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Abstract—The past few years have seen an accelerating inte-
gration of Deep Learning (DL) techniques into various Remote
Sensing applications, highlighting their adaptability power and
achieving unprecedented advancements. In the present review,
we provide an exhaustive exploration of the DL approaches
proposed specifically for the spatial downscaling of Remote
Sensing imagery. A key contribution of our work is the pre-
sentation of the major architectural components and models,
metrics and datasets available for this task, and the construction
of a compact taxonomy for navigating through the various
methods. Furthermore, we analyze the limitations of the current
modeling approaches and provide a brief discussion on promising
directions for image enhancement, following the paradigm of
general Computer Vision practitioners and researchers as a
source of inspiration and constructive insight.

Index Terms—deep learning, remote sensing, downscaling,
super-resolution, satellite, enhancement, spatial improvement,
spatiotemporal, spatiospectral, pansharpening, image fusion

I. MOTIVATION

ECENT technological advances have significantly in-

creased the volume and distribution rate of Remote
Sensing (RS) data, reaching the level of tens of Terabytes
on a daily basis. For that reason, such data have become
a ubiquitous source of information for the monitoring of
Earth’s physical, chemical and biological systems, assisting
atmospheric, geological and oceanic research, as well as
hazard assessment and resource management applications, to
name a few.

Satellite RS currently drives Earth Observation (EO) re-
search and applications. There is a large number of operational
satellites orbiting the Earth mounted with active and passive
RS sensors, providing a continuous stream of information on
various aspects of the planet’s physical processes. Satellite
imagery from these sensors is characterized by its spatial,
spectral, temporal and radiometric resolution [1]. Spatial res-
olution (or ground sample distance) represents the size of a
single satellite image pixel on the ground and corresponds to
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the level of spatial detail that can be acquired with this par-
ticular sensor. Spectral resolution represents the range of the
electromagnetic (e/m) spectrum (wavebands) that the sensor
acquires observations in, while temporal resolution (or revisit
time) represents the time interval between two consecutive
image acquisitions of the same location. Finally, radiometric
resolution refers to the numerical precision or bit depth of
a single pixel. Unfortunately, due to technical and financial
constraints, there is usually a trade-off between these factors
and no available sensor can capture information in the highest
possible spatial and temporal resolution across all wavebands.

For that matter, one of the hottest topics in RS is the
fusion of multi-source data with the aim to combine their
strengths and enhance the resolution along the spatial, spectral
or temporal dimension. In this particular study we focus on the
spatial downscaling problem which can be greatly aided by the
integration of Deep Learning (DL) methods and comprises an
essential part in the pipeline of various RS research fields such
as land use and land cover classification [2] [3], deforestation
monitoring [4] [5], crop yield forecasting, precipitation fore-
casting [6], disaster monitoring [7] [8], stream flow monitoring
[9], and many more.

Several review papers were published recently, which to a
certain extent address the problem of image downscaling with
deep neural networks. The present study aims to differ and
ultimately add a methodological framework and a valuable
condensation of the most recent literature on enhancing the
spatial resolution of satellite imagery data specifically, using
advanced Deep Learning architectures. These Deep Learning
models are tailored to Earth Observation data with their unique
and heterogeneous spatial, temporal and spectral characteris-
tics, which differ significantly from the imagery traditionally
used by the Computer Vision community. In fact, research on
Computer Vision applications has motivated the production of
valuable review papers, mainly for (non-satellite) image super-
resolution, like [10], [11], [12], [13], [14], [15] and [16]. Our
work targets exclusively the RS field and provides a broader
overview of methods and applications than [17], [18] and
[19] that focus solely on pansharpening approaches or [20]
that only examines Single Image Super-resolution, non-DL
methods. Additionally, a number of noteworthy studies [21]-
[23] provide a thorough analysis of the use of DL techniques in
RS but they are not limited to the spatial downscaling problem
and address the entire spectrum of applications. Other review
works ([1], [24]) focus on multi-modal data fusion state-of-the-
art, partially addressing image resolution enhancement without
focusing on Deep Learning techniques. Finally, a study similar
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to ours [25] reviews the literature up to mid 2019 therefore
missing the most recent state-of-the-art approaches.

Indeed, the last three years have been productive for scien-
tific works on image downscaling with DL. For example, while
RS image super-resolution publications have been steadily
increasing, the ratio of the studies that use DL has blown-
up from 5% in 2017, to almost 40% in 2020 (Fig. 1).
Similarly in Computer Vision, DL for image super-resolution
publications [26] exhibit a steady increase.

Deep learning for image super-
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Fig. 1: Number of published papers related to image super-
resolution for traditional and Deep Learning based techniques,
for satellite Remote Sensing and computer vision fields [26].

In this review paper we are presenting the recent
advancements (up to July 2021) of spatial downscaling
on satellite imaging through Deep Learning approaches
and analyse their strengths and shortcomings. We are only
interested in the enhancement of surface reflection products
and do not address geophysical variables, such as land
surface temperature (LST), vegetation indices, etc. First, in
Section III we formalise the problem definition, while in
Section IV we provide a list of relevant metrics that have
been proposed for evaluating and benchmarking different DL
models. Section V condenses the building blocks, frameworks
and key models used extensively in literature to solve the
downscaling problem given the selected metrics, and is a
key contribution of our work. These components are the
“bricks” used by researchers as stand-alone or in combination
depending on the nature of the downscaling problem. In
Section VI we provide an overall taxonomy for the different
families of RS downscaling methods, and we analyse these
methods in Sections VII, VIII & IX. We extend our review
in Section IX-D with some special interest downscaling cases
tailored to Synthetic Aperture Radar (SAR) and Unmanned
Aerial Vehicle (UAV) data, while we exclude from our
analysis 3D point cloud data obtained by LiDAR sensors.
Section X lists the publicly available datasets targeting
this problem. Finally, we provide an outlook for promising
state-of-the-art methods researched in general Computer
Vision field, but not yet applied in RS, where the interested
reader could seek further ideas and approaches (Section XI).

Terminology
Before moving forward we need to clarify which termi-
nology is used in this paper as far as spatial resolution

increase/decrease is concerned. In climate and meteorologi-
cal (e.g. [27]), as well as Remote Sensing [28] studies the
term “downscale” refers to the transition from low to high
resolution, i.e. less to more detail representation. However, in
the Computer Vision field it is the term “upscale” that refers
to the increase of (spatial) resolution and “downscale” to the
decrease of it (e.g. [29]) and are synonymous to upsample
and downsample, respectively. Indicatively, Zhan et al. [30]
conducted a research on land surface temperature downscal-
ing terminology, among others, and found that terms such
as “enhancement”, “sharpening”, “fusion”, “super-resolution”,
“unmixing”, “subpixel” and “disaggregation” are also relevant
to spatial resolution increase. In this paper we use the term
“downscale”.
II. DEEP LEARNING FOR REMOTE SENSING

The governing principle of DL is the construction of artifi-
cial neural networks with a large number of layers (indicated
by the adjective “deep” in the term) which mostly comprise
convolutional, pooling and fully connected units. Although
several architectures with these building blocks have been
proposed, some of which have been carefully handcrafted for a
specific task, the main idea is the construction of a hierarchy
of features extracted from raw input data. This hierarchy is
computed through representation learning approaches that can
be supervised, semi-supervised or unsupervised. Overall, the
strongest advantage of DL is its ability to process raw data,
thus mitigating the need for manual feature extraction, and
unravel complex non-linear dependencies in the input.

One critical factor for the success of any DL method is
the existence of a big and diverse dataset to train on. The
abundance and availability of data in EO provide therefore a
fertile ground for the application of advanced Machine Learn-
ing algorithms and notable progress has been made over the
last decade ([21]-[23]). For example, a number of works which
exploit deeper architectures have recently been published and
achieve impressive results in problems such as land use and
land cover classification [31], scene classification [32], object
detection [33], image fusion [1] and image registration [34],
[35], highlighting the great potential of DL in RS applications
and research.

However EO poses a unique challenge for DL since it in-
volves the manipulation of multimodal and multitemporal data.
Remote sensors acquire information from multiple segments
of the electromagnetic spectrum, differentiating themselves
from typical computer vision data which lie in the RGB range
mostly. In addition, time is a quite important variable in EO
applications. When studying dynamic systems, information is
captured at regular time intervals and successive observations
must be assessed and compared. Finally, RS images often
suffer from information loss either due to hardware failure or
atmospheric conditions that are difficult to penetrate by certain
sensor types (e.g. cloud coverage, haze, etc. are a common
obstacle for optical sensors). Therefore, any researcher willing
to design and implement novel DL algorithms for EO must
take all above points into consideration.
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III. PROBLEM DEFINITION

Given a set of n low resolution (LR) images (z1, 2, ..., Tn ),
where z; € XH*W and their corresponding high resolution
(HR) images (y1,¥2, ..., Yn), Where y; € YFIXEW “the goal
is to estimate a downscaling function: f : X — Y. Note
that H is the image height, W is the image width and k is
the scaling factor. This survey presents the approaches that
have been proposed for the estimation of this non-linear
downscaling function f through deep neural networks.

Imaging Model

The process of obtaining the LR z image from its HR y
equivalent is commonly represented in the literature by the
imaging model:

z=(y®b) L +n (1)

where ®b is the convolution with a blurring kernel b, | is
the downsampling operation by a scaling factor k£ and n is
a noise term. This formula is a simple model of the image
degradation taking place during the capture of the scene and
attempts to simulate the physics inside the imaging sensor.
Some researchers have proposed modifications of this model
which account for parameters like motion blur, quantization
error of the compression process, zooming effects, exposure
time, white balancing, etc. For a thorough investigation of the
imaging model and its many extensions, please refer to [14].

Wald’s Protocol

Due to the lack of paired LR-HR images in most cases, an
alternative approach described by the Wald’s protocol [36] is
employed. This protocol assumes that the performance of data
fusion models is independent of the scale, provided that certain
conditions hold. In their seminal work, Wald et al. suggest
first degrading the input image according to a factor k, thus
creating LR-HR image pairs, and proceed to design a model
tasked to downscale it to the original resolution. Then the
developed method can be transferred to downscale the original
image into one of much higher resolution according to the
same downscaling factor k. Effectively, this is a self-supervised
modeling approach.

Training Inference

Upscale /k Downscale xk

Fig. 2: Tllustration of the the Wald’s Protocol pipeline. The
original image (middle one) is upscaled by a /k factor and the
resulting pair is used for model training. The trained model
is then transferred to downscale the original image by a xk
factor.

Note that throughout this document we will refer to the
low-resolution images as C' (coarse) and the high-resolution
images as F' (fine) respectively.

IV. METRICS

Several quality metrics have been proposed in order
to assess the output of image restoration algorithms.
Depending on the availability of a reference HR image these
metrics can be divided into three broad categories [37]:
(1) full-reference, where a complete HR reference image
is required for comparison with the reconstructed image,
(i1) no-reference, where only the reconstructed image is
required, and (iii) reduced-reference, where only a set of
features extracted from a HR image are available and used for
comparison. Table I presents some of the most popular quality
metrics found in literature for the task of spatial enhancement.

Perception-Distortion Trade-off

Full-reference metrics are also referred to as distortion met-
rics and typically measure the similarity/dissimilarity between
the reconstructed image and the corresponding HR image. The
goal of such metrics is to assess the reconstruction algorithm’s
ability to respect the structure and semantic content of the
target image and can be generally formulated as

A(Iur, Iur) 2)

where A is a similarity metric, Iz is the HR image and
I H R the reconstructed one.

Accordingly, no-reference metrics are also known as percep-
tual quality metrics and they aim to quantify the “natural look”
of a reconstructed image, i.e. how close it looks to a valid
natural image, regardless of its similarity to the corresponding
Iz r. Such metrics tend to approximate the perceptual quality
of the human visual system (HVS) and can be formulated as

d(pryr:Pi, ) 3)

where d is a distribution similarity metric, py,, is the
distribution of the natural HR images and p;  the distribution
of the reconstructed images.

Reduced-reference metrics provide an intermediate ap-
proach to full- and no-reference metrics, and can be either
regarded as distortion or perceptual depending on the extracted
features. Such metrics are primarily used for quality of service
(QoS) monitoring of image/video broadcasting systems, where
only a selected number of features are transmitted along with
the compressed image in order to assess the transmission
quality. In the image enhancement domain, no such metrics
have been noted to be in wide use.

It has been empirically observed and then mathematically
proven [57] that distortion and perceptual quality metrics act
in a complementary, yet competitive manner. The Perception-
Distortion Trade-off theorem dictates that as the distortion
error of an algorithm decreases, the visual quality must also
decrease, and vice versa. In practice, pursuing low distortion
rate results in more blurry and over-smoothed images because
the produced output approximates the statistical average of
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Metric Range Description Category
Mean Squared Error (MSE) [0, c0) Pixel-based mean squared error FR
Root Mean Squared Error (RMSE) [0, 00) Pixel-based root mean squared error FR
Mean Absolute Error (MAE) [0, 00) Pixel-based mean absolute error FR
Correlation Coefficient (CC) [-1, 1] Pixel-based correlation FR
Coefficient of Determination (R2) [0, 1] Per-pixel proportion of total variation FR
Signal to Reconstruction Error Ratio (SRE) [0, c0) Error relative to the mean image intensity FR
Peak Signal-to-Noise Ratio (PSNR) —00, 00) Peak SNR based on MSE and expressed in dB FR
Weighted Peak Signal-to-Noise Ratio (WPSNR) [38] (—o0,00)  Weighted PSNR fo evaluate differently specific re- g
gions of the image
Universal Tmage Quality Tndex (UIQI or UQI) [39] -1, 1] {;Zsctal differences in correlation, luminance and con- FR
Structural Similarity Index (SSIM) [37] -1, 1] Bas§d on UQI and measures local differences in FR
luminance, contrast and structure
Multi-Scale Structural Similarity Index (MS-SSIM) [40]  [-1, 1] Combination of SSIM at various scales FR
Information Fidelity Criterion (IFC) [41] [0, 00) Isjcillll;e;/lgiﬁézl iISlcglr;e S;igféltczod;g?;d as Gaussian FR
Visual Information Fidelity (VIF) [42] [0, 50) Extenmon of IFC by normalizing over reference FR
image content
Noise Quality Measure (NQM) [43] (—o00, 00) SNR based on contrast pyramid variations FR
Feature Similarity Index (ESIM) [44] [0, 1] Similar to SSIM utilizing phase congruency and  pp
gradient magnitude
Gradient Similarity Measure (GSM) [45] [0, 1] Similar to SSIM, measures gradient similarity FR
Spectral Angle Mapper (SAM) [46] [0, ] Compares the angle between the two spectra FR
Fé{:&l};};?]?é?;’]e Globalle Adimensionelle de Synthese [0, 00) Mean of the normalized average error of each band  FR
. ) R Weighted geometric mean of the local error in the
Most Apparent Distortion (MAD) [48] [0, 00) luminance domain and the subband local statistics FR
MSE between feature maps extracted from interme-
VGG loss [49] [0, 00) diate layers of a VGG network for both prediction =~ FR
and target images
Support Vector Regression Model trained on Natural
Blind/Referenceless Image Spatial Quality Evaluator [0, ) Scene Statistics of locally normalized luminance co- NR
(BRISQUE) [50] ’ efficients accompanied with Differential Mean Opin-
ion Scores (for different distortions)
Multivariate Gaussian model trained on Natural
Natural Image Quality Evaluator (NIQE) [51] [0, 00) Scene Statistics similar to BRISQUE (but for non- NR
distorted images only)
Natural Scene Statistics similar to BRISQUE ex-
Perception based Image Quality Evaluator (PIQE) [52] [0, 1] tracted from blocks of the distorted image and then =~ NR
pooled based on variance
Linear regression on the outputs of three independent
regression forests trained on extracted features of
Qara [53] [0, 00) local frequency, global frequency and spatial dis- NR
continuity along with the corresponding perceptual
scores
Perception Index (PI) [54] [0, 00) Linear combination of Qps4 and NIQE NR
L2 norm and averaging between features extracted
Learned Perceptual Image Patch Similarity (LPIPS) [55] [0, c0) from machine learning models on supervised, self- NR

Quality with No Reference (QNR) [56] [0, 1]

supervised or unsupervised settings

One’s complements of two spectral and spatial dis-
tortion indices based on band correlation, each raised  NR
to a real-valued exponent

TABLE I: Most popular metrics for image quality assessment. FR = Full Reference, NR = No Reference.

possible HR solutions to this one-to-many problem, whereas a
sharper, more naturally-looking result is usually not consistent
with the initial LR image. It has also been proven that there
is an unattainable region in the Perception-Distortion plane
whose boundary is monotonic. This means that any recon-
struction method can never achieve both a low distortion error
and a high perceptual quality at the same time, but attempts
are made to design an algorithm as close to the boundary as
possible. Figure 3 illustrates the Perception-Distortion plane
and the aforementioned boundary.

An interesting conclusion of [57] is that the method that
converges closer to the Perception-Distortion bound is the
Generative Adversarial Network (GAN) [58]. They show that
such models are usually trained to minimize a weighted sum

of a distortion and a perceptual quality metric, by modifying
the loss function of the Generator as:

lc =E[A(Unr, Iur)] + A(p1y s pi,,,,) “4)

where A\ is the weight of the perception quality factor
and d(pryp,p;,,,) is usually approximated by the standard
adversarial loss. Therefore, GANs are usually able to produce
images of a low distortion error and with the highest perceptual
quality possible for this distortion error.

