be different from each other.

For Lieb and Yngvason, a process 〈s, Z, h〉 P−→ 〈s′, Z′, h′〉 is called adiabatic iff Z = Z′. How-
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ever, we have seen in section 7 that in his argument to obtain the entropy principle, Planck

always restricted his discussions to such reversibel processes ‘which leave no changes in

other bodies’, i.e. that obey the additional requirement Z = Z′. These reversibel processes are

always adiabatic in the present sense. A major difference with the conventional meaning of

the term is that, in the present sense, it automatically follows that if a process P as above is

adiabatic, any recovery process P ′ is also adiabatic.

Thus, we can now conclude immediately that if an adiabatic state changes is accompanied

by an entropy increase, this change of state cannot be undone, i.e., it is irreversibel in Planck’s

sense. This explains why the result (38) can be seen as a formulation of a principle of entropy

increase, and why axiom S1 is interpreted as stating the existence of irreversible processes. In

fact, we can reason as follows: assume s and t are states which are mutually comparable, and

that S(s) < S(t). According to (38), we then have s ≺ t and t ≺� s. This means that there exists

no process from t to s which proceeds without producing any change in auxiliary systems

except, possibly, a displacement of a single weight. At the same time there exists a process

from s to t (under the same condition). This process is irreversibel in Planck’s sense.89 Thus

we have at last achieved a conclusion implying the existence of irreversibel processes by

means of a satisfactory argument!

However, it must be noted that this conclusion is obtained only for systems obeying the

comparability hypothesis and under the exclusion of mixing and chemical processes. The

weak version of the entropy principle, which is derived when we drop the latter restriction,

does not justify this conclusion. Moreover, note that it would be incorrect to construe (38)

as a characterisation of processes. The relation ≺ is interpreted in terms of the possibility of

89This conclusion, obviously, is crucially dependent on the non-standard meaning given to the term ‘adiabatic’. It
is somewhat surprising, therefore, that in the published version (Lieb and Yngvason, 1999) of the manuscript (1997),
a passage is included in which the authors argue that their interpretation coincides with the conventional meaning
of this term after all. An example may show that this claim is misleading. Consider a compound system consisting
of two simple systems, each with a one-dimensional state space. Assume that these two systems are adiabatically
isolated from each other. For example: take two quantities of an incompressible fluid contained in calorimeters (fit-
ted with a stirring device). In the conventional sense, the only processes which can be called adiabatic, are (i) stirring
and (ii) heat exchange among the two systems by a temporary diathermal connection. Under this interpretation the
compound system does not obey the comparability hypothesis. For example, if the temperatures of s and t differ,
then (s, t ≺� (t, s) and (t, s) ≺� (s, t); cf. (Boyling 1972, p. 38).

However, in the interpretation of Lieb and Yngvason, adiabatic accessibility depends on which other systems are
available as auxiliary devices. Suppose there is another system (say an ideal gas) capable of performing a Carnot
cycle. By means of this system, operated as a heat pump, we can transfer entropy from one subsystem to the other,
and thus increase entropy of the one at the expense of the other. This process would be adiabatic by Lieb and
Yngvason’s criterion. (The auxiliary system goes through a cycle and hence returns to its original state; the work
needed to drive the heat pump can be provided by lowering a weight.) Thus we have (s, t) ≺ (t, s) and (t, s) ≺ (s, t).

In fact, in this example of a world in which one-dimensional systems and normal fluids coexist the conventional
definition of ‘adiabatic’ does not obey the axioms A1–A6. The argument given by Lieb and Yngvason in order to con-
clude that the two interpretations coincide, which assumes the validity of these axioms, is therefore not applicable.
(I acknowledge clarifying personal communications with Jakob Yngvason on this point.)
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processes. As remarked in section 9, one and the same change of state can very well be

obtained (or undone) by means of different processes, some of which are adiabatic and others

not. Thus, when S(s) < S(t) for comparable states, this does not mean that all processes from

s to t are irreversibel, but only that there exists an adiabatic irreversibel process between

these states. So the entropy principle here is not the universal proposition of Planck, even if

we restrict ourselves to systems for which the comparability hypothesis holds and exclude

mixing and chemical processes.

The next question is of course about the time-(a)symmetry of this approach. There are

two ways in which one may analyse this question. The first is to consider all structures

〈∪αΓ(α), (·, ·),≺〉 as candidate models, and look upon the axioms as singling out a class of

possible worlds. In that case it is easy to show, using the implementation of time reversal

proposed in footnote 76, that the six general axioms, as well as the comparability hypothesis,

are completely time-symmetric!90

Another way of analyzing the question is to start from the interpretation proposed by

the authors for the relation ≺ and note that it invokes the term ‘possible’. One may regard

this as a modal relationship, to be understood in terms of a ‘possible worlds’ semantics.