V. STANDARD DL METHODS FOR DOWNSCALING IN
COMPUTER VISION

Resolution enhancement has been thoroughly investigated
in the field of general Computer Vision over the past decades.
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Fig. 3: The Perception-Distortion plane and the monotonic
boundary separating the unattainable region. Image taken from
[57] (©2018 IEEE).

Certain methods and algorithms have been established and
often serve as the basis of further investigation and improve-
ments when developing novel approaches for RS downscaling.
We present these methods in this Section and then use them
throughout our paper as core modules.

A. Building blocks

In this paragraph we will briefly present some of the most
fundamental building blocks of downscaling DL architectures.

Upsampling layers

« Resize convolution

One of the first techniques proposed for feature
downscaling. This operation involves upsampling the
input by a traditional interpolation method, such as
Nearest-Neighbour, bilinear or bicubic interpolation,
and then performing a convolution on the result (Fig.
4(a)). Although it is a simple approach, it has been
successfully applied to a number of studies in the field
of CV.

o Transposed convolution

This layer is also called deconvolutional layer [59],
which is a quite inaccurate term since deconvolution
in Computer Vision aims to revert the operation of a
normal convolution and is rarely used in DL. Conversely,
transposed convolution aims to produce a feature map of
higher dimensions by first expanding the input with zero
insertions and then performing a convolution (Fig. 4(b)).
The transposed convolutional layer is widely used in
downscaling architectures but caution is required since it
is quite susceptible to producing checkerboard artifacts
affecting the overall quality of the output [60].

o Sub-pixel convolution
Also called pixel-shuffle [61], this layer comprises a
convolution operation followed by a specific image
reshape which rearranges the input features of shape
H x W x Cr? to rH x vW x C (Fig. 4(c)). This

[T
interpolate zero-padding [ I IR
(@)
EEE
zero-expansion b —m
(b)
I [
zero-padding | | ] reshape
| [ I ]

©
Fig. 4: Illustrated example of the three basic convolution
schemes for upsampling a single-channel 3 x 3 feature map
by a x2 factor. The red dashed lines refer to a simple
3 x 3 convolution. (a) Resize convolution, (b) Transposed
convolution, (c) Sub-pixel convolution.

layer achieves a larger receptive field than transposed
convolution and causes less artifacts in the final output
[62].

Residual learning

The aim of downscaling is to learn a mapping between one
(or multiple) LR image(s) and an HR image. This formulates
an image-to-image translation task where the input (LR) is
highly correlated with the output (HR) regardless of the scaling
factor. In order to simplify this task and avoid learning such
a complex translation, several studies employ global residual
learning architectures [63] which focus on learning solely the
residual, or difference, between input and output. Provided that
a considerable part of the image remains basically unchanged,
such a model is tasked to retrieve only the high-frequency
details needed for the reconstruction of the HR counterpart so
it generally converges faster and avoids bad minima.

In addition to global residual learning, local residual
learning connections [64] are also commonly employed in
downscaling architectures in order to alleviate vanishing
gradients as the model gets deeper and more complex. Local
residual learning shortcuts are inserted between intermediate
layers while a global residual learning connection is used
between input and output.

Laplacian Pyramid structure

First proposed in [65], the Laplacian Pyramid Structure is
a feature extractor based on the Gaussian pyramid structure,
which operates simultaneously at different scales and exploits
the image difference (residuals) between levels. Applied on
a DL setting, an input LR image is progressively upsampled
s times through convolutional and upsampling layers, and
the residual of each consecutive pair of upsampled outputs
is computed. This results in the production of s residual
images at different scales which contain features at different
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levels of abstraction. Such structures have been extensively
used in image downscaling since they split the problem into
smaller manageable tasks of smaller scale and help the model
converge to better optima.

Attention mechanism

Through the attention mechanism, the underlying neural
network manages to isolate and focus on the most important
feature details for the task at hand. Multiple types of
attention mechanisms have been proposed over the years
and can be categorized based on the dimension on which
they operate. For example, channel attention considers the
interdependence of the feature maps between channels and
attributes a different weight on each one, while spatial
attention emphasizes interesting regions in the spatial domain.
Popular implementations of the channel attention mechanism
include the Squeeze-and-Excitation (SE) block [66] and
the Efficient Channel Attention (ECA) [67], while a spatial
attention mechanism commonly used in practice is the
Coordinate Attention Module (CAM) [68]. Several studies
also use a combination of channel and spatial attention,
such as the Bottleneck Attention Module (BAM) [69], the
Convolutional Block Attention Module (CBAM) [70] and the
Triplet Attention [71]. An interesting overview of the attention
mechanisms used in downscaling architectures is presented
in [72].

B. Upsampling frameworks

Although different DL architectures can vary greatly, four
basic downscaling frameworks that describe all approaches
present in the literature can be discerned. These frameworks
are outlined in Fig. 5 and represent the possible ways to
design a downscaling DL model with convolutional and
upsampling/downsampling layers as basic components.

Pre-upsampling framework

This is the first framework explored in the literature for
image downscaling via DL approaches. In its most common
form, a traditional upsampling algorithm, e.g. bicubic
interpolation, is utilized in order to upsample the image to
the required scale. Then a CNN model is applied which
refines the upsampled image and produces the HR result.
Such an approach provides a simpler learning pipeline since
the network is relieved of the burden to properly upsample
the image and is only tasked to sharpen and cleanse the
input. Another advantage of the pre-upsampling framework
is the ability to handle images of arbitrary size and scale. On
the other hand, the computational cost is increased since all
operations are performed in a higher dimensional space while
the preceding upsampling procedure often amplifies noise
and significantly increases blurring.

Post-upsampling framework

Mitigating the complexity and high cost of the pre-
upsampling approach, in the post-upsampling framework
an end-to-end model undertakes the upsampling task via

trainable layers located at the end of the architecture.
In the most common approach, a DL network performs
feature extraction on the low dimensional space of the
LR image and finally increases the resolution to obtain
the HR output. A disadvantage of this framework is the
fixed scaling factor which forms an integral part of the
architecture, thus a different model must be designed and
trained for different scales. In addition, performance is
highly affected by the magnitude of the scaling factor. Since
upsampling is performed in a single step, high factors (e.g.
x8, x10) increase the learning difficulty and make the
models considerably harder to train.

Progressive upsampling framework

In this framework, a model upsamples the image in a
progressive manner through consecutive convolutional and
upsampling layers. At each stage the input is upsampled to a
higher resolution, finally obtaining the required scale at the
output. This approach facilitates the learning process since
the downscaling task is decomposed into much simpler steps.
Such architectures are also able to handle requirements for
multiscale output since each stage produces an upsampled
image of intermediate scale. However, progressive upsampling
models require more complex architectures and are thus harder
to design and train.

Iterative up- and down-sampling framework

This framework exploits consecutive up- and down-
sampling layers which refine the reconstruction error on HR
to LR projections thus extracting more information on the
relationship and correlations between the two spaces. Such
models usually achieve higher quality results and are able to
handle higher scaling factors successfully.

C. Models

One of the first robust DL methods for downscaling was
presented in [73] (SRCNN) where a two-layer CNN was fed an
upsampled version of an image and produced a sharpened HR
output. It was trained and tested on subsets of ImageNet and
outperformed equivalent non-DL methods. A similar approach
was adopted by Kim et al. [74] (VDSR) who designed a deeper,
VGG-like architecture [75] with a global residual connection
and managed to outperform SRCNN on the test set.

Shi et al. [61], [62] (ESPCN) subsequently introduced
the Sub-Pixel Convolution, which later became a popular
upsampling technique for DL models. This trick helps reduce
the model’s number of parameters without compromising its
representational power.

The next landmark paper [76] (LapSRN) introduced a mul-
tiscale architecture which integrates the Laplacian Pyramid
structure and produces intermediate images downscaled by
smaller factors (x2, x4, x8) in a single pass. The intermediate
outputs are supervised via separate Charbonnier loss functions
and this progressive upsampling scheme helps the model retain
high accuracy in higher scales.

Ledig et al. [77] (SRGAN) introduced an adversarial ap-
proach to spatially enhance natural images. The Generator,



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE

v
conv
conv
conv

!
upsample
J

l

(@

~—a —a
4 Va— ya— ya—

0 0

i[> =1 >l > =1
c c c c

—>» sl |8 £ sl |8 £

o o » o o 0

=1 g

=1 =]

(©

A\ 4
conv
conv
conv

upsample

(b)

conv
upsample

downsample
[ upsample
downsample

(d)

Fig. 5: The possible downscaling frameworks present in the DL literature. (a) Pre-upsampling, (b) Post-upsampling, (c)
Progressive upsampling, (d) Iterative up- and down-sampling. conv represents a convolutional layer, upsample an upsampling
layer and downsample a downsampling layer, all of which are trainable. Layers enclosed by dashed boxes denote stackable

blocks.

named SRResNet, consists of a series of residual blocks, local
and global residual connections and sub-pixel convolutional
layers for downscaling. The Discriminator is a VGG-like net-
work which performs the real/fake binary classification. The
Generator’s loss function is a combination of the adversarial
loss and a term comparing the produced downscaled and the
target HR image. Based on this model, Wang et al. [78]
(ESRGAN) propose a number of improvements to achieve
sharper results. They replace the residual blocks with novel
residual-in-residual dense blocks which actually comprise of
dense blocks with global residual connections, as seen in Fig. 6
and use the Relativistic average Discriminator introduced in
[79].

Fig. 6: Tllustration of the residual-in-residual block (RIRB). It
contains multiple dense blocks and residual connections both
between blocks and between the input and output of the RIRB.
£ here refers to the residual scaling parameter. Image taken
from [80].

Following the success of the baseline SRGAN, Lim et
al. [81] (EDSR/MDSR) extend the SRResNet architecture by
removing the ReLU activations outside the residual blocks
and deepening the model. The authors name this architecture
EDSR and train it separately for the scaling factors x2, x3
and x4. They also noted that by fine-tuning a pretrained x2
model when training for x3 or x4 downscaling, the entire
training process is accelerated and the algorithm converges

much faster. Based on this observation, the authors argue that
downscaling at multiple scales are inter-related tasks, so they
design an alternative model, namely MDSR, which handles
multiple scales simultaneously. Subsequently, Yu et al. [82]
(WDSR) introduce two novel residual blocks to the EDSR
architecture. These blocks employ a wide activation approach
by constricting the features of the identity mapping pathway
and widening the features before activation.

Another robust technique has been proposed in [83] (RDN).
The authors present a Residual Dense Block (RDB) which
comprises a dense block with three novelties: (i) Contiguous
memory (CM) where the output of an RDB is fed to each layer
of the next RDB, (ii) Local feature fusion (LFF) which is a
concatenation and a 1 x 1 convolution layer at the end of an
RDB which adaptively controls the output information making
the network easier to train, and finally (iii) Local residual
learning (LRL) which is a residual connection between the
input and output of the RDB. Utilizing a sequence of such
RDB blocks and sub-pixel upsampling layers, the final RDN
architecture is formed and then trained with the MAE loss
function.

A number of methods, such as [85] (DBPN and D-DBPN)
and [86] (SRFBN), opt for an iterative up- and downsam-
pling strategy in the main core of their model. Particu-
larly, several consecutive layers alternatively perform up- and
down-projection operations learning different types of image
degradation, which then contribute to the construction of the
final HR image. This procedure provides an error feedback
mechanism for projection errors at each stage and manages to
extract better representations of the various features.

Some methods ([87] (DRCN), [84] (DRRN)) propose the
use of recursive structures inside the model. Arguing that
the addition of more layers make a network inefficient and
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Fig. 7: Overview of the classic ResNet, VDSR, DRCN and
DRRN architectures. Global residual connections are marked
by a purple line, & refers to element-wise addition, and outputs
with blue color are supervised. (a) ResNet: The green dashed
box signifies a residual block. (b) VDSR. (c) DRCN: The blue
dashed box refers to a recursive layer whose convolutional
layers are marked in green and share the same weights. (d)
DRRN: The red dashed box refers to a recursive block and the
green dashed box marks the residual units. The corresponding
convolutional layers marked in green and red share the same
weights. Image taken from [84] (©2017 IEEE).

(b) VDSR (¢c) DRCN (d) DRRN

more likely to overfit, the aforementioned studies introduce
recursive convolutional layers which apply the same convo-
lution multiple times. Therefore weights are shared between
consecutive convolutional operations and more stable conver-
gence is achieved. Fig. 7 displays the structural differences
between DRCN and DRRN for better understanding. A similar
extension is also proposed for the LapSRN model in [88] (MS-
LapSRN). In particular, the network parameters across pyramid
levels are shared since they perform a similar task via a similar
structure, and the feature embedding sub-network of each
pyramid level is replaced by a series of recursive convolutional
layers in order to increase the robustness of the model without
increasing the number of parameters accordingly.

Finally, Zhang et al. [89] (RCAN) propose a channel at-
tention module which consists of a Global Average Pooling
layer and a gating mechanism that adds attention to the pooled
features and enables the model to focus on the informative
feature maps. Multiple such attention modules are incorporated
inside Residual-in-Residual blocks and the final downscaling
is performed by Sub-Pixel convolutions. When combined with
a self-ensembling strategy, RCAN outperforms several robust
DL methods.

Table II summarises the most popular models in CV for
image downscaling via DL, vis-a-vis the building blocks em-
ployed, the upsampling framework adopted, whether a GAN
pipeline is used or not, and the number of the model parame-
ters. The latter attribute is useful to assess the complexity of
each model, therefore weigh its proneness to overfit given the
training data available.

VI. DOWNSCALING TAXONOMY IN RS

Based on the dimensions and modalities to be combined,
a variety of downscaling schemes have been proposed in

the context of EO. Fig. 8 provides a simple, yet complete
taxonomy of the methodological approaches used in literature
according to our review.

Given this taxonomy, one can discern three fundamental
groups of satellite image downscaling approaches for RS,
depending on whether spectral, temporal on no external in-
formation is used:

1) Spatiospectral Fusion: images of different spatial and
spectral resolutions are fused in order to produce an
image of the highest possible spatial resolution in the
coarser bands.

2) Spatiotemporal Fusion: images of high spatial but low
temporal resolution are fused with images of low spatial
but high temporal resolution in order to produce images
of the highest resolution in both dimensions.

3) Super-resolution: A single or multiple images are down-
scaled without any additional external information.

In more detail, when the downscaling process is assisted
with information on different spectra, then Spatiospectral
Fusion techniques are used. These techniques are further dis-
criminated based on the type of input spectra at hand, resulting
in multispectral fusion (two multispectral images with different
spectral information), pansharpening (a multispectral image
and a panchromatic image) and multispectral/hyperspectral
fusion (a multispectral and a hyperspectral image). In contrast,
when the same spectra are available at different time steps and
different spatial resolutions then Spatiotemporal Fusion meth-
ods come into play where temporal differences are additionally
exploited for the spatial downscaling. This family of methods
includes two sub-families depending on the time points of the
input data. Finally, when no external information is available
and downscaling can only be performed directly on the initial
LR data, then Super-resolution techniques can be employed.
There are three method sub-families depending on the number
of input images and whether additional features extracted from
the same LR data are used as auxiliary input.

Fig. 9 and 10 present an overview of the aforementioned
method families highlighting graphically the different ap-
proaches, whereas Fig. 11, 12 and 13 show downscaling
examples of each family. In the following sections we base
our review on this discrimination and provide a detailed
examination of the approaches shaping each method family.

VII. SPATIOSPECTRAL FUSION

Satellites are equipped with various different sensors which
operate in different parts of the electromagnetic spectrum
and capture information on different features of the scanned
location. These features can have variable spatial resolution,
thus an advanced method called Spatiospectral Fusion (SSF)
is usually employed to elaborately blend the fine spatial
resolution of a band By g into the coarser spatial resolution
of a target band By r and obtain a new image in the target
band of much higher quality.

We discern three families of SSF: multispectral image
fusion, pansharpening, and hyperspectral image downscaling.
These are presented next, while in Table III we summarise the
main DL models developed for SSF.



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE

Model Building blocks used Upsampling framework GAN # Parameters
SRCNN [73] T simple CNN pre-upsampling No 57k
VDSR [74] VGG-based, residual connections pre-upsampling No 665k
ESPCN [61] simple CNN, sub-pixel convolution post-upsampling No 20k
LapSRN [76] 2 Laplacian pyramid structure progressive upsampling No 821k
. . . . . Generator: 734k
SRGAN [77] sub-pixel convolution, residual connections  post-upsampling Yes Discriminator: 5.2m
3 sub-pixel convolution, residual-in-residual } . Generator: 16.7m
ESRGAN [78] blocks post-upsampling Yes Discriminator: 14.5m
EDSR [81] 4 sub—p1.x§1 convolution, residual connections, post-upsampling No 43m
pretraining
MDSR [81] 4 multiscale EDSR post-upsampling No 8m
5 . T . N . small model: 1.2m
WDSR [82] EDSR with wide activation modules post-upsampling No big model: 37.9m
6 residual dense blocks, local residual connec- ) .
RDN [83] tions, sub-pixel convolution post-upsampling No 22.3m
7 residual connections, transposed convolu- iterative up- and down- )
DBPN [85] tion sampling No 188k - 2.2m
5 7 residual connections, transposed convolu- iterative up- and down-
D-DBPN [85] tion sampling No 10.3m
3 residual connections, transposed convolu- iterative up- and down-
SRFBN [86] tion, recurrent layers sampling No 3.6m
DRCN [87] recursive convolutions, residual connections  pre-upsampling No 1.8m
DRCN with recursive blocks and added .
9 -
DRRN [84] local residual connections pre-upsampling No 297k
MS-LapSRN [88] 2 Ib“ﬁ) I::?(I:N with shared weights and recursive progressive upsampling No 222k
channel attention, sub-pixel convolution,
RCAN [89] 10 residual-in-residual blocks, residual connec-  post-upsampling No 16m

tion

! http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
2 https://github.com/phoenix 104104/LapSRN

3 https://github.com/xinntao/ESRGAN

4 https://github.com/LimBee/NTIRE2017

5 https://github.com/Jiahui Yu/wdsr_ntire2018

© https://github.com/yulunzhang/RDN

7 https://www.toyota-ti.ac jp/Lab/Denshi/iim/members/muhammad.haris/projects/DBPN.html
8 https://github.com/Paper99/SRFBN_CVPR 19
9 https://github.com/tyshiwo/DRRN_CVPR17
10 https://github.com/yulunzhang/RCAN

Spatial downscaling

TABLE II: Overview of the most popular downscaling models in CV. Parameters are an estimation for the x4 scaling factor
and links to the official code repositories are provided where possible.
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A. Multispectral image fusion tude, inclination etc.) and atmospheric conditions. Some satel-
lites carry multiple sensors that allow simultaneous capture of

Using information from a single satellite source has the . . . . .
£ & multiresolution images thus providing an ideal setting for SSF

advantage of consistent satellite orbit characteristics (e.g. alti-
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Fig. 9: (a) Spatiospectral Fusion: an image of coarse spatial
resolution is fused with an image of fine spatial resolution
containing different bands. The result is a version of the former
image downscaled to the spatial resolution of the latter. (b)
Spatiotemporal Fusion: an image of high temporal (ti, to,
t3) but low spatial resolution is fused with an image of low
temporal (t1, t3) but high spatial resolution. The result is an
image of the highest spatial resolution in time 5.

@

®)
©

Fig. 10: (a) Single Image Super-resolution: A single LR image
is downscaled without using any external information. (b)
Multiple Image Super-resolution: Multiple LR images of the
same scene are used to acquire an image of higher spatial
resolution of that scene. (c) Reference Super-resolution: An
LR image is downscaled by combining information from
features extracted from it.

and a common data source. For example, the constellation of
Sentinel-2 satellites (A/B) launched by the European Space
Agency (ESA) acquires an image with 13 discrete bands, four
of which have 10m spatial resolution, six have 20m and three
have 60m [93]. Several methods ([94] (DSen2, VDSen2), [95],
[96] (FUSE), [97] (SPRNet)) use two input sets, one for the
Bypr and one for the Bpp resampled to match the target

resolution, as input to CNN models which aim to transfer
high-frequency details from By i to By g in order to spatially
enhance the latter accordingly. DSen2, VDSen?2 and the model
proposed by Palsson et al. [95] use a concatenation of both
sets in the input while FUSE and SPRNet process each set in
parallel and then fuse the results. In a similar setting, Luo et
al. [98] (FusGAN) propose a GAN framework consisting of
an ESRGAN Generator and a PatchGAN Discriminator [99],
which takes as input a downsampled concatenation of HR
and LR Sentinel-2 bands, to recover the original LR bands
(Fig. 14). On the other hand, Nguyen et al. [100] (S2SUCNN)
propose a multi-scale model which takes as input the bands
in their original resolution and progressively upsamples the
lower resolution ones guided by the extracted features of the
higher resolution bands to finally obtain all Sentinel-2 bands
in a 10m spatial resolution. The final result is subsequently
degraded to be compared with the original input in a MAE loss
function. Finally, an interesting approach is presented in [101],
where the FUSE model is evaluated under an unsupervised
training scheme. Contrary to the original FUSE study which
employs a pre-upsampling framework and thus relies upon
the primary creation of synthetic training data, the authors
propose a reversed pipeline, where the model is applied on
the original images and its output is then downsampled and
compared with the initial input. Subsequently, a second term
is added to the loss function which is calculated on the local
correlation between the Byr and Brr bands and accounts
for the preservation of high-frequency details. The preliminary
results showcase the potential of this approach, which however
is still below the level of the supervised learning scheme.
Shao et al. [102] (ESRCNN) propose a framework that ex-
tends the SRCNN architecture (Table II) and utilizes auxiliary
information from Sentinel-2 in order to downscale Landsat-8
images. The Landsat-8 satellite provides observations in the
visible, NIR and SWIR spectra at 30m and a panchromatic
band at 15m spatial resolution every 16 days [103] so the
goal of this study is to produce the equivalent Landsat images
at 10m spatial resolution. The whole process can be broken
down into two separate steps. First, is the self-adaptive fusion
of Sentinel-2, where the 20m Sentinel-2 bands (11 and 12) are
resampled to 10m using k-Nearest Neighbours (k-NN) inter-
polation and are then concatenated with the native 10m bands
as input to the proposed ESRCNN model. The output are the
bands 11 and 12 downscaled to 10m resolution. Following
this is the multi-temporal fusion of Landsat-8 and Sentinel-
2, where the 30m Landsat bands (1-7) and the panchromatic
band are resampled to 10m again using k-NN interpolation
and are concatenated with the native 10m Sentinel-2 bands
and the downscaled 20m Sentinel-2 bands. These are fed
to the ESRCNN which outputs a downscaled version of the
Landsat bands 1-7. A distinct advantage of this method against
traditional approaches is the ability to fuse Sentinel-2 and
Landsat data obtained on different, albeit close, dates. Using
the same satellite sources, Chen et al. [2] propose the fusion of
Sentinel-2 and Landsat images in order to enhance the latter
to a spatial resolution of 10m. They prove that an adversarial
approach is superior to a non-adversarial one and the proposed
model resembles the architecture of the ESRGAN trained on a
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Fig. 11: Example of pansharpening on WorldView-3 data. (a) High-resolution, “ground truth” image, (b) Panchromatic, (c)
Low-resolution multispectral, (d) - (j) Pansharpening results obtained by different DL approaches. Image taken from [90]

(©2021 IEEE).

Fig. 12: Example of Spatiotemporal Fusion. (a) Low resolution image on time ¢, (b) High resolution image on time ¢;, (c)
Low resolution image on time ¢, (d) High resolution image on time ¢, which is the target, (e) - (j) Prediction results on time
to obtained by different approaches. Image taken from [91] (©2021 IEEE).

composite of the Red, Green and Blue bands for both satellites.
The authors also tested whether the GAN model could be
improved by pretraining on natural instead of satellite images
using the DIV2K dataset (Section X) but the results were not
favourable.

In their study, Dong et al. [104] (RRSGAN and RRSNet)
argue that Remote Sensing images coming from different

sources must be carefully aligned before processing due to
differences in altitude, viewpoint or angle. They form a dataset
consisting of WorldView-2 (0.5m) and GaoFen-2 (0.8m) obser-
vations as well as the corresponding images from Google Earth
(0.6m). The proposed model is a GAN where image alignment
is assisted by the extraction of gradients. In particular, a CNN
is fed the input images and their gradients, and proceeds
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Fig. 13: Example of Single-Image Super-resolution. (a) Low resolution image, (b) - (e) Prediction results obtained by different
approaches for a scaling factor x4. Image taken from [92] (©2020 IEEE).
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to extract features which are then aligned via a pyramid
with deformable convolutional layers [105]. Subsequently, a
Relevance Attention Module is proposed in order to combine
the aligned features by focusing on the relevant information,
and a series of upsampling blocks performs the final down-
scaling. For the adversarial training two Discriminators are
employed, one for the downscaled image and one for the
gradient of the downscaled image produced by the Generator.
The loss function is a weighted sum of: (i) the MAE between
downscaled and HR image, (ii) the adversarial loss for down-
scaled and HR image, (iii) the VGG loss between downscaled
and HR image, (iv) the MAE between the gradients of the
downscaled and HR images, and (v) the adversarial loss for
the gradients of the downscaled and HR images. Results show
that both the adversarial RRSGAN and the non-adversarial
RRSNet perform better than numerous other DL methods, with
RRSGAN producing more high frequency details.

In conclusion, considering single-source data for multispec-
tral image fusion, the available solutions cover a variety of
needs. For example, when all LR input images have the
same spatial resolution (e.g. 20m) then SPRNet seems to
be a more suitable and robust approach. On the other hand,
when hardware and/or time restrictions apply, FUSE provides
a lightweight candidate since it contains very few trainable
parameters (~ 28k) compared to other methods but has only
be applied with a x2 scaling factor. Finally, for an end-to-end

approach where all multiresolution input bands are downscaled
in a single forward pass, FusGAN seems to produce more
accurate and sharp results. In the case of multi-source input
data, ESRCNN tackles the lack of clear, cloudless HR input
images on the required date by enabling the use of multiple HR
images acquired at arbitrarily close dates. The authors observe
that specially when using more than 3 Sentinel-2 images, the
model is able to additionally capture Land Use/Land Cover
changes in the landscape. On the contrary, when the HR
input images are inevitably contaminated by clouds or even
absent in some cases, RRSGAN is able to overcome the loss
of information and produce downscaled results of acceptable
quality thanks to its robust feature extraction and attention
mechanisms.

B. Pansharpening

Pansharpening refers to a downscaling process aided by
a panchromatic band. This special type of band allows the
acquisition of a single measurement for the total intensity of
visible light in a single pixel, thus panchromatic sensors are
able to detect brightness changes at quite small spatial scales.

The first work to introduce convolutional neural networks to
pansharpening is [106] (PNN). Inspired by the super-resolution
field of computer vision, Masi et al. build upon SRCNN
and improve it by augmenting the input with a number of
radiometric indices tailored to features relevant for Remote
Sensing applications (NDVI, NDWI, etc.). Following the three
steps of sparse coding super-resolution [107], they make use
of a three layer convolutional neural network named PNN as
shown in Fig. 15. Their method follows the pre-upsampling
framework.

Fig. 15: Outline of PNN. The network comprises of three
layers that are expected to match the three steps of sparse
coding super-resolution. Image taken from [106].
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Motivated by the high non-linearity of deeper networks and
inspired by SRCNN and PNN, Wei et al. propose a deep
residual network named DRPNN [108], in which they add
some pansharpening specific improvements. Yang et al. also
propose a deep residual network named PanNet [109] that
preserves both spatial and spectral resolution. For spectral
preservation, they directly add the upsampled multispectral
images to the network output, while for spatial preservation,
they train the network in the high-pass filtering domain rather
than the image domain, as this is expected to generalize better
among different satellites (Fig. 16). Starting from PNN too,
Scarpa et al. [110] explore a number of variations to improve
its performance and robustness. They propose the use of MAE
loss, which boosts performance and allows fast convergence,
exploit skip connections and add a target-adaptive fine-tuning
phase. Their ablation study shows that shallow architectures
are able to perform as well as the deeper ones, thus they use
a three layer CNN (L/-RL-FT) with residuals.

PANImage |

! ”

! n i

i Il

i ; HRMS Image
T S —

Fig. 16: Outline of PanNet. The network decouples structural
from spectral preservation. Image taken from [109] (©2017
IEEE).

A different approach inspired by metric learning that makes
use of stacked autoencoders is introduced in [111]. Up-scaled
panchromatic images are divided into patches, grouped accord-
ing to their geometry and fed as input to autoencoders that
are utilized to map them into hierarchical feature spaces that
accurately capture non linear manifolds, while at the same time
preserve their local geometry in the embedding space. Based
on the assumption that multispectral and their corresponding
panchromatic patches form the same geometric manifolds,
the geometric multimanifold embedding model (DML-GMME)
using a metric learning loss function is trained to estimate high
resolution multispectral image patches.

A two-branch network named MSDCNN is proposed in
[112]. While the one branch is a three layer convolutional
neural network, the other one is a deep residual network with
multiscale convolutional blocks. Multi-scale refers to the fact
that authors use convolutional filters with different sizes to
extract feature maps. The two subnetworks are jointly trained
and the final estimation is a sum over the estimation of each
subnetwork.

In [113] (DiCNN), a general detail injection formulation of
pansharpening is proposed. DiCNN comprises two convolu-
tional neural networks, DiCNNI and DiCNN2, both utilizing
the pre-upsampling framework. DiCNNI adds a skip connec-
tion to the PNN architecture, while DiCNN2 works under the
assumption that ideally, the multispectral spatial details should
match and be relevant only to the panchromatic image. Thus,

it utilizes only the panchromatic image as an input to the
network, while the pre-interpolated multispectral image is used
only at its end. Structural comparison between PNN, DRPNN,
DiCNN1 and DiCNN2 can be seen in Fig. 17.

Liu et al. [115] propose a method named MIPSM that
combines a shallow—deep convolutional network (SDCN) and
a spectral discrimination-based detail injection (SDDI) model.
SDCN consists of a three layer shallow network and a deep
residual network, which can capture mid-level and high-level
spatial features from panchromatic images. SDCN works on
the high-pass filtering domain. SDDI is developed to merge the
spatial details extracted by SDCN into multispectral images
with minimal spectral distortion. SDCN and SDDI are jointly
trained.

Inspired by component substitution and multiresolution
analysis, Deng et al. [116] design two deep residual networks
named CS-Net and MRA-Net respectively that extract details
and have a solid physical justification. They also design a net-
work that is directly fed with details extracted by differencing
the single panchromatic image with each multispectral band.
This network is called Fusion-Net. They make use of the pre-
upsampling framework using a polynomial kernel. Cai et al.
[117] propose a progressive downscaling pansharpening neural
network named SRPPNN, which includes three components:
(a) a downscaling process that extracts inner spatial detail that
is present in multispectral image and combines it with the
spatial detail of panchromatic image to generate fused results,
(b) progressive pansharpening to separate the spatial resolution
improvement process, which achieves a gradual and stable
pansharpening process and (c) a high-pass residual module that
helps by directly injecting spatial detail from panchromatic
images and achieves better spatial preservation. Dong et al.
[118] propose a Laplacian pyramid network called LPPNet
that has a clear physical interpretation of pansharpening,
follows the general idea of multiresolution analysis and divides
pansharpening into two processes: (a) detail extraction and
(b) reconstruction. For (a), they use the Laplacian pyramid to
decompose the panchromatic image into multiple levels that
can distinguish the details of different scales. They build a
simple detail extraction subnetwork for each level, which can
help fully extract the depth of different levels. For (b), the
subband residuals estimated at each level are injected into
the respective level of the multispectral image, while they are
upsampled and fed as input to the next subnetwork, which can
help make full use of complementary details between different
levels.

Instead of focusing on the architecture, Jiang et al. [119]
focus on the input/output of the network. They introduce three
novelties: (a) the differential information mapping strategy, (b)
the auxiliary gradient information strategy and (c) the combi-
nation of an attention module with residual blocks. Taking
into account the under-utilization of the panchromatic image
in the input, they propose to copy and assign the panchromatic
image to each band of the downscaled multispectral image.

Motivated by the existence of mixed pixels in satellite
images, where each pixel tends to cover more than one
constituent material, Qu et al. [120] propose a method based on
self-attention mechanism (SAM) [121] that works at the sub-
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Fig. 17: Structural comparison between (a) PNN, (b) DRPNN, (c) DiCNNI1 and (d) DiCNN2, modified from [113] (©2019
IEEE), and e) the model of Luo et al., modified from [114] (©2020 IEEE).

pixel level. A method using skip connections inspired by [122]
is introduced in [114]. Luo et al. propose a novel loss function
that utilizes spatial constraints, spectral consistency and the
QNR index (Section IV). Instead of using simple stacked
convolutional layers and separate the feature extraction way,
their network architecture adopts an iterative way to jointly
extract and fuse the features. Outline of their method can be
seen in Fig. 17e.

Zhang et al. [123] propose a model comprising two net-
works: gradient information network (7Net) and pansharp-
ening network (PNet). TNet is a residual network commit-
ted to seeking the nonlinear mapping between gradients of
panchromatic and high resolution multispectral images, which
essentially is a spatial relationship regression of imaging bands
in different ranges. PNet is a spatial attention residual network
used to generate high resolution multispectral images, which
is not only supervised by the high resolution multispectral
reference image, but also constrained by the trained TNet.

Inspired by the learned iterative soft thresholding algorithm,
Yin et al. [124] propose a deep pansharpening network that
integrates the detail injection, variational optimization and
Deep Learning schemes into a single framework. It consists
of the input convolutional layer, Conv-ISTA module (deep
unfolded network), fusion module and the output convolutional
layer. The weighted use of variational optimization with Deep
Learning is proposed in VO+Net [125] too. For the varia-
tional optimization modeling, a general details injection term
inspired by the classical multiresolution analysis is proposed
as a spatial fidelity term and a spectral fidelity employing the
multispectral sensor’s modulation transfer functions is also
incorporated. For the Deep Learning injection, a weighted
regularization term is designed to introduce Deep Learning
into the variational model. The final convex optimization prob-
lem is efficiently solved by the designed alternating direction
method of multipliers.