On this reading, the statement ‘s ≺ t’ does not express a manifest property of one single

world, but rather commits one to the existence of possible worlds in which the state s can be

transformed into t without leaving changes in auxiliary systems except the displacement of

a weight. It does not, however, commit us to the existence of a possible world in which t is

transformed into s under the same conditions. Thus, the class of possible worlds allowed by

such a statement is time-asymmetric.91

Therefore, the answer to the question whether this approach is time-symmetric or not

depends on whether one analyzes the question from the point of view of the formalism or

its interpretation. Nevertheless, the fact that it is not necessary to introduce time-asymmetry

into the formalism to obtain the second law, is very remarkable.

As I have said, the interpretation these authors give to the term ‘adiabatic’ is much wider

than that of Carathéodory. For the mathematical formalism, this is of course irrelevant; but

90This conclusion cannot be extended to the complete set of axioms proposed by Lieb and Yngvason. For example,
axiom S1 (cited above) is already time-asymmetric. However, the time-asymmetry introduced by this axiom is only
temporary. In the course of their presentation, axiom S1 is subsumed by a stronger axiom (called ‘Transversality’)
which restores time-symmetry. (Transversality entails that for all s there is also a state r such that r ≺ s and s ≺� r.)
Yet, there are two other axioms (called A7 and T1) which address mixing and equilibration processes. These axioms
are explicitly time-asymmetric. (I thank Jakob Yngvason for pointing this out to me.) Note, however, that as far as the
entropy principle is concerned, these axioms are needed only in the derivation of the (time-symmetric) comparability
hypothesis.

91In this view, the role of the axioms would then be to characterise a kind of second-order possibility, namely, to
determine which relations between possible worlds are possible (allowed by the theory).
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not for its physical meaning. The wider the interpretation of the relation ≺, the stronger

is the empirical content of the postulates. This raises the question whether the proposed

interpretation is not, as we saw in the case of Ehrenfest-Afanassjewa, perhaps already so

wide that the axioms conflict with experience. As far as I can see, this is not the case. Of

course, the main point responsible for this difference from Carathéodory’s approach is that

the present axioms are, in certain aspects, much weaker.

However, this question leads immediately to one problematical aspect of the proposed

physical interpretation. It refers to the state of auxiliary systems in the environment of the

system. Thus, we are again confronted by the old and ugly question, when shall we say that

the state of systems in the environment has changed, and when are we fully satisfied that

their initial state has been recovered. As noted before (footnote 27), this question is rather

intractable from the point of view of thermodynamics, when one allows arbitrary auxiliary

systems whose states are not represented by the thermodynamical formalism. Thus, the

question when the relation ≺ is applicable cannot be decided on the basis of the formalism

itself.

12 SUMMARY AND MORAL

What is the relation between the second law of thermodynamics and the arrow of time? The

deeper we go into this question, the more remote a clear-cut relation appears to be. Neverthe-

less, I think we can summarise this study by drawing several conclusions. Moreover, I argue

below that it may be more fruitful to abandon the idea that time-asymmetry or irreversibility

is essential to the second law.

First of all, we have seen that a distinction should be made between time-(a)symmetry

and thermodynamical concepts of ‘(ir)reversibility’. Time-asymmetry, in the sense in which

we used this word, refers to a law which allows some process (or possible world), while

excluding its time reversal. In the stock philosophical literature, such processes are called

irreversible. But in thermodynamics a plethora of other meanings are employed for this

term.

The two most important of these are as follows. First, one can understand ‘reversible

processes’ as processes which proceed so slowly that the system always remains close to

equilibrium. Elaborating on conditions employed by Carnot and Kelvin (1851), Clausius

(1864) and Planck (1897) defined the term umkehrbar in this sense. This concept is of crucial

importance to their formulations of the second law. In the physics literature it is probably the

most common usage of the term ‘reversible’, in spite of Carathéodory’s proposal to use the
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better term ‘quasi-static’. However, this concept is by itself irrelevant for the arrow of time.

That is to say, the claim that there exist processes which are not reversible in this sense, or

indeed, the claim that some law implies that all processes in nature are irreversible in this

sense, does not imply time-asymmetry.

The second meaning of ‘reversible’ is the notion of a process whose initial state can be

completely restored by some other process, using any auxiliary device available in our world.