Zhang et al. [126] (SC-PNN) propose a saliency cascade
convolutional neural network that consists of two parts: (a) a
dilated deformable fully convolutional network (DDCN) for

saliency analysis and (b) a saliency cascade residual dense
network (SC-RDN) for pansharpening. DDCN is a network
based on hybrid and deformable convolution aiming to sepa-
rate salient regions like residential areas from nonsalient areas
like mountains and vegetation areas. SC-RDN is composed of
three stages: (a) detail maps of multispectral and panchromatic
images are extracted via dual-tree complex wavelet transform
(DT-CWT) [127], (b) a deep regression network based on
residual dense blocks takes those detail maps as input and
produces the primarily sharpened image with high spatial
and spectral quality and (c) a saliency enhancement module
emphasizes the impact of the obtained saliency map via the
saliency-weighted region convolution (SW-RC). More details
about this method can be seen in Fig. 18.

Given that the convolution operation is focused on the local
region and thus position-independent global information is
difficult to obtain, Lei et al. [90] propose an efficient non-local
attention residual network (NLRNet) to capture the similar
contextual dependencies of all pixels.

Motivated by the unavoidable absence of ground truth,
which often results in networks trained solely in a reduced
resolution domain, Vitale et al. [128] propose a new learning
strategy involving a loss function with terms computed both
at reduced and full resolution images, thus enforcing cross-
scale consistency. Their method is based on A-PNN [129], an
advanced version of PNN with: (a) a different loss function
for training (MAE instead of MSE), (b) a residual learning
configuration and (c) a target adaptive scheme. In the same di-
rection, Ciotola et al. [130] introduce a full-resolution training
framework, in which training takes place in the high-resolution
domain, relying only on the original panchromatic and multi-
spectral pairs (with no downgrading), thus avoiding any loss of
information. They design a new compound loss function with
two components accounting separately for spatial and spectral
consistency.

Apart from convolutional neural networks, one of the first
attempts to utilize generative adversarial networks for pro-
ducing high quality pansharpened images is introduced by
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Fig. 18: Outline of SC-PNN. Image taken from [126] (©2021 IEEE).

Liu et al. in [131] (PSGAN). PSGAN comprises a Generator
that takes as input panchromatic images and maps them
to the desired high resolution multispectral images and a
Discriminator that implements the adversarial training strategy
for generating higher fidelity pansharpened images. Making
the assumption that (a) the spectral distribution of the fused
image should be consistent with that of the LR multispectral
and (b) the spatial distribution of the fused image should be
consistent with that of the panchromatic image with the same
resolution, Ma et al. propose the use of a generative adversarial
network with two discriminators in [132] (Pan-GAN). The
Generator of Pan-GAN attempts to generate a high resolution
multispectral image containing major spectral information of
the LR multispectral image together with additional image
gradients of the panchromatic image.

A similar generative adversarial network architecture called
MDSSC-GAN SAM exploiting jointly the spatial and spectral
information sources is proposed in [133]. Gastineau et al. make
use of two Discriminators too, one to preserve the texture and
geometry of images by taking as input the luminance Y and
near-infrared band of images and the other to preserve the
color and the spectral resolution by comparing the chroma
components Cb and Cr. A different approach in which pan-
sharpening is treated as a colorization problem is introduced by
Ozcelink et al. in [134] (PanColorGAN). In contrast with the
ordinary, the authors give as input the grayscale transformed
multispectral image and train the model to learn the coloriza-
tion of it. The model learns to generate an original multi-
spectral image by taking as input the corresponding reduced-
resolution and grayscale ones. PanColorGAN is trained using
both a reconstruction (MAE) and an adversarial loss. This
can be interpreted as that the model learns to separate the
spectral and spatial components of the multispectral image
during training.

In conclusion, when hardware and/or time restrictions apply,
LI1-RL-FT is a great solution, as it is lightweight and trains
very fast. It also seems to have good generalization ability
and to solve the problem of insufficient data with its target-

adaptive tuning phase. DML-GMME is a unique approach
that utilizes deep metric learning and autoencoders. Having
a rich ablation and being a lightweight model, a researcher
would gain useful insight experimenting with it. Accurate and
sharp results seem to be produced by LPPNet, a network that
simplifies the pansharpening problem into several pyramid-
level learning problems. LPPNet makes use of the Laplacian
pyramid decomposition technique to decompose the image
into different levels that can differentiate large- and small-
scale details, thus achieving great visual appearance. Novel
ideas that a researcher might want to consider are presented
in Zhang et al. and Luo et al. Zhang et al. design a special
gradient transformation network that searches the nonlinear
mapping between gradients of panchromatic and multispectral
images. Luo et al. propose a panchromatic-guided strategy that
continuously extracts and fuses features from the panchromatic
image. VO+Net is a framework that can be put on top of
other approaches to improve the end result. Finally, SC-PNN
is a solution that successfully makes use of saliency maps and
provides great visual results.

C. Hyperspectral/Multispectral fusion

Hyperspectral image sharpening aims at fusing an observ-
able low spatial resolution hyperspectral image with a high
spatial resolution multispectral of the same scene in order to
acquire a high resolution hyperspectral image.

One of the first works to utilize CNNs for hyperspec-
tral/multispectral fusion is introduced by Palsson et al. in
[135]. Authors propose the use of a 3D CNN with three layers
for the hyperspectral/multispectral fusion. The dimensionality
of the hyperspectral image is reduced using PCA in order to
constrain the computational cost and increase robustness. Dian
et al. [136] propose a deep hyperspectral image sharpening
method called DHSIS that directly learns the priors of the
high resolution hyperspectral image via CNN-based residual
learning. They first initialize the HR hyperspectral image by
solving a Sylvester equation. Then, to learn the priors, they
utilize the initialized HR hyperspectral image as the input
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of the CNN to map the residuals between reference HR
hyperspectral image and initialized HR hyperspectral image.
This initialization can fully utilize the constraints of the fusion
framework, thus improving the quality of the input data. The
learned priors of HR hyperspectral image are returned to
the fusion framework to reconstruct the final estimated HR
hyperspectral image, which can further improve performance
(Fig. 19).
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Fig. 19: Outline of DHSIS, a deep hyperspectral image sharp-
ening method. Image taken from [136] (©2018 IEEE).

Zhou et al. [137] introduce a pyramid fully convolutional
network (PFCN) consisting of two subnetworks: (a) an en-
coder aiming to encode the low resolution hyperspectral image
into a latent image and (b) a pyramid fusion that utilizes
this latent image together with a high resolution multispectral
pyramid image to progressively reconstruct the high resolution
hyperspectral image in a global-to-local way. More details
about the method can be seen in Fig. 20.

Instead of formulating the task of hyperspec-
tral/multispectral fusion as the spatial downscaling of
a low resolution hyperspectral image, Han et al. [138]
formulate it as the spectral downscaling of a high resolution
multispectral image. Their method CF-BPNN consists of three
stages: (a) the fusion problem is formulated as a nonlinear
spectral mapping from a high resolution multispectral image
to a high resolution hyperspectral image with the help of a low
resolution hyperspectral image, (b) a cluster-based learning
method using multi-branch neural networks is utilized to
ensure a more reasonable spectral mapping for each cluster
and (c) an associative spectral clustering is proposed to ensure
that training and fusion clusters are consistent.

He et al. introduce HyperPNN [139], a hyperspectral image
sharpening method via spectrally predictive CNNs, exploiting
spectral convolution structure to strengthen spectral prediction.
Li et al. propose a detail-based deep Laplacian pansharpen-
ing model (DDLPS) [140] to improve the spatial resolution
of hyperspectral imagery. Their method includes three main
components: downscaling, detail injection and optimization.
They make use of the well-known Laplacian pyramid super-
resolution network LapSRN (Section V) to improve the res-
olution of each band. Then, a guided image filter and a gain
matrix are used to combine the spatial and spectral details with
an optimization problem which is formed to adaptively select
an injection coefficient.

Shen et al. [141] propose a twice optimizing net with matrix
decomposition (TONWMD). They first decouple the fusion
problem into a spectral and a spatial optimization task with
the help of matrix decomposition. These two problems are

handled sequentially by solving a linear (Sylvester) equation.
Then, they train a deep residual network to establish the
mapping between the initial and reference images. Finally, the
predicted result is returned to the optimization procedure to
get the final fusion image. Xie et al. [142] propose MHF-
Net, a network having clear physical meaning and great inter-
pretability. They first construct a hyperspectral/multispectral
fusion model which merges the generalization models of low
resolution images and the low rankness prior knowledge of
high resolution hyperspectral image into a concise formulation.
Then, they build the network by unfolding the proximal
gradient algorithm to solve the proposed model. Liu et al.
[143] propose UMAG-Net, a network comprising a multi-
attention autoencoder network (MAE) and a multiscale feature-
guided network (MSFG). First, MAE extracts deep multiscale
features of the multispectral image and then a loss function
containing a pair of hyperspectral and multispectral images is
used to iteratively update the parameters of the network and
learn prior knowledge of the fused image. MSFG is used to
construct the final high resolution hyperspectral image. Non-
local blocks are used to better retain spectral and spatial details
of the image. Laplacian blocks are used to connect the MAE
with the MSFG to achieve better fusion results while ensuring
feature alignment. Although UMAG-Net does not use satellite
hyperspectral data, the expansion into them is straightforward.
Fig. 21 shows the method.

Zhang et al. [144] propose SSR-Net, an interpretable spatial-
spectral reconstruction network that consists of three compo-
nents: (a) cross-mode message inserting (CMMI); an operation
producing a preliminary fused high resolution hyperspectral
image, (b) a spatial reconstruction network (SpatRN) that
focuses on reconstructing the lost spatial information of the
low resolution hyperspectral image with the guidance of a
spatial edge loss and (c) a spectral reconstruction network
(SpecRN) that aims to reconstruct the lost spectral information
of the high resolution multispectral image under the constraint
of a spectral edge loss.

In conclusion, even though the architectures proposed in
hyperspectral/multispectral fusion are limited in number, they
exhibit remarkable variability (CNNs, 3D CNNs, GAN:S, etc.).
MHF-Net is an interpretable network showing superiority both
visually and quantitatively. A bright idea that a researcher
should take into account is presented in PFCN. Authors pro-
pose to encode the spectral information of the low resolution
hyperspectral image into a latent image and then decode this
image with a high resolution multispectral image pyramid into
a sharp high resolution hyperspectral image. The drawback
of this method is the fact that experiments are conducted on
simulated images. SSR-Net treats hyperspectral/multispectral
fusion as a spatial-spectral reconstruction problem. Authors
provide a good ablation study and useful insights. Finally,
a complete solution that has not yet been tested on Remote
Sensing data is proposed in UMAG-Net. This solution com-
bines great ideas like the use of multi-attention, non-local
blocks, Laplacian blocks and a loss function that measures
both spectral and spatial similarity between pairs of images.
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VIII. SPATIOTEMPORAL FUSION

Apart from their spectral signatures, satellites are also
characterized by their unique revisit times. Spatiotemporal
Fusion (STF) aims to integrate images of high spatial but low
temporal resolution (HSLT) with images of low spatial but
high temporal resolution (LSHT). A typical dataset for the
STF problem consists of LSHT-HSLT image pairs at one or
multiple time steps and the aim is to predict an HR image on
a future or intermediate target time tsqrge¢. All images must
contain similar spectral information, including the number of
bands and the bandwidths. For example, MODIS (Moderate
Resolution Imaging Spectroradiometer) captures images daily
(high temporal resolution) at a 250m to lkm scale (low
spatial resolution) [146], whereas Landsat-8’s OLI captures
images every 16 days (low temporal resolution) at a 30m
scale (high spatial resolution) [103]. Both sensors operate on
the visible and infrared spectra, therefore one could combine
pairs of MODIS (LSHT) and Landsat-8 OLI (HSLT) images
on different dates in order to produce high spatial resolution
images on a prediction date ;4 get-

The various STF methods present in the literature follow a
context-assisted (C-A) or context- and target-assisted (CT-A)
scheme depending on the availability of target data during
the training phase. CT-A approaches use additional LSHT
information on 44,4 Whereas C-A approaches exploit LSHT-
HSLT pairs from non-target times only (Fig. 22). We must

note here that a couple of other discriminant factors can also
be observed among STF studies. First, some methods perform
a pre-processing step where time difference images defined
as I;; = I; — I; for the time steps t; and t; are computed
and used as additional input to the model. Such an approach
is followed by [91], [147]-[153]. Secondly, whereas the most
common strategies involve data from times prior to t;4rget;
there are cases where future observations are also required,
as in [147], [150]-[158]. For simplicity, in this work we will
solely employ the C-A vs. CT-A classification and separately
describe each category in the following subsections, while in
Table IV we provide an overview of all STF methods. Note
that we refer to the HSLT images on time ¢ as F; and the
LSHT images as C; respectively.

E E E E
el e c <] <]
tprev ttargel Thext tprev ttargel Thext

(a) (b)

Fig. 22: Data used for (a) CT-A and (b) C-A Spatiotemporal
Fusion during training. ?,e, and %, are one or multiple
dates before and after the target date ¢;4,4c¢ respectively. F'
refers to the HSLT image, C' to the LSHT image.

A. Context- and target-assisted (CT-A)

Several researchers argue that the spatial resolution gap
between certain sensors, such as those carried by MODIS and
Landsat, is quite large and data coming from both sources un-
dergo different atmospheric and geometric corrections. There-
fore, they design models which produce intermediate images
enhanced by a smaller scaling factor in order to facilitate
the downscaling process. For example, Song et al. [154]
(STFDCNN, Fig. 23) propose a two-stage model which takes
as input an arbitrary pair of Landsat-5/7 (25m) and MODIS
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. . Code
Model Fusion Fusion data cv Building blocks Upsampling Architecture  available /
type model framework #
params
DSen2 [94] MS Sentinel-2 - Residual learning pre-upsampling CNN yes / 1.8m
VDsen2 [94] MS Sentinel-2 - Residual learning pre-upsampling CNN yes / 37.8m
Palsson et al. [95] MS Sentinel-2 - Residual learning pre-upsampling CNN no/ -
FUSE [96] MS Sentinel-2 - Residual learning pre-upsampling CNN no / 28k
FusGAN [98] MS Sentinel-2 ESRGAN  Residual learning, post-upsampling  GAN no / -
sub-pixel convolution
S2SUCNN [100] MS Sentinel-2 - Residual learning progressive CNN yes / -
upsampling
Ciotola et al. [101] MS Sentinel-2 - Residual learning - CNN no/ -
SPRNet [97] MS Sentinel-2 - Residual learning pre-upsampling CNN no/ -
ESRCNN [102] MS Multitemporal Landsat-8, Sentinel-2 SRCNN - pre-upsampling CNN yes / -
Chen et al. [2] MS Landsat-8, Sentinel-2 ESRGAN  Residual learning, post-upsampling GAN no / -
sub-pixel convolution
Residual learning, .
RRSGAN [104] MS WorldView-2, GaoFen-2 - sub-pixel convolution, progr“‘?ve GAN yes / 7.47m
attention mechanism ~ UPSamping
PNN [106] PAN + MS  Ikonos, GeoEye-1, WorldView-2 SRCNN - pre-upsampling CNN yes / 310k
PanNet [109] PAN + MS  Ikonos, WorldView-2, WorldView-3 - Residual learning, progressive CNN no / 250k
high-pass filtering upsampling
DRPNN [108] PAN + MS  Ikonos, WorldView-2, Quickbird SRCNN Residual learning pre-upsampling CNN no / 1.bm
DML- Tkonos,  WorldView-2,  Quickbird, Stacked Sparse Au- .
GMME [111] PAN+MS  GaoFen2 - toencoders [145] pre-upsampling . CNN no / 8k
MSDCNN [112] PAN + MS  Ikonos, WorldView-2, Quickbird - Residual learning pre-upsampling 2 CNNs no/ -
L1-RL-FT [110] PAN + MS  WorldView-2, WorldView-3 SRCNN Residual learning pre-upsampling CNN yes / -
. WorldView-2 Washington, Ikonos Ho- .
DiCNN [113] PAN + MS bart, Quickbird Sundarbans SRCNN - pre-upsampling 2 CNNs no / 180k
Residual learning,
DIRCNN [119] PAN + MS  Ikonos, Quickbird, Gaofen-1, Gaofen-2 - attention mechanism,  pre-upsampling CNN no / 1.6m
auxiliary gradient data
MIPSM [115] PAN + MS  Ikonos, Quickbird - Residual learning, pre-upsampling 2 CNNs no /-
high-pass filtering
. WorldView-2, WorldView-3, Quick- - _— g . )
Fusion-Net [116] PAN + MS bird, Gaofen-2 - Residual learning pre-upsampling CNN yes / 230k
SRPPNN [117] PAN + MS  Quickbird, WorldView-3, Landsat-8 - Residual learning, pre-upsampling ~ CNN no / -
high-pass filtering
GeoEye-1, IKONOS, WorldView-2, Residual learning, .
UP-SAM [120] PAN + MS WorldView-3 - attention mechanism, pre-upsampling CNN no/ -
sub-pixel accuracy
Luo et al. [114] PAN + MS  Gaofen-2, WorldView-2 - Residual learning, pre-upsampling ~ CNN no / -
attention mechanism
GTP-PNet [123] PAN + MS  WorldView-2, Gaofen-2, Quickbird - Residual learning, pre-upsampling 2 CNNs no /-
gradient information
Deep unfolding,
PSCSC-Net [124] PAN + MS  GeoEye-1, Ikonos, WorldView-2 - variational optimization Pre-upsampling CNN no/ l1.lm
VO+Net [125] PAN + MS  WorldView-3, WorldView-2, QuickBird - t\i/z;;latlonal optimiza- pre-upsampling CNN no/ -
Saliency analysis,
SC-PNN [126] PAN + MS  WorldView-3, GeoEye-1, SPOTS - hybrid and deformable  pre-upsampling CNN + FCN  no/ -
convolution
NLRNet [90] PAN + MS  WorldView-3, QuickBird - Residual learning, pre-upsampling CNN no /-
attention mechanism
LPPNet [118] PAN + MS  Pavia Center, Houston, Los Angeles - Laplaman. . pyramid pre-upsampling CNN no/ -
decomposition
Vitale et al. [129] PAN + MS  GeoEye-1, WorldView-2 - Residual learning pre-upsampling CNN no/ -
Ciotola et al. [130] PAN + MS  GeoEye-1, WorldView-2, WorldView-3 - - - CNN no / -
PSGAN [131] PAN + MS  QuickBird, GaoFen-2, WorldView-2 - - pre-upsampling GAN yes / 1.88m
Pan-GAN [132] PAN + MS  GaoFen-2, WorldView-2 - 2 diseriminators: spa- oo \pcampling  GAN no/ -
tial and spectral
N 2 discriminators: spa-
g/fg\is[(lég]AN PAN + MS  Pléiades, WorldView-3 - tial and spectral, P pre-upsampling GAN yes / -
residual learning,
attention mechanism
PanColorGAN [134] PAN + MS  Pléiades, WorldView-2, WorldView-3 - Self-supervised, pre-upsampling GAN no/ -
noise/color injection
Palsson et al. [135] MS + HS Pavia Center, Ikonos - - pre-upsampling 3D CNN no/ -
DHSIS [136] MS + HS  CAVE, Harvard - Self-supervised, pre-upsampling ~ GAN yes / -
noise injection
PFCN [137] Ms + Hs  Dotswana, Washington DC, Pavia Cen- Residual learning pre-upsampling ~ CNN no / -
CF-BPNN [138] MS + HS AVIRIS, Pavia Center - k-means clustering pre-upsampling NN no/ -
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Washington DC Mall, Moffett Field,

HyperPNN [139] MS + HS Salinas Scene - - pre-upsampling CNN no/ -

DDLPS [140] MS + HS Moffett Field, Chikusei, Salinas Scene ~ LapSRN - pre-upsampling CNN no/ -

TONWMD [141] MS + HS CAVE, Harvard, Pavia Center - Residual learning, pre-upsampling CNN no/ -
matrix decomposition

MHF-Net [142] MS + HS SﬁVE, Chikusei, Houston, Pavia Cen- - - pre-upsampling CNN yes / -

UMAG-Net [143] MS + HS CAVE, Harvard Attention mechanism  pre-upsampling CNN, AE no/ -

SSR-Net [144] MS + HS Pavia Center, Botswana, Washington - - pre-upsampling CNN yes / -

DC Mall

TABLE III: Summary of the state-of-the-art Deep Learning models for spatiospectral fusion for image downscaling in Remote

Sensing. CV model refers to the models presented in Table II. PAN: panchromatic, MS: multispectral, HS: hyperspectral.

(500m) images and learns to predict an intermediate enhanced
image of 250m spatial resolution. The intermediate image
is computed in a pre-upsampling fashion, while the final
25m image via a post-upsampling SRCNN structure. During
inference, features are extracted from MODIS images on times
t1, to and t3 (where t5 is the prediction date) which are linearly
combined with the corresponding Landsat images on ¢; and ¢3
to produce the final HR result. Building upon this, Zheng et al.
[158] (VDCNSTF) propose deeper network architectures and
redesign the SRCNN stage as a multiscale model producing
images at 125m and 25m.
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Fig. 23: Outline of the STFDCNN method. Image taken from
[154] (©2018 IEEE).

A slightly different approach is followed by Liu et al.
[147] (StfNet) who argue that the temporal changes expressed
by a time difference image are highly correlated with the
contents of the original images. Therefore, they design a
model which takes as input a LSHT MODIS image (250-
300m) at the prediction date ¢, a date before (t;) and a
date after (¢3) the prediction date, and a corresponding HSLT
Landsat image at dates ¢; and t3, produces time difference
images and then reconstructs the HR image on date ¢y by
transferring information from these temporal relations. More

specifically, they propose two CNNs which take as input a
concatenation of the MODIS time difference image and the
Landsat image and produce a time difference Landsat. They
employ these networks to learn the following mappings: (I)
(Ci3, F1) — Fi3 and (Ci3, F3) — Fi3, (II) (Ch2, F1) — Fig
and (Cas, F3) — Fbs. Mapping (I) can be supervised by the
label Fy3 which is available in the training data, forming the
time difference reconstruction term of the loss function. The
results of mapping (II) are summed to obtain a predicted Fi3
which is compared to the label Fi3, forming the temporal
consistency term of the loss function. The total loss function is
a weighted sum of these two terms. Finally, the predicted F
and Fb3 are combined with F; and F3 through an adaptive
local weighting strategy to obtain the target image Fb. A
schematic outline of the method is presented in Fig. 24.
Compared with non-DL and DL approaches, the proposed
StfNet achieves sharper results will less visible artifacts.

Tan et al. [159] (DCSTFN) propose a two-branch CNN
which takes as input the LSHT MODIS image on the pre-
diction date ts along with a pair of HSLT Landsat-8 and
LSHT MODIS (500m) images on a date prior but close
to the prediction date, t;. The first branch of the model
learns a mapping from LSHT to HSLT images in a post-
upsampling scheme, while the second one extracts information
from the HSLT with a sequence of convolutional layers. The
three outputs, which share the same width and height, are
then concatenated following the assumption of the traditional
STARFM algorithm [160]: F; = Cy — Fy — C; for dates
t1 and ¢2 and enter a series of convolutions for the final
reconstruction. In a subsequent publication [161] (EDCSTFN),
the authors propose an enhancement over the DCSTFN model
which instead of processing solely the LSHT images on the
first branch, it takes as input both the LSHT images and the
HSLT image concatenated along the channels dimension and
extracts information on their spectrum differences. Finally, the
authors describe a novel, flexible training scheme where more
than one reference pairs can be used as input either during the
training or inference phase, depending on data availability. The
proposed EDCSTFN model manages to outperform DCSTFN
and StfNet on most cases, while displaying a more stable and
consistent behaviour.

Li et al. [148] (DMNet) propose a complex CNN archi-
tecture with two multiscale mechanisms including parallel
convolutions with either different kernel sizes or different
dilation rates for a more efficient feature extraction. The
model takes as input the MODIS time difference image C12
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Fig. 24: Outline of the StfNet method. DCNN refers to a 3-
layer deep CNN. Image taken from [147] (©2019 IEEE).

and the Landsat image Fj and learns to predict F5. In a
follow-up study [149] (AMNet), the authors propose progres-
sive upsampling at three scales (x4, x8 and x16) through
deconvolutional layers, while a third model segment combines
the feature maps at each scale to extract more spatial details
and temporal dependencies. The output of this segment is then
fed to a channel attention mechanism and a spatial attention
mechanism in sequence. The final results respect the spatial
and temporal changes of the data but are significantly blurred.

A number of studies have also focused on the application
of GANs to the CT-A spatiotemporal fusion problem. For
example, Shang et al. [91] (GASTFN) propose an adversarial
version of the DCSTFN model, where an EDSR-like Generator
performs the spatial enhancement task. Experiments showed
that the proposed model yields sharper and more accurate
results compared to the non-adversarial DCSTFN. Bouabid
et al. [162] propose a model similar to the popular pix2pix
GAN [163] which comprises a conditional GAN with a U-Net
architecture for the Generator and a PatchGAN architecture for
the Discriminator.

Chen et al. [155] (CycleGAN-STF) employ a cycle GAN
architecture [164] in order to enhance the traditional FSDAF
algorithm [165]. The main framework consists of the following
four stages: (I) Generation: a cycle GAN takes as input the
HSLT image pair (F}_;, Fy11) and produces a FtGAN in the
output. The GAN produces a single image each time, so an
iterative generation scheme is introduced in order to generate
multiple in-between images. (II) Selection: a single FZAN
image is selected based on mutual information metrics of
the HSLT and LSHT images. (IITI) Enhancement: the discrete
wavelet transform is used to enhance the quality of the selected
image, borrowing information from C; (IV) Fusion: The result
of the previous steps along with C; and C;_; are inserted
in the FSDAF algorithm to obtain the final prediction. The
model was only compared with traditional non-DL algorithms.
Experiments showed that CycleGAN-STF outperformed the
other approaches in preserving spatial details but resulted in
loss of spectral information.

Zhang et al. [156] (STFGAN) propose a cascade of two
SRGAN:-like structures which learn to produce an HR Landsat
image for a target date 5 based on Landsat-5/7 data from dates
t1 and t3 and MODIS data from dates t1, 5 and t3. The first
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GAN takes as input the two Landsat and all the corresponding
MODIS images and produces an intermediate Landsat image,
F;"t. Due to the limited ability of the SRGAN for spatial
enhancement to such a large scaling factor (x16), this image
is far from optimal. Therefore, a second GAN is used which
takes as input the Landsat images along with a downsampled
version of these Landsat images and the intermediate ant, to
produce the final F5, image.

A different approach is followed by Tan et al. [166] (GAN-
STFM) who propose a conditional GAN architecture for
downscaling MODIS images with a Landsat reference. The
Generator follows a U-Net architecture and the input is the
coarse MODIS image at the prediction date t, C;, and a
fine Landsat image at a different date t* arbitrarily close to
the target, Fi«. Similarly, the Discriminator takes as input a
concatenation of either the coarse C; and the corresponding
ground truth F or the coarse C; and the predicted FF™*? in
order to perform a fake/real classification. All convolutional
blocks in both networks are replaced by custom residual blocks
with Switchable Normalization [167] in the Generator and
Spectral Normalization [168] in the Discriminator. The authors
further propose the use of a multiscale Discriminator where
all inputs are additionally downsampled with factors /2 and
/4 and are used to train three different discriminators with
similar architectures at different scales. The proposed method
is compared with non-DL approaches and EDCSTFN, showing
the superiority of the random Landsat reference selection
against the temporal proximity imposed by STF in terms of
computational cost, without compromising the downscaling
quality.

Different DL approaches for blending Landsat-8 with
Formosat-2 (8m) images to increase the number of cloud-
free observations have been studied by Teo et al. [169]. First,
Landsat images were resampled to 8m and then blended with
the rest via a simple STARFM algorithm. Secondly, pairs of
Formosat and Landsat images obtained on the same date were
fed to a VDSR model which learnt to predict the residual
between the LR and HR features. This prediction was then
used to estimate the final spatially enhanced image. The
last two experiments, nicknamed Blend-then-SR and SR-then-
blend, tested the hybrid approaches of applying STARFM for
blending and then VDSR for downscaling, or applying VDSR
for downscaling and then STARFM for blending, respectively.
The study concludes that the SR-then-blend approach yielded
best results overall which implies that spatially enhancing the
LR images before fusion can reduce the variation between the
two image sets.

B. Context-assisted (C-A)

A C-A approach which aims to integrate temporal change
to an end-to-end model is proposed by Jia et al. [150] (DL-
SDFM). They design a two-stream CNN, with one branch
(M) learning a temporal change-based mapping and the other
(M>) learning a spatial change-based mapping. Each branch
consists of inception modules containing dilated convolutions
with different dilation factors and the overall model is trained
with two types of input data: in a time-forward pass the time
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Code available /

Model Input assistance Time Difference images Prior dates only CV model Architecture # params
STFDCNN [154] CT-A no no SRCNN CNN no/ -
VDCNSTF [158] CT-A no no VDSR CNN no / -
StfNet [147] CT-A yes no - CNN no/ -
DCSTEN [159] CT-A no yes - CNN yes / 409k
EDCSTFN [161] CT-A no yes - CNN yes / 282k
DMNet [148] CT-A yes yes - CNN no / 327k
AMNet [149] CT-A yes yes - CNN no/ -
GASTEFN [91] CT-A yes no EDSR GAN no / -
Bouabid et al. [162] CT-A no yes - GAN yes / -
CycleGAN-STF [155] CT-A no no - GAN no/ -
STFGAN [156] CT-A no no SRGAN GAN no/ -
GAN-STFM [166] CT-A no yes - GAN yes / 578k + 3.6m
Teo et al. [169] CT-A no yes VDSR GAN no/ -
DL-SDFM [150] C-A yes no - CNN no/ -
HDLSFM [170] C-A no yes LapSRN CNN no/ -
STF3DCNN [152] C-A yes no - CNN no / -
BiaSTF [153] C-A yes no - CNN no/ -

TABLE IV: Summary of the state-of-the-art Deep Learning models for spatiotemporal fusion for image downscaling in Remote
Sensing. CV model refers to the models presented in Table II.

differences are computed forward in time, whereas in a time-
backward pass they are computed backwards in time. In the
former case, the learnt mappings are: M; : (Cis, F1) — Fgl
and M, : (Cs, Fy — Cy) — F2, and in the latter case they
are: My/: (031,F3) — Flll and Mo/ : (017F3 — C3) — Ff/
All outputs are supervised by the given labels. Then, in the
prediction phase the model produces the following mappings:
M, (Clg,Fl) — FQI and M : (027F1 — Cl) — F22
for the forward pass and M/ (Cs2, F3) — F21/ and
Myt 2 (Co, F5 — C3) — F22, for the backward pass. Fig.
25 presents the entire pipeline. The authors compared DL-
SDFM with two traditional approaches and the DL-based
STFDCNN model and argue that their method manages to
capture phenological change and achieve results closer to the
ground truth but slightly inferior to STFDCNN visually.

Jia et al. [170] (HDLSFM) propose a hybrid approach which
involves a LapSRN model for spatial downscaling and a linear
model for extracting temporal changes. To alleviate the prob-
lem of large radiation differences between LR and HR images,
the LapSRN is trained on MODIS-Landsat pairs to produce
an intermediate output at x2 scale following the progressive
upsampling scheme. During inference, temporal changes are
captured by a linear model which extracts information from
both F and the intermediate output of LapSRN for images C}
and Cs. In the final donwscaled image, considerable blurring
was observed in heterogeneous areas of the underlying scene.

Downscaling a time series of MODIS images based on
Landsat observations captured on sparser dates is addressed
by Peng et al. [152] (STF3DCNN). The proposed approach
takes as input the time difference MODIS images between
each consecutive pair of dates and a 3D CNN model is trained
to produce the corresponding time difference Landsat images
of the in-between dates. The output is added to the original
Landsat series to produce the final prediction. The presented
method manages to capture abrupt changes in the observed
scene.

A novel idea was presented in [153] (BiaSTF), where it is
argued that when different sensors capture changes with dif-
ferences in spectral and spatial viewpoints, a considerable bias

between these sensors is introduced. No previously published
method accounts for this bias so the authors propose a pipeline
with two CNNs, one for learning the spectral/spatial changes
and the other for learning the sensor bias. Both networks
are trained with a separate MSE loss and take as input pairs
of MODIS and Landsat observations. The final prediction is
obtained by summing the output of the two networks along
with the initial HSLT image. The results showed that this
inclusion of the sensor bias lets the model converge to a lower
minimum and its predictions exhibit fewer spatial and spectral
distortions.

Concluding, the studies presented in this section provide a
variety of methods for tackling the spatiotemporal variation
of the observed landscape. The lack of a common benchmark
dataset again renders the direct comparison of all methods
infeasible but certain useful characteristics can be discerned.
First, models such as EDCSTFN, GASTFN and GAN-STFM
require a minimal number of input images, thus facilitating the
downscaling task in areas with severe cloud contamination.
Among these approaches, GAN-STFM has the additional
advantage of using fine images at arbitrary dates prior to
the target date, which provides an extra level of freedom
concerning the selection of images for training and/or infer-
ence. Secondly, EDCSTFN, DMNet, STF3DCNN and BiaSTF
employ simple architectures with a limited number of trainable
parameters, which makes them ideal candidates for quick
experimentation and testing. Finally, considering the spectral
correlation between the different bands enables the model to
exploit complementary information in order to better uncover
land cover and phenological changes. The models accepting
multi-band input are EDCSTFN, GASTFN, STFGAN, GAN-
STFM, DL-SDFM and STF3DCNN.