This is Planck’s notion of ‘reversibel’, which goes back to Kelvin (1852). This concept is

relevant to the arrow of time, although it is not identical with the notion of time-asymmetry.

Discussions on irreversibility and the second law in the philosophy of physics seem to have

largely overlooked this distinction.

A second conclusion is that different presentations of classical thermodynamics vary a

great deal, both in their formulations of the second law, and in their relationships with the

arrow of time. The main division here is between the work of Clausius, Kelvin and Planck

on the hand, and Gibbs and Carathéodory on the other. However, also inside each of these

‘camps’ there are significant distinctions. Perhaps the table below is helpful:

Version of
second law

Applies
only to
cycles?

Time-
asym-
metric?

Allows ir-
reversible
processes?

Implies
existence
of irre-
versible
processes?

Argues for
universal ir-
reversibility?

Carnot’s theorem yes yes yes no no
Clausius (1850) yes no yes no no
Kelvin (1851) yes no yes no no
Kelvin (1852) no yes yes yes yes
Kelvin (1855) yes no yes no no
Clausius (1865) no yes yes yes yes
Clausius (1876) yes yes yes no no
Planck (1897) no yes yes yes yes
Gibbs (1875) n.a. n.a. yes no no
Carathéodory(1909) no yes yes no no
Lieb & Yngvason (1999) no no yes no no

Table 1: Various aspects of the arrow of time for various formulations of the second law. Here, ‘irreversible’ is
taken in Planck’s sense, and ‘n.a.’ stands for ‘not applicable’.

In the tradition of Clausius, Kelvin and Planck, thermodynamics is a theory about pro-

cesses. That is to say, one considers the evolution of a system in the course of time. To be sure,
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the role of evolutions is tiny (as the theory is mainly restricted to cyclic processes), but the

question whether the theory is time-asymmetric or implies irreversibility (irrecoverability)

makes sense.

The answer depends on whether the second law is regarded as a statement concerning

cyclic processes only, or also about open (i.e. non-cyclic) processes. We have seen that the

formulations Clausius and Kelvin gave of the second law went through various changes in

this respect. However, most of their formulations of the second law only concerned cycles.

This is reflected in the formulation known today as Kelvin’s and Clausius’ principle, or the

principle of the impossibility of the perpetuum mobile of the second kind. This formulation is

time-asymmetric. The ‘negative’ character of these principles is no obstacle; time-asymmetry

is a characterization of a theory, and not of our world. But, I have argued, they do not imply

the existence of irreversible (irrecoverable) processes.

However, a few exceptional publications, notably Kelvin (1852) and Clausius (1864, 1865),

argued for a universal tendency of processes to proceed in one direction only. This view led,

in particular in the work of Planck, to a grand universal generalization, according to which

the second law says that for all processes in nature the total entropy of the systems involved

never decreases, and that therefore all processes (with the exception of those in which the

entropy remains constant) are irreversible. A convincing argument for this claim has never

been given.

The versions of the second law developed by Gibbs, Carathéodory and Lieb and Yng-

vason apply to equilibrium states. Here, the evolution of systems in the course of time plays

no role, and a connection with any aspect of the philosophy of time is therefore much less

prominent.

As to Gibbs’ version, i.e. the entropy maximum principle, I have argued that such a con-

nection is completely absent; it rests, in my opinion, on a confusion between virtual varia-

tions and processes. In the case of Carathéodory, and authors that elaborated his approach,

the situation is more subtle. His formulation of the second law (Carathéodory’s principle) is

a proposition intended to provide sufficient grounds for the existence of entropy and temper-

ature as functions of equilibrium states, at least for simple systems. There is no direct concern

for time-(a)symmetry or irreversibility here.

However, Carathéodory’s principle employs a notion of adiabatic accessibility between

states, s ≺ t, which is interpreted in terms of the possibility of an adiabatic process which

transforms s into t. Here, time enters the picture, because the time reversal of such a process

obviously produces an adiabatic process from t to s. I have argued that, if we construe the

time reversal of any model of Carathéodory’s principle as one in which ≺ is replaced by �,
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this theory is, strictly speaking, time-asymmetric. However, this asymmetry is only notice-

able in rather pathological models. If the theory is applied to usual systems (like ordinary

fluids or systems composed of such fluids), then models in which the second law accord-

ing to the CKP tradition holds, as well as the time reversals of these models, are allowed.

Thus, for this class no time-asymmetry emerges. The modern extension of the formalism of

Carathéodory by Lieb and Yngvason, is even manifestly time-symmetric.