IX. SUPER-RESOLUTION

Super-resolution is a broad family of methods which aim
to enhance the spatial resolution of an image without the
need to blend information from auxiliary sources either in
the spectral or the temporal dimension. For better assessment,
they can be categorized into Single image Super-resolution



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE

Prediction input 1:
F1,Ci2

Temporal Change-based Mapping

22

Training Dataset 1:
| e |:{>| My (G, For )

Learning parameter of two
mappings using Adam |

Le |

{®y, ;) = argmin (AL, + (1 — DL}
|

bﬂ Weighted Combination |
|

|Training Dataset 2: | [>|
M, (C3,

F-C1,CsFs Fi—G.9)

|

|

|

L Temporal Change } !

M, (Cyz, Fy, @1) ¢/Wl |
| | !

|

|

|

| \

Prediction input 3:
F3,C32

! o |
| Forward Prediction
I—.I My (G, Fy — 51,4’2)|E?/La"dF?o‘frt_ChaF”ge | Result F,
Spatial Information-based Mapping reaiction [ b |

—_—— - — — — — —

Forward Prediction :

M;(Cs1, F3, )

F3,C31,F4 Learning parameter of two

mappings using Adam |

| C

|
|
Temporal Change-based Map, Av4 r 1 :
2 0 Temporal Change

M, (C32, F3, ®1) . > /|
Training Dataset 3: |¢| LJ'I> Prediction £} | :
! |
|
|

Csy¢is an abbreviated form of C; - C3
| I:()l Weighted Combination |

Training Dataset 4: .
| e, |l;'>|Mz(ci,F3—ca.¢)

|
[ ' 3 [
Land Cover Change I Bad(waégsz:te?;ﬂon
Prediction £2 | 2
— 4

Cs2is an abbreviated form of C, - C3
Ly, L, L, and L, represent loss functions

+ Cyzis an abbreviated form of C, - Cy

|

|

|

|

|

|

| {®), P, }=argmin{AL; + 1 =L, }|
|

|

' M;(Cy, F3 — €3, ®))
| Spatial Information-based Mapping

| oy

|

|

Prediction input 4:
F3C3,C

S S S —

|
|
Backward Prediction:

Fig. 25: The DL-SDFM pipeline. Image taken from [150].

(SISR), Multiple image Super-resolution (MISR) and Reference
Super-resolution (RefSR). These are presented next, while in
Table V we summarise the main DL models developed for SR.
In Section IX-D we examine SR architectures that are specific
for SAR and aerial imagery.

A. Single Image Super-resolution (SISR)

SISR aims to recover an HR version of a single LR input
image. However, lost pixel information in the LR image can
never be fully retrieved but only hallucinated, which means
that multiple possible HR images can be constructed from one
LR source. This renders the SISR problem mathematically ill-
posed and non-invertible, but it often comprises the only viable
approach when only a single LR input is available. Therefore,
several attempts have been made to employ DL techniques in
the SISR domain for Remote Sensing.

Multi-scale approaches

Lei et al. [171] (LGCNet - Fig. 26) design a CNN model
which combines feature maps produced by previous layers in
order to extract information at different scales and level of
detail. The model was evaluated on the UC Merced dataset
and selected Gaofen-2 images, and managed to outperform
traditional image enhancement methods such as bicubic in-
terpolation and sparse coding, but showed only marginal
improvements compared to other established DL models. Haut
et al. [172] experiment on the same data with a residual model
containing a sequence of convolutional layers for feature
extraction and an inception module followed by upsampling
layers for the final downscaling. Their method achieved per-
formance similar to that of LGCNet.

LGCNet A\

LR Image

/
|
I
I oas
=R
| 8 AI |
|
|
|

HR Image

I
I
I
I :
e
I
I
I
/

Reconstruction

Fig. 26: A high-level overview of the LGCNet. Blue boxes
represent convolutional layers followed by ReLU activation,
orange boxes represent the concatenation of selected feature
maps via a convolutional layer and the green box represents
the last convolutional layer for the final reconstruction. Image
taken from [171] (©2017 IEEE).

Lu et al. [173] (MRNN) propose a pre-upsampling architec-
ture with parallel convolutional layers and design a network
with three parallel branches containing residual blocks of
different convolutional kernel sizes. Each branch is initially
trained separately with interpolated versions of the original LR
image varying in size and then all branches are combined for
the final image reconstruction and finetuned in an end-to-end
setting. Experimental results show promising improvements
over other state-of-the-art DL methods, especially for larger
scaling factors. In another multiscale approach [174], Xu et
al. employ a U-Net resembling architecture, adding a module
with sequential dilated convolutions at the bottleneck section,

r _C_m is—an_atgreviagdz)rgof_&_* Ev _____
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a global residual connection and pixel shuffle operations
before the final output. The dilated convolutions have different
dilation rates, allowing the model to extract information using
different receptive fields and scales.

Multi-task learning

In their study, Yan et al. [175] (MSF) exploit a multi-
task learning procedure in order to improve the generalization
of the underlying network to different degradation models.
According to the standard approach, an image is downsampled
by convolving with a Gaussian blur kernel, applying bicubic
interpolation and then adding some noise. The authors argue
that a model trained on images degraded by a single Gaussian
kernel may perform quite well on such images but fail to
generalize to different kernels. Therefore they propose a model
trained in a multi-task setting where each task represents a
separate Gaussian kernel and is learnt by a dedicated CNN.

Additional post-processing

A study by Qin et al. [176] (DGANet-ISE) presented a
custom post-processing pipeline for the improvement of the
output of an SR model. Their architecture is heavily based
on EDSR (Section V) and is trained with a custom loss
function which additionally considers the gradient similarity
between prediction and target. The model’s output is then iter-
atively improved via a proposed Image-Specific Enhancement
(ISE) algorithm which back-projects the error between the
SR output and the LR input image and accordingly updates
the prediction. This algorithm alleviates the possible variation
between the training and testing datasets which might occur
from different sensing platforms, light conditions, etc.

Different sources for I/0

Contrary to most approaches in this category that exploit
Wald’s protocol, a number of methods have been proposed
which utilize different sources for the input and output. Galar
et al. [177] (S2PS) propose the use of PlanetScope images as
target in order to downscale the four Sentinel-2 10m bands.
They train a modified version of the EDSR separately for
each of the NIR and Red bands accounting also for the style
transfer loss [178] between prediction and target. Pouliot et al.
[179] (DCR-SRCNN) use Sentinel-2 observations to downscale
the corresponding Landsat-8 and Landsat-5 images from three
regions in Canada through an SRCNN architecture with denser
residual connections trained to predict a single band. Landsat-
Sentinel training pairs were selected based on a minimum
change vector across time and the authors noted that better
results were obtained for Sentinel observations closest to the
prediction date due to the dynamic behaviour of land cover
types such as croplands. Finally, Collins et al. [180] apply
an SRCNN on the two Resourcesat sensors. The constellation
of Indian Resourcesat satellites (1/2) provide multitemporal
and multiresolution observations in the same spectra with
coincident captures enabling the use of SISR techniques.
Both satellites carry the sensors LISS III, which captures
information in the Green, Red, NIR and SWIR bands with
24m spatial resolution and a 24-day revisit cycle, and AWiFS,
which captures the same bands with 56m spatial resolution
and a 5-day revisit cycle. The authors used a training set
with coincident images from the two satellites in order to
downscale the AWIiFS data to match the spatial resolution of
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the corresponding LISS III data. The model was evaluated
only against simple baselines and produced better PSNR and
SSIM scores.

Different degradations

Sheikholeslami et al. [181] (EUSR) employ a dense net-
work with a bilinear upsampling layer for the reconstruction.
Contrary to the majority of studies in literature, the authors
downsample the initial dataset via the Lanczos3 kernel [182]
to be used in the model’s training, following Wald’s protocol.
The resulting image is then downsampled again with the same
kernel and compared with the initial LR image in a PSNR-
based loss function. Experiments show that results are similar
to other methods, but the proposed approach prevails when
larger input images are used.

Arguing that most published studies following the Wald’s
protocol produce synthetic LR images through a specific dis-
tortion model and develop methods which focus solely on the
enhancement of such LR images, Zhang et al. [183] propose
an unsupervised model to handle multi-degradation schemes.
In particular, their approach involves a post-upsampling Gen-
erator network which produces an SR image and a Degrader
network which distorts this SR result. The final loss function
is the MSE between the degraded image and the original LR,
thus alleviating the need to compare the result to an HR ground
truth. For the Degrader the authors adopt the same pipeline as
in [184]. Results on the UC Merced, NWPU-RESIS45 datasets
(Section X) and Jilin-1 satellite images showed that the
proposed method outperformed state-of-the-art DL approaches
when distortions other that bicubic interpolation were used
for the LR input. It managed to produce results closer to the
ground truth and retain edges and object shapes more correctly.

Wavelets

A large family of traditional non-DL approaches perform the
super-resolution task in the frequency domain, usually through
the Wavelet Transform. The general pipeline is to analyze
the image into a number of frequency components, separately
enhance the components and then apply the inverse transfor-
mation to obtain the final SR image. A number of DL methods
have been proposed ([185] (WTCRR), [186] (DWTSR), [187]
(RRDGAN)) which use the 2D Discrete Wavelet Transform
and design a DL network to undertake the task of component
enhancement. In WTCRR residual blocks of a ResNet are
replaced with recurrent blocks in order to reduce the number of
parameters and increase the network depth without overfitting.
On the other hand, DWTSR uses a simpler architecture but
employs the 2D Stationary Wavelet Transform along with the
2D Discrete Wavelet Transform for richer features. Finally,
RRDGAN enhances the ESRGAN architecture with denser
connections, a Relativistic Discriminator and a Total Variation
loss [188] in order to separately enhance the four components
of the Haar Wavelet Transform. All of the aforementioned
studies achieve good results indicating that the frequency
domain may offer more useful information to a DL model
and is thus worth exploring further.

Attention mechanism

Several studies also employ attention mechanisms in order
to aid the downscaling process and help the model focus
on the high-frequency details of the image. For example,
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Dong et al. [189] (MPSR) and Gu et al. [190] (DRSEN) de-
sign architectures with various residual connectivity schemes
and channel attention modules similar to the Squeeze-and-
Excitation blocks proposed in [66]. Haut et al. [191] utilize the
RCAB attention module [89] inside convolutional blocks with
residual connections at multiple levels. RCAB is also adopted
by Zhang et al. [192] (MSAN, SAMSAN) who additionally
propose a scene-adaptive learning framework where a separate
model is finetuned on each possible scene depicted in an
RS image, and Dong et al. [193] (DSSR) who also present
a chain learning strategy where a xk? model is based on
a pretrained Xk model. A similar architecture to DSSR is
proposed by Wang et al. [194] (AMFFN) where both Squeeze-
and-Excitation and RCAB modules are applied on a multiscale
feature extraction framework containing parallel convolutions
with varying kernel sizes. Lei et al. [195] (/IRAN) propose a
network comprising a series of inception modules followed by
channel (Squeeze-and-Excitation) and spatial attention mech-
anisms. Similarly, Wang et al. [196] (NLASR) design a model
with non-local blocks [197] which follows the iterative up-
and down-sampling scheme with channel and spatial attention
modules. Finally, based on the popular EDSR architecture,
Peng et al. [198] (PGCNN) propose a gated residual block
which encourages the model to focus on high-frequency
details, whereas Lei et al. [199] (HSENet) employ custom
attention modules which aim to discover information recurring
in multiple scales inside the image. All of the aforementioned
studies show that the inclusion of such attention mechanisms
boosts the model’s performance and helps achieve a sharper
downscaled result closer to the HR ground truth.

Recursion

Chang et al. [200] (BCLSR) present a novel approach by
employing a recursive framework on images obtained from the
GaoFen-2 satellite. Their model comprises multiple densely
connected convolutional blocks which share their parameters
and feed their outputs to a BiConvLSTM layer. The output is
then downscaled via a sub-pixel convolution. Results showed
that this method outperformed several established DL models
and produced sharper results without losing substantial high-
frequency details.

Generative Networks

A multitude of studies have also explored the adaptation
of GAN models for SR. In an interesting approach, Lei et
al. [201] (CDGAN) present the “discrimination-ambiguity”
problem, which states that Remote Sensing images contain
more low-frequency components than natural images thus
impairing the Discriminator’s ability to decide whether a given
input is real or fake. To tackle this issue, they propose a
”Coupled Discriminator* that takes as input both the predicted
SR image and its corresponding HR ground truth shuffled
by a random gate, and is then tasked to decide whether the
input constitutes a real-fake pair (1) or a fake-real pair (0).
The Generator architecture is based on ESRGAN. The model
competed against a number of DL methods on the UCMerced
and WHU-RS19 datasets (Section X) as well as selected
GaoFen-2 images and produced less blurry results and with
fewer artifacts.

A number of studies have also proposed minor adjustments
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of popular SR architectures to fit the needs of the RS domain.
For example, Ma et al. [202] (DRGAN) utilize an RDN-
like architecture for the Generator with sub-pixel convolu-
tion for downscaling and a VGG loss function. Their model
was evaluated on the NWPU-RESISC45 dataset (Section X)
and several other computer vision benchmarks and achieved
sharper images with cleaner object boundaries as compared
with other state-of-the-art DL methods. Salgueiro Romero
et al. [203] (RS-ESRGAN) adapt the ESRGAN model in a
pre-upsampling framework and train the Generator in three
stages; first, it is trained on a set of WorldView images only,
then finetuned on pairs of WorldView and Sentinel-2 images
and finally trained in an adversarial manner with WorldView
and Sentinel-2 pairs. The final image is formed by a linear
combination of the Generator’s output trained with and without
the adversarial scheme, which helps the user calibrate the
Perception-Distortion Trade-off.

Multi-scale Generators

Dense and multi-level connections have also been intro-
duced to different Generator architectures with the aim to
extract more accurate representations of both small- and large-
scale objects. For example, Wang et al. [204] (udGAN) design
a novel Ultra-Dense Residual Block (UDRB) which contains
parallel convolutions and additional diagonal connections,
while features at each level are concatenated through a bot-
tleneck 1 x 1 convolution to limit the channel size. Their
study illustrates the value of this new connectivity scheme
by surpassing several other established DL methods in the
sharpness and quality of the produced images. Shin et al.
[205] propose a multiscale Generator comprising multiple
parallel streams in a pyramidal fashion, each of which is
formed by a series of residual dense blocks. A reconstruction
module fuses the output of all streams and produces the final
SR image. Before entering the Discriminator, an HR or SR
image is first fed to a pretrained VGG network and a number
of intermediate feature maps are selected. A set of blurring
Gaussian kernels are applied on these feature maps and the
results are then fed to a Discriminator model with PatchGAN
architecture. Both networks are illustrated in Fig. 27. The
proposed method achieved highly better results compared to
EEGAN and CDGAN, and managed to capture and recover
even small-scale details in the produced images which the
other techniques failed to do.

Another multiscale approach was introduced by [206]
(Enlighten-GAN) which improves on the ESRGAN by adding
an “enlighten block” to the Generator. This block outputs
an intermediate SR image and helps the Generator learn
high-frequency information in a progressive manner. The loss
function has a Self-Supervised Hierarchical Perceptual Loss
component, where an autoencoder is trained from scratch on
RS images and the distance between the corresponding feature
maps of the SR and HR images is computed. Finally, the au-
thors present a novel large image tiling and batching approach
for downscaling overlapping satellite image patches separately
(Fig. 28). Experimental results showed that Enlighten-GAN
produces sharper images with much fewer artifacts than other
GAN-based methods, while at the same time retains the true
hue and shapes of the objects.
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Fig. 27: The Generator and Discriminator for the GAN proposed in [205]. Image taken from [205] (©2020 IEEE).

Fig. 28: An example of the clipping-and-merging method
pipeline. The input image has size 168 x 168 and is cropped
into four overlapping patches, each of size 96 x96. The patches
are independently downscaled by a Super-resolution algorithm
(denoted SRR here) producing four 384 x 384 images. Half
of the overlap region of each patch is then clipped, ending up
with four 336 x 336 images which are then joined to produce
the final SR prediction. Image taken from [206].

GANSs and Attention

Attempting to improve the output of an SR GAN model,
multiple studies exploit attention mechanisms. Jiang et al.
[207] (EEGAN) propose a Generator which first enhances
the input and then extracts and sharpens its edges (Fig. 29).
A mask branch with attention mechanism is also employed
during the edge enhancement step to focus on the useful
information. The model outperforms SRGAN, VDSR and SR-
CNN on the Kaggle Draper Satellite Image Chronology dataset
(Section X). In addition, Yu et al. [92] (E-DBPN) propose
an extension of the popular DBPN model in a GAN setting.
The Generator adopts the DBPN architecture where each
up-projection unit is followed by a Squeeze-and-Excitation
channel attention mechanism and the features extracted from
multiple levels of the network are fused in a sequential manner.
The authors pretrain the Generator with the MSE loss and
then finetune it in an adversarial setting. Results showed that
the proposed model produces sharper results closer to the
ground truth, with fewer blurring effects and artifacts. Finally,
Li et al. [208] (SRAGAN) design a complex GAN with local
and global channel and spatial attention modules both in the
Generator and the Discriminator network in order to capture
short- as well as long-range dependencies between pixels.
Several experiments proved the superiority of the proposed
model, especially in higher scaling factors.