The connection with the entropy principle and irreversibility is even more subtle. While

Carathéodory gives a discussion aiming at the conclusion that for all simple systems, adia-

batic processes in which entropy varies are irreversible, he only obtains this conclusion by a

redefinition of ‘irreversibility’: a process is called irreversible if the change of state cannot be

undone adiabatically. This result is obviously far removed from Planck’s universal entropy

principle. Even if we restrict ourselves to simple systems, it is not guaranteed that entropy

increases in irreversible processes (in either Planck’s or Carathéodory’s sense) nor does it

follow that processes in which entropy increases should be irreversible (in Planck’s sense).

Also in the approach of Lieb and Yngvason, an entropy principle is obtained that holds for

a restricted class of ‘simple’ systems (and systems composed of these). However, their notion

of simplicity does not coincide with that of Carathéodory. In order to reach a statement about

irreversibility, this approach chooses the opposite strategy: these authors redefine the concept

of ‘adiabatic’ in such a way that it (almost) coincides with Planck’s concept of reversibility.

The result is that for every two comparable states s and t with S(s) < S(t) there exists an

irreversible process, beginning in s, and ending in t.

It is striking that this version of the second law can be obtained without invoking time-

asymmetry at all. However, the result does have consequences in terms of irreversibility (in

the sense of recoverability). But this consequence is rather mild: it does not follow that all

such processes from s to t are irreversible. Here too, the universal formulation of Planck has

not been attained. One can even ask whether the result is so interesting for the philosophy

of time, or threatening for the harmony between different parts of physics. After all, Hamil-

tonian mechanics also allows the existence of irreversible processes, for example, the motion

of a free particle in an otherwise empty universe.

This summary leads to the question whether it is fruitful to see irreversibility or time-

asymmetry as the essence of the second law. Is it not more straightforward, in view of the

unargued statements of Kelvin, the bold claims of Clausius and the strained attempts of

Planck, to give up this idea? I believe that Ehrenfest-Afanassjewa was right in her verdict that

the discussion about the arrow of time as expressed in the second law of the thermodynamics

is actually a red herring.
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The only way to evaluate such a proposal is by making up a balance-sheet. What would

we loose and what would we gain? It is clear that in fact all concrete applications of the sec-

ond law in classical thermodynamics, even in the work of the most outspoken proponents of

the claim that this law implies universal irreversibility, are restricted to systems in equilib-

rium. This holds for Kelvin and Planck, but also more recent text books (e.g. (Becker 1967)).

A general opinion among thermodynamicists is even that the theory is incapable of dealing

with systems out of equilibrium; (see the quotation from Bridgman on page 3). Clearly, in

terms of concrete applications, we would loose very little. What, then, do we gain with this

proposal? The main advantage is, to my mind, that the second law would no longer represent

an obstacle to the reconciliation of different theories of physics. More specifically, attempts

to reduce thermodynamics to, or at least to harmonise it with, a mechanistic world picture

would get a new lease of life.

The work of Boltzmann in kinetic gas theory is a particularly good example of this prob-

lem. Boltzmann spent the main part of his career trying to find a mechanical underpinning

of the second law. Essential for this task was, in his opinion, finding a mechanically defined

function for isolated mechanical systems, which could exclusively, or at least with very large

probability, increase. Every time he believed himself to have succeeded in this task, e.g. in

1872 with the H-theorem for a dilute hard spheres gas, and in 1877 with his combinatorial

argument for the ideal gas, objections to his results emerged (viz. the famous Umkehreinwand

and Wiederkehreinwand). The problem of avoiding these objections is still open.

But apparently there is another option. If the second law does not express time-asymmetry

or irreversibility, it is not necessary to find a mechanical quantity which can only increase and

still achieve reconciliation between thermodynamics and mechanics.

Among philosophers of science, the themes around the second law have drawn a lot of at-

tention; (Reichenbach, Grünbaum, etc.). Sometimes, this discussion has taken a flight which

seems far removed from the original physical background. There are serious discussions

about the entropy of a footprint on the beach, or about the question whether the second law

can perhaps explain the flow of time itself. It seems to me that thess discussions can only

be understood if we construe terms like ‘entropy’, ‘second law’ or even ‘thermodynamics’ as

metaphors that do not literally refer to a actually existing physical theory. According to the

proposal such discussion can be avoided, or at least sharpened.

With this proposal I do not wish to suggest that there is no connection between thermo-

dynamics and the arrow of time. Therefore I conclude this study by mentioning two areas in

which the connection might be analyzed with more success.