B. Multiple Image Super-resolution (MISR)

In a MISR setting, a model takes as input multiple LR im-
ages of the same scene taken from different angles/viewpoints
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Fig. 29: The pipeline of the edge enhancement procedure for
EEGAN. Image taken from [207] (©2019 IEEE).

and aims to synthesize a single HR image. The main advantage
of this approach is the fact that the minor geometric displace-
ments and distortions among the LR images offer a richer
source of information for a candidate downscaling model than
any individual LR image alone, thus usually obtaining better
results than SISR. Also, a key difference from spatiotemporal
or spatiospectral fusion is the fact that both LR and HR
images contain information on the same spectra, whereas their
acquisition times are never coincident.

Such a MISR method is described in [209] (EvoNet) where a
number of shifted LR images are used to produce a single HR
image. In the proposed model, each LR image is independently
enhanced through a ResNet and then the individual SR outputs
are co-registered and fed to the Evolutionary Image Model
(EvoIM) algorithm [210] which constructs the final output.
One experiment employed artificially shifting and downsam-
pling images for the creation of training data, whereas another
experiment utilized a number of Sentinel-2 images in order to
produce a SPOT-like HR output downscaled by a x2 factor.
EvoNet achieved higher results against several traditional SISR
and MISR approaches in both distortion and perceptual quality
metrics at the expense of higher computational time. On a
qualitative basis, EvoNet produced results similar to SRGAN
but less blurry and with more artifacts.

A common source of data for the MISR problem is the
PROBA-V satellite, which is able to capture multispectral
images in 300m spatial resolution every day, and 100m spatial
resolution every 5 days. Since both observations lie in the
same spectral bands and are never paired on the same date, a
number of studies exploit the LR images for the construction
of the corresponding HR image in a MISR approach, with the
authors in [211] proposing a PROBA-V dataset exclusively for
this problem setting. They also design a simple 4-layer CNN
for benchmarking and propose a custom metric which takes
into account spatial displacements between the prediction and
the ground truth.

In their study [212] (DeepSUM - Fig. 30), Molini et al.
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design a network that downscales a NIR or Red band of
PROBA-V data. The model takes as input a single image
and performs feature extraction. All extracted features are then
co-registered and fused in the feature space. Before the final
fusion, a Mutual Inpainting process is employed in order to
replace unreliable pixels in a feature map (such as clouds,
shadows, etc) with values taken from corresponding feature
maps of other images. The authors claim that end to end
training of this model leads to many local optima so they
choose to train each step separately. Evaluated against other
MISR methods, the proposed model achieved better results and
sharper output scoring first in the PROBA-V Super-resolution
challenge issued by the European Space Agency [211]. In
a subsequent publication [213] (DeepSUM++), the authors
extend the feature extraction part with graph convolutional
operations in order to exploit non-local correlations among
pixels.

Another popular method for the PROBA-V dataset was
proposed by Deudon et al. [214] (HighRes-Net). The authors
argue that the set of LR images contain redundant low-
frequency information so they select the median LR image as
reference and pair each LR image with this. Then they train a
model to extract a shared representation for each pair which
allows it to highlight differences in multiple LR views and
focus on the important high-frequency features. The extracted
embeddings are then recursively fused using a mechanism with
shared weights and the common representation is downscaled
to predict the final SR image. Another model called ShiftNet is
also proposed which registers the SR with the target HR image
in order to properly calculate the loss function. Without such
registration, the model outputs blurry results to compensate
for the misalignment between the SR and the target HR. The
architecture follows HomographyNet proposed by [215] but
is trained cooperatively with HighRes-Net in an end to end
setting and achieves results similar to DeepSUM.

Rifat Arefin et al. [216] (MISR-GRU - Fig. 31) choose to
tackle the MISR problem in a time-series setting by regarding
the LR input images as a temporal sequence. At each time
step, their model takes as input one LR image and the median
of all LR inputs, co-registers them and produces a unified
feature map. The output of this stage is then fed to a stack of
ConvGRU modules [217] and the output is globally averaged
across the temporal dimension and downscaled. The final
prediction is also registered following the ShiftNet strategy
introduced by [214] and the loss function is a custom negative
PSNR which involves a brightness bias. MISR-GRU achieved
the highest score compared with FSRCNN, SRResNet, Deep-
SUM and HighRes-Net, and the authors concluded that the
proposed model’s accuracy was highly affected by the number
of LR inputs and the amount of occlusion observed in the LR
images.

A more complex model was proposed by Salvetti et al.
[218] (RAMS) which employs 3D convolutions and attention
mechanisms on both temporal and spatial domains in order to
downscale a single band of PROBA-V data. The 3D convolu-
tions are able to assess the inter-relations across the different
dimensions, whereas the attention modules focus on the simi-
larity between the input LR images (temporal attention) or the
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useful high-frequency details to retain on the spatial domain of
the LR feature maps (feature attention). The model performed
quite similarly to MISR methods such as HighRes-Net and
DeepSUM. The authors also experimented with temporal self-
ensembling strategy and observed a significant increase in the
output accuracy but at the expense of computational speed.

C. Reference Super-resolution (RefSR)

In RefSR the input of the model is accompanied by an aux-
iliary (reference) image which provides additional information
to assist the downscaling process. A number of studies have
explored using features extracted from the original data as
reference input and hereafter we highlight a selection of the
most promising attempts in the literature.

An adversarial RefSR approach is proposed by a series of
publications ([219], [220], [221]) that focus on the saliency
information of the input images. In [219] (SD-GAN - Fig. 32)
the authors discriminate the highly salient areas of an image
as foreground and the less salient as background, and they
argue that by applying different reconstruction principles based
on the level of saliency the GAN will be able to produce
more realistic images stripped of hallucinated pseudotextures.
For that reason, they propose the extraction of a saliency
map for each input image through a Weakly Supervised
Learning scheme [222] and design a Generator which takes
as input the LR image concatenated with its corresponding
saliency map along the channel dimension and produces an
SR output. Additionally, a paired Discriminator is used for the
adversarial learning, one for the salient (foreground) and one
for the non-salient (background) areas. Experimentation on
GeoEye-1 panchromatic images showed that SD-GAN outper-
formed other DL approaches such as SRCNN, ESPCN, VDSR
and SRGAN. Qualitative analysis proved that it managed to
produce less pseudotextures in salient areas than SRGAN.
Extending their previous work in a subsequent study [220]
(SG-FBGAN), the same research group proposes a recursive
Generator architecture and a triplet of Discriminators. More
precisely, the Generator performs parallel processing of salient
and non-salient information in a recursive fashion and the
final output of the network is the output of the last iteration.
Similarly to SD-GAN, a salient area Discriminator and a
non-salient area Discriminator are employed, along with a
global Discriminator which takes as input the SR or HR
image and learns to classify them. Then the outputs of all
Discriminators over all iterations is averaged to calculate
an overall Discriminator loss. When compared with VDSR,
RDN, EDSR, SRFBN, SRGAN, SD-GAN and D-DBPN, the
proposed method achieved superior results, producing more
realistic images with fewer pseudotextures and artifacts. The
authors also experiment with Curriculum Learning and more
complex degradation schemes and the results were superior to
the other DL approaches, especially for higher scaling factors
(x3 and x4).

To summarize the above analysis, there are two main
approaches a researcher can take depending on the number
of available images in the dataset at hand. When only a
single LR image can be acquired per occasion, SISR and
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Fig. 30: Overview of the DeepSUM model. SISRNet performs feature extraction, RegNet feature registration and FusionNet
the final feature fusion and reconstruction. The Global Dynamic Convolution (GDC) is a convolution between an image and
the corresponding learnt filter for image registration. Image taken from [212] (©2020 IEEE).
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[216] (©2020 IEEE).
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Fig. 32: The SD-GAN model. Image taken from [219] (©2020
IEEE).

RefSR methods can be applied. In particular, several of the
aforementioned models offer a robust solution to the down-
scaling problem, proving that certain mechanisms and modules
can further boost performance and achieve sharp results. For
example, attention mechanisms (e.g. MPSR, DRSEN, DSSR,
Haut et al. II, NLASR) can always assist the discovery and
preservation of high frequency components, whereas multi-
scale feature extraction structures (e.g. NLASR, Shin et al.)

can unravel non-local correlations inside the image and expand
the receptive field of basic convolutional layers. Furthermore,
a number of novel techniques seem to leverage the effi-
ciency of the underlying model, e.g. the diagonal connectivity
scheme proposed in udGAN or the clipping-and-merging post-
processing technique and the autoencoder loss proposed in
Enlighten-GAN. Finally, certain methods (EUSR, DWTSR,
DRSEN, DSSR, DGANet-ISE, NLASR, Shin et al., SG-
FBGAN) manage to perform better at larger scaling factors
whereas Zhang et al. provide an interesting candidate when
different distortions have taken place during the LR image
acquisition. Unfortunately, up to this point in time only a
handful of RefSR methods have been developed and none
seems to match the efficiency and robustness of the SISR
domain.

On the other hand, when multiple LR images can be
obtained for each training/testing sample, then MISR models
can be employed. In this family of methods, MISR-GRU and
RAMS in particular seem to prevail in terms of both the re-
sulting image quality and the number of trainable parameters.
It is worth noting that a common challenge faced by all MISR
approaches is the co-registration of the input LR images which
is handled differently by each proposed model, either inside
the network or as a separate pre-processing step in the pipeline.
In addition, this co-registration may incur minor shifts in the
output, which in turn can potentially affect the computation of
the loss function during training and encourage a blurry result.
This phenomenon has been successfully handled through the
ShiftNet module which has been proposed in HighRes-Net and
been subsequently used in other studies. Finally, it is again
proven that attention mechanisms enhance the downscaled
output and also that the number and clarity of the input LR
images can greatly affect the final result.

D. SR for SAR and aerial imagery

Synthetic Aperture Radar (SAR)

Most of the SAR spatial resolution enhancement techniques
related to deep neural networks use the SISR approach which
makes the data collection, processing and experimentation
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Cv Upsampling Code
Model SR type  Description/novelty Building blocks Architecture available /
model framework
# params
LGCNet [171] SISR ?fgﬂ:if&?;;m fil; 5;):0}1’ features Residual learning pre-upsampling CNN no/ -
Haut et al. [172] SISR Mult1-scale approach with incep- Resid}xal leaming,' post-upsampling CNN no/ -
tion module sub-pixel convolution
Multi-scale approach, parallel fea-
MRNN [173] SISR ture extraction from different scales - Residual learning pre-upsampling CNN no/ -
of the LR input
Multi-scale approach, U-Net model . )
Xu et al. [174] SISR with dilation module at the bottle- - Residual learning, post-upsampling CNN no/ -
neck sub-pixel convolution
MSF [175] SISR ildé‘églt;‘;lr‘ eac:fg‘;;‘;fian lf;gzrlem . Residual learning pre-upsampling CNN no / -
DGANet-ISE [176]  SISR P.()St_prOSCSSIHg algorithm and gra- EDSR Residual learning, post-upsampling CNN no/ -
dient loss term sub-pixel convolution
S2PS [177] sisR  Downscaling of Sentinel-2 images  pryqp  Residual learning, post-upsampling CNN no / -
using PlanetScope as target sub-pixel convolution
DCR- Downscaling of Landsat-5/8 im- . . .
SRCNN [179] SISR ages using Sentinel-2 as target SRCNN  Residual learning pre-upsampling CNN no / 993k
Downscaling of coarser AWiFS im-
Collins et al. [180]  SISR ages using sharper LISS IIl images SRCNN - pre-upsampling CNN no/ -
from Resourcesat
Unsupervised model which learns Residual learning, .
Zhang et al. [183] SISR mul tig le image degradations - bilinear upsampling layers POst-upsampling GAN no/ -
Dense network, the resulting im- Bilinear upsampling lay-
EUSR [181] SISR age is downsampled and compared - ors psampling fay post-upsampling CNN no/ -
with LR input
Approach assisted by Discrete
WTCRR [185] SISR Wavelet  transform,  recurrent ~DRRN Residual learning pre-upsampling CNN no/ -
blocks are used
Approach assisted by Discrete
DWTSR [186] SISR Wavelet transform and Stationary - Residual learning pre-upsampling CNN no/ -
Wavelet transform
Approach assisted by Discrete . )
RRDGAN [187] SISR Wavelet Transform and the TV loss ESRGAN  Residual learning, post-upsampling GAN no / -
function sub-pixel convolution
Multi-scale approach with residual Residual learning, .
MPSR [189] SISR connections and channel attention - sub-pixel convolution, post-upsampling CNN no /-
attention mechanism
DRSEN [190] SISR Approach with channel attention EDSR i?_lg&aell lsgnmvlonl%l’tion post-upsampling CNN no / 8.6m
attention mechanism
Haut et al. . . Residual learning, .
I [191] SISR Approach with channel attention - sub-pixel convolation, post-upsampling CNN no/ -
attention mechanism
MSAN, Approach with channel attention Residual learning, .
SAMSAN [192] SISR and scene-adaptive learning WDSR sub-pixel convolution, post-upsampling CNN no /-
attention mechanism
DSSR [193] SISR Approach. with channel attention yypyqpp - Residual learning, post-upsampling CNN no /9.1m
and chain training sub-pixel convolution,
attention mechanism
AMFFN [194] SISR Multltscale approach with channel l‘{emd‘ual learmng,. post-upsampling CNN o / -
attention sub-pixel convolution,
attention mechanism
Approach with inception modules Residual learnin
IRAN [195] SISR and both channel and spatial atten- - . - post-upsampling CNN no / 1.88m
tion sub-pixel convolution,
attention mechanism
Multi-scale approach with non- Residual learnin iterative up- and down-
NLASR [196] SISR local modules and both channel - S1ct S teralive up Wt CNN no / 10.7m
. . sub-pixel convolution, sampling
and spatial attention . .
attention mechanism
PGCNN [198] SISR Approach with channel attention ~ EDSR l;flf_‘g&fl learning,  post-upsampling CNN no / 1.44m
attention mechanism
Attention for multi-scale recurring Residual learning, .
HSENet [199] SISR features - sub-pixel convolation, post-upsampling CNN yes / -
attention mechanism
BCLSR [200] SISR Recurrent convolutional model - Residual learning, post-upsampling CNN yes / 170k
sub-pixel convolution
CDGAN [201] SISR Coupled Discriminator ESRGAN Residpal learnmg,. post-upsampling GAN no/ 1.4m
sub-pixel convolution
DRGAN [202] SISR RDN-like Generator RDN Residual learning, post-upsampling GAN no / -

sub-pixel convolution
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RS-
ESRGAN [203]

udGAN [204]

Shin et al. [205]

Enlighten-
GAN [206]

EEGAN [207]

E-DBPN [92]

SRAGAN [208]

EvoNet [209]

Mirtens et
al. [211]

DeepSUM [212]

DeepSUM++ [213]

HighRes-Net [214]

MISR-GRU [216]

RAMS [218]

SD-GAN [219]

SG-FBGAN [220]

SR-GAN [223]

NF-GAN [224]

Di-GAN [225]

FSRCNN [226]

PSSR [227]

WDCCN [228]
MSSRRC [229]

SISR

SISR

SISR

SISR

SISR

SISR

SISR

MISR

MISR

MISR

MISR

MISR

MISR

MISR

RefSR

RefSR

SISR

SISR

SISR

SISR

SISR

SISR
SISR

Multiple training phases on differ-
ent datasets

Multi-scale Generator with ultra-
dense residual blocks

Multi-scale Generator with pyra-
midal structure, Discriminator with
difference of Gaussian kernels on
feature maps

Multi-scale Generator with in-
termediate output, clipping-and-
merging method

Downscaling is assisted by edge
enhancement and attention

DBPN-like Generator with channel
attention on multiple layers

Generator and Discriminator with
local and global channel and spatial
attention modules

Approach assisted by EvoIM algo-
rithm

Simple CNN for PROBA-V images
which takes as input a concatena-
tion of the LR images
Super-resolution of each input sep-
arately and fusion of results
Extension of DeepSUM with graph
convolutional operations

Paired super-resolution of an LR
image and the chosen reference
LR, ShiftNet for registration of re-
sults

LR images are regarded as a time
series, paired super-resolution is
performed at each time step similar
to HighRes-Net, ConvGRU layers
and ShiftNet are used

Approach assisted by 3D convolu-
tions and attention modules

Saliency information used as refer-
ence

Extension of SD-GAN with a
triplet of Discriminators and recur-
sive layers in the Generator, cur-
riculum learning also used

Generator based on residual
encoder-decoder, Discriminator
based on ResNet50, embodies

de-speckling component
Generator based on U-Net, Dis-
criminator based on PatchGAN-
like network

Learnable pre-upsampling, uses a
complex structure block for com-
plex numbers, uses residual com-
pensation approach, uses fully pol-
SAR

Import weighted dense connections
Uses residual compensation, uses
fully polSAR data

ESRGAN Residual learning

Residual learning,
sub-pixel convolution

Residual learning,
sub-pixel convolution

Residual learning,
sub-pixel convolution

ESRGAN

Residual learning,
- sub-pixel convolution
attention mechanism
Residual learning,
transposed convolution,
attention mechanism

DBPN

Residual learning,
attention mechanism,
sub-pixel convolution

- Residual learning

- Residual learning

- Residual learning

Residual learning,
transposed convolution

Residual learning,
transposed convolution

Residual learning,
sub-pixel convolution,
attention mechanism
Residual learning,
sub-pixel convolution

Residual learning,
sub-pixel convolution

Residual learning,
sub-pixel convolution

SRGAN

Residual learning,
transposed convolution

Residual learning,
transposed convolution

- Residual learning

Residual learning,
transposed convolution

DRCN
VDSR

Residual learning

Residual learning

pre-upsampling

post-upsampling

progressive
upsampling

progressive
upsampling

progressive
upsampling

iterative up- and down-
upsampling

post-upsampling

pre-upsampling

pre-upsampling

pre-upsampling

pre-upsampling

post-upsampling

post-upsampling

post-upsampling

post-upsampling

post-upsampling

post-upsampling

pre-upsampling

pre-upsampling

pre-upsampling

pre-upsampling

pre-upsampling

pre-upsampling

GAN

GAN

GAN

GAN

GAN

GAN

GAN

CNN

CNN

CNN

CNN

CNN

CNN

3D CNN

GAN

GAN

GAN

GAN

GAN

CNN

CNN

CNN
CNN
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yes / -

no / 2.4m

no/ -

no/ -

yes / -

no/ -

no / 4.8m

no/ -
no / 119k

yes / -

no/ -

yes / 600k +
34m

yes / 900k

yes / 1m

no/ -

yes / -

no/ -

no/ -

no/ -

no / -

no / -

no/ -

no / -

TABLE V: Summary of the state-of-the-art Deep Learning models for Super-resolution in Remote Sensing. CV model refers
to the models presented in Table II.

fairly straightforward and easier compared to optical data.
However SAR data inherently introduce speckle noise, which
few authors explicitly consider when building SR pipelines.