In the first place, a fundamental presupposition in classical thermodynamics is that iso-
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lated systems attain or approach an equilibrium state, and, once they reach equilibrium, they

remain there as long as they are left to themselves. In fact, equilibrium is often defined as a

state which will not change in the future, if the system is left to itself. Changes in the past,

in contrast, are allowed or even explicitly presupposed. This gives a clear time-asymmetric

character to thermodynamics.

It is often said that this behaviour of thermodynamical systems (i.e. the approach to equi-

librium) is accompanied by an increase of entropy, and a consequence of the second law.

But this idea actually lacks a theoretical foundation: for a non-equilibrium state there is in

general no thermodynamic entropy –or temperature– at all. We get no further than where

Clausius was in 1864 (see page 31): the second law cannot be seen as a statement about the

quantities of the system, but also involves its environment. Planck (1897, § 112) too empha-

sised that the approach to equilibrium has nothing to do with the second law. This aspect of

time-asymmetry is woven much deeper in the theory.

Although Boltzmann’s H-theorem is not necessary to reconcile the second law with me-

chanics, it can still be important to obtain a proper description of the approach to equilibrium.

Uhlenbeck and Ford (1963) therefore associate the work of Boltzmann with a foundation of

what they call the zeroth law.92 But clearly, for a mechanical explanation of the approach

to equilibrium it is not necessary to prove the monotonous increase of some mechanically

defined quantity.

There is another interesting remark to be made in this connection. There exists, apart

from the works of Carnot, Clausius, Kelvin, Gibbs and Planck, another classical tradition in

the study of heat phenomena, e.g. the heat equation of Fourier, This equation shows all the

aspects one would like to associate with an ‘arrow of time’: it contains time explicitly; the

class of solutions is not invariant when we replace t by −t; they show a clear unidirectional

tendency to equalise temperature differences, etc. Similar remarks hold for the diffusion

equation of Fick, and other equations describing the macroscopic flow of heat and matter

(often collectively called ‘transport equations’).

Furthermore, transport equations form a bona fide part of classical physics. The question is

then: what is the relation of this tradition to thermodynamics? The answer is rather surpris-

ing. Truesdell (1980) observed that in one and a half centuries of their coexistence, not a single

work has appeared in which the behaviour of heat, as described by the heat equation, and as

92This means: every isolated thermodynamical system reaches an equilibrium state in the long run. This termi-
nology is unfortunate since the term ‘zeroth law’ is normally used to denote transitivity of thermal equilibrium.
Perhaps it is better to speak of ‘ law −1’ or even ‘ −∞’.
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described by thermodynamics, are related to each other.93 One has to conclude that the heat

equation and other transport equations simply do not belong to classical thermodynamics!

However, since the Second World War, a lot of work has been done in obtaining extensions

of thermodynamics which could be applied to systems out of equilibrium. Such extensions,

sometimes called ‘thermodynamics of irreversible processes’, would be able to describe the

approach to equilibrium, as illustrated by the heat equation; see, e.g., de Groot (1945); Pri-

gogine (1955). Here, a more interesting connection with the arrow of time could result. This

work seems to have resulted in a large number schools, and I can therefore say little about

it. It is characteristic of this type of work that it is focussed on applications and gives com-

paratively little attention to the foundations and logical formulation of the theory. Usually,

a time-asymmetric statement about entropy production is postulated. The question how

the entropy of a non-equilibrium state is to be defined, and the proof that it exists and is

unique for all non-equilibrium states, still seem to be largely unexplored;94 see also (Meixner

1970, Lavenda 1978).
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J. Serrin (ed.), New Perspectives in Thermodynamics, (Berlin: Springer), pp. 101–123.

Truesdell, C. and Baharatha, S. (1977) The Concepts and Logic of Classical Thermodynamics as a

Theory of Heat Engines, Rigorously Constructed upon the Foundation Laid by S. Carnot and F.

Reech, 1822-1854, (New York: Springer-Verlag).

Uhlenbeck, G. E. and Ford, G. W. (1963) Lectures in Statistical Mechanics, (Providence: Ameri-

can Mathematical Society).

Waals, J. van der and Kohnstamm, P. (1927) Lehrbuch der Thermostatik, (Leipzig: J.A. Barth).

Yourgrau, W. and Mandelstam, S. (1955) Variational Principles in Dynamics and Quantum The-

ory, (London: Pitman).

Yourgrau, W., Merwe, A. van der and Raw, G. (1966) Treatise on Irreversible Thermophysics,

(New York: Macmillan).

Zeh, D. (1992) The Physical Basis of the Direction of Time, (Berlin: Springer), 2nd edition.

Zemansky, M. (1937) Heat and Thermodynamics, (New York: McGraw-Hill).

97