Wang et al. [223] used a SISR approach by applying an

SRGAN on TerraSAR-X images after having been de-speckled
using a CNN as described in [230]. The high resolution image
is downsampled by a factor of 4 using a Gaussian kernel,
while both Generator and Discriminator elements are CNN-
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based. The Generator element produces the SR image using
the low resolution image, while the Discriminator compares
the SR image with the high resolution image. The loss function
comprises a perceptual loss with a content (pixel-wise MSE)
and a weighted adversarial (probability-based) component of
the Discriminator. Gu et al. [224] propose a transfer learning
GAN-based paradigm in dealing with speckle noise using a
so-called Noise-Free GAN (NF-GAN) to preserve the high-
frequency image details as much as possible. They exper-
iment with the HH polarization channel of Airborne SAR
(AIRSAR) data. The Generator element consists of a de-
speckling network and the reconstruction network, while the
Discriminator element is ResNet based. The de-speckling
network is pretrained using optical imagery with speckle noise
added on them and it uses an MSE loss. Its input is a low
resolution (downsampled HR version by a factor of 2) noise-
full image. As with the previous case, the NF-GAN objective
function is defined by an adversarial and a pixel-wise (MSE)
component. The authors train their network pipeline with and
without the de-speckling component and show that the former
indeed works better.

Li et al. [225] tried to solve the problem of increased
system’s integration time and low azimuth resolution of the
Geosynchronous SAR (GEO SAR) using a CNN-based GAN
approach. GEO SAR is an active area of research in developing
a SAR satellite system in geosynchronous orbit which will
significantly assist in operational disaster monitoring by in-
creasing the temporal resolution compared to Low Earth Orbit
(LEO) satellite systems. In particular, the authors generated
synthetic geosynchronous SAR data based on ALOS PALSAR
characteristics. They use a Dialectical-GAN (Di-GAN) [231]
with the Generator element comprising a U-net while the
Discriminator a PatchGAN-like network. The Generator takes
the low resolution simulated GEO SAR image as input whose
SR produced image is compared with the ALOS PALSAR
high resolution in the Discriminator. The authors claim a
noticeable improvement of resolution which is mostly based
on qualitative comparison.

Cen et al. [226] propose a three-module CNN-based net-
work named FSRCNN for downscaling bistatic SAR images.
The first module is used for feature extraction in various scales
of the low resolution images. The second module adds together
the resulting feature maps that were learned from the first
module. The third module consists of a reconstruction CNN
that computes the final SR image. The authors compare their
results with bilinear, bicubic and SRCNN approaches using
PSNR and SSIM and show an overall best performance of the
proposed FSRCNN.

Helal-Kelany et al. [232] aimed to enhance the co-
registration accuracy between two Single-Look Complex im-
ages of ERS-1/2 data. They train a Scale-Invariant SR CNN
(SINV CNN) model using both amplitude and phase which
mainly takes advantage of feature extraction and residual
blocks components. Their result is evaluated based on de-
scriptive statistics of the coherence between SINV CNN and
sinc interpolation instead of commonly used metrics used in
Computer Vision which may make their output difficult to
compare with other approaches
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Shen et al. [227] present a rather complete work where
they apply their technique (PSSR) to full Polarimetric SAR
(PolSAR) images. On the contrary to [232] they do not
treat real and imaginary image parts separately but utilize
them with a separate structure block since information is
lost because of separation. They use various satellite sensors
such as Radarsat-2, ESAR and PiSAR whose data they de-
speckle first. They compare their approach (along with residual
compensation strategy) with conventional non-DL approach
and Multi-channel SAR SR (MSSR) using PSNR and MAE.
They also use Equivalent Number of Looks (ENL) which is
used to spot whether artifacts are introduced after SR. Notably,
they experiment with the presence of speckle noise and show
that their approach is superior to the traditional methods. Lin
et al. [229] also uses PolSAR data and propose a Residual
Compensated MSSR (MSSRRC) to tackle issues of the con-
ventional (non DL-based) super-resolution approaches such
as insufficient use of polarimetric information and decreased
reconstruction of details. Their network is a VDSR adjusted
for multi-channel (full PoISAR) input applied on RadarSat-2
data which is compensated by residuals between low resolution
reconstructed and original images. Prior to training all data
are de-speckled. PSNR, SSIM and qualitative evaluation show
better performance with and without residual compensation
compared to conventional SR approaches.

Yu et al. [228] propose a Weighted Dense Connected
Convolutional Network (WDCCN) which claim to be a bet-
ter alternative to Fast Super-resolution Convolutional Neural
Networks and DRCN. Their network is based on DRCN, as
well as the notion on weighted dense connections and tries to
combat the restricted feature propagation issue. They compare
their approach with SRCNN and DRCN using PSNR which
suggests a better performance.

In conclusion, before one starts searching for baseline
models for SAR image downscaling based on the currently
published literature, there are certain decisions that must be
made. For example, the processing level of the input data
ranging from Single Look Complex to coregistered and/or
geometrically corrected, speckle filtered, etc., all play a role
in designing fit-to-purpose downscaling models. Similarly, the
preferred type of products (e.g. Fully-PolSAR, Interferometric
Wide Swath mode, etc) is important. We then provide some
general directions that need to be seen with care and do not
discourage authors from further experimentation, since SAR
image downscaling is at its research infancy. Results from
architectures such as NF-GAN and PSSR indicate that speckle
noise needs special treatment that should be integrated in the
overall architecture, thus leading to end-to-end approaches.
As baseline, researchers could begin with general noise sup-
pression architectures established the CV field or dive deeper
by adapting architectures dedicated to speckle noise reduction
that already exist in the literature. Residual block components
seem to also add value in the overall learning. In addition, if
one decides to experiment with Single-Look Complex images,
using a dedicated structure block would be more fruitful (e.g.
PSSR) compared to the opposite (e.g. SINV CNN), as well
as adapting activations other than ReLU (e.g. PRelu, Leaky
ReLU etc.) that will not freeze the filters’ weight update.
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Finally, we suggest that more focus can be placed on GAN-
based architectures in SAR downscaling since they can exploit
more types of inputs and explicitly take into consideration
SAR imaging unique characteristics.

Aerial imagery from UAVs/Drones

By their initial mass production and market distribution,
Unmanned Aerial Vehicles (UAV) comprise one of the most
applicable and simple mean of data acquisition influencing
a plethora of applications, Remote Sensing included. Simple
architectures, easy-to-use and low-cost solutions contributed
to increasing their usage and expanding their applicability
for various objectives. The simplicity in integrating widely
used sensory systems such as optronics played a significant
role in substituting core Remote Sensing systems as they
overcome many applicability limitations. Nonetheless, despite
their efficiency and robustness as data acquisition systems,
simple cameras mounted on a UAV cannot entirely substitute
satellite alternatives as the latter exhibit enhanced payload sen-
sor technical specifications such as higher spatial resolution.

Aiming at exploiting UAV systems in specific Remote
Sensing applications and higher spatial resolution for the
acquired images, numerous super-resolution approaches have
been proposed and validated in real use cases. Depending on
the availability of the input images, resolution enhancement
techniques are typically divided into MISR and SISR methods,
as for satellite imagery SR. However, no DL models have been
developed for the MISR case, therefore hereafter we will only
focus on the SISR approach.

Targeting on identifying higher frequencies on images,
wavelet multiscale representations have been used for training
a CNN and thus, vice versa for their estimation [233]. A
shallower CNN architecture was proposed in Gonzalez et al.
[234] to be integrated on-board of a UAV so that computational
resources and power requirements could be retained at low
levels. The combination of two sequential CNNs along with a
bicubic up-sampling stage produce sufficient spatial imagery
data. A similar technique was also deployed in Truong et
al. [235] where the LR image is inserted in a deep CNN
with a residual skip connection and network-in-network for
generating the higher resolution images. To reduce resource
consumption by decreasing the total number of network pa-
rameters, a deep recursive dense network [236] (DRDN) has
been proposed. The recursive dense block can extract abundant
local features and adaptively combine different hierarchical
features of the input image. A dedicated implementation of
SRGAN (V) for UAV operations has been incorporated as an
initial processing step in Zhou et al. [237] (SAIC). The main
target of the proposed pipeline was to deliver a high precision
detection framework. Nonetheless, the spatial increment of
the aerial image’s resolution as an initial processing step is
considered imperative to attain high detection performances.
Similar objective was shared in Chen et al. [238] where a
synergistic CNN for spatial resolution enhancement along with
a modified object detection algorithm, which processes the en-
hanced image, were established. Finally, dedicated CNN-based
models were utilized in Aslahishahri et al. [239] targeting the
enhancement of aerial spatial resolution for producing details
in plant phenotyping showcasing that such models could be
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application oriented depending on the dataset availability.

In conclusion, most approaches applied in resolution incre-
ment of aerial images follow similar schemes as the problem is
translated into a Computer Vision counterpart. The majority
of the corresponding architectures rely on the extraction of
features from pre-trained models which eventually limits the
necessity of dedicated models apart from the application-
driven solutions. Due to the fundamental operational nature of
UAV systems, the overall performance is meaningful mostly
in near real-time operations which eventually is a prerequisite
in many cases. Hence, dedicated lightweight architectures for
specific drone applications exhibit better performance both in
terms of accuracy and execution time, with respect to more
universal, generic and heavyweight, modeling solutions.

X. DATASETS

Despite the abundance of RS images, there is still a notice-
able gap in the availability of public benchmark datasets for the
evaluation of downscaling methods. This is hardly surprising
since such a benchmark dataset would require extremely
careful handling and elaborate preprocessing pipelines during
assembly in order to meet the following basic conditions:

o Each HR image must be paired with one or more LR

images.

o All LR/HR pairs must share the same scaling factor.

o All LR/HR pairs must be aligned and co-registered.

o All images must contain minimum obstructions (e.g.
clouds, haze, corrupt pixels, etc).

o The depicted scenes must be as diverse as possible.
Especially for STF: temporal/phenological changes must
be as diverse as possible.

o A large number of images are required to avoid over-
fitting DL models with thousands/millions of trainable
parameters.

Apart from a handful of datasets proposed specifically for
the task of spatial downscaling, several datasets addressing
different RS problems, such as object detection or scene
classification, have been systematically used by most down-
scaling studies since they offer a ready-to-use collection of
high quality satellite images. In the following list we present
the most popular of such datasets and their corresponding
characteristics.

o UC Merced [240]: contains 2,100 aerial RGB images
coming from the USGS National Map Urban Area Im-
agery depicting 21 different land use classes at 0.3 m
resolution from several US regions.

o WHU-RS19 [241]: contains 950 aerial RGB images from
Google Earth depicting 19 classes of land use at different
spatial resolutions reaching up to 0.5m. Images originate
from different regions around the world.

e WHU-RS20 [242]: an extension of the WHU-RS19
dataset with an extra land use class and a total of 5,000
aerial RGB images.

o RSSCN?7 [243]: contains 2,800 aerial RGB images from
Google Earth depicting 7 land use classes.

o RSC11 [244]: contains 1,232 aerial RGB images from
Google Earth depicting 11 land use classes at 0.2m spatial
resolution. Images come from several US cities.
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Aerial Image Dataset (AID) [245]: contains 10,000
aerial RGB images coming from Google Earth at res-
olutions ranging from 0.5m to 8m. They depict 30 land
use classes from different countries around the world and
at different time and seasons.

NWPU-RESISC45 [246]: contains 31,500 aerial RGB
images from Google Earth depicting 45 land use classes
with spatial resolution ranging from 0.2m to 30m. Images
come from several different regions around the world.
SIRI-WHU [247]: 2,400 aerial RGB images from
Google Earth depicting 12 land use classes at a spatial
resolution of 2m. The images mainly cover urban areas
in China.

Brazilian coffee scene dataset [248]: contains 2,876
SPOT images (Green, Red, NIR bands) over 4 regions
in Brazil for binary image classification based on the
presence or absence of coffee crops.

SEN1-2 [249]: contains 282,384 pairs of Sentinel-1 and
Sentinel-2 RGB images at 10m spatial resolution from
around the world at different seasons.

SEN12MS [250]: contains 180,662 triplets of Sentinel-
1 dual-polarization SAR, Sentinel-2 multispectral and
MODIS land cover images at 10m spatial resolution
coming from all around the globe and at different times.
DOTA [251]: contains 2,806 aerial images from different
sensors along with GaoFen-2 and Jilin-1 satellite images.
This dataset is targeted towards object detection and
includes labels spanning over 15 object categories.
DIOR [33]: contains 23,463 aerial RGB images from
Google Earth with spatial resolutions ranging from 0.5m
to 30m. The images cover several regions around the
globe and their labels span over 20 object categories.
CIA [252]: contains 17 Landsat/MODIS pairs from
Coleambally Irrigation Area, Australia, at 25m spatial
resolution. Images were obtained during a single summer
season but have strong spatial heterogeneity.

LGC [252]: contains 14 Landsat/MODIS pairs from
Lower Gwydir Catchment, Australia, at 25m spatial reso-
lution. Images were obtained during a whole year which
also included a major flood. This renders the dataset ideal
for the study of abrupt and unpredictable changes in time
series.

AHB [253]: contains 27 Landsat/MODIS pairs from Ar
Horqin Banner, China, over a span of 5 years. It is
intended for the study of phenological changes in rural
areas.

Tianjin [253]: contains 27 Landsat/MODIS pairs from
Tianjin, China, over a span of 6 years. It is intended for
the study of phenological changes in urban areas.
Daxing [253]: contains 29 Landsat/MODIS pairs from
Daxing, China, over a span of 6 years. It is intended for
the study of land cover changes.

Gaofen Image Dataset (GID) [254]: contains 150
Gaofen-2 images (Red, Green, Blue, NIR bands) from
many regions in China with 4m spatial resolution. It is
intended for scene classification and land cover segmen-
tation.

Kelvin’s PROBA-V Super-resolution dataset [211]:
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contains 1,160 images from PROBA-V satellite (Red,
NIR bands) from several locations around the globe at
different points in time. Each data point contains an HR
image of 100m resolution and several LR images of 300m
resolution.

Kaggle’s Draper Satellite Image Chronology [255]:
contains 1,720 aerial RGB images from California, USA,
over a period of 5 days.

DRealSR (Diverse Real-world image Super-resolution)
[256]: contains 31,970 of low resolution image patches
including aerial images.

Pavia Center [118]: acquired by ROSIS over the city of
Pavia, Italy, in the wavelength range of 430-860nm. It
contains 115 spectral bands and is of size 1096 x 1096.
Houston [118]: acquired by an ITRES-CASI 1500 HS
sensor over the campus of the University of Houston and
its neighboring urban areas. Each HS image comprises
144 bands covering the spectral range of 380—1050nm,
and each band contains 349 x 1905 pixels with a spatial
resolution of 2.5m

Los Angeles [118]: acquired over a port in the city of Los
Angeles by the Hyperion sensor mounted on the Earth
Observing One (EO-1) satellite. The HS image contains
242 spectral bands with a spatial resolution of 30m.
Botswana [257]: acquired over the Okavango Delta in
Botswana by the Hyperion sensor mounted on the Earth
Observing One (EO-1) satellite. The HS image contains
242 spectral bands with a spatial resolution of 30m.
Hobart [113]: acquired by the IKONOS sensor, repre-
sents an urban and harbor area of Hobart, Australia. The
MS sensor is characterized by four bands (Red, Green,
Blue, and NIR) and also a PAN channel with band range
from 450nm to 900nm. The resolution of MS is 4m and
PAN is 1m.

Sundarbans [113]: obtained by the QuickBird sensor,
represents a forest area of Sundarbans in India. Provides
a high resolution PAN image with spectral cover range
from 760nm to 850nm and a resolution of 0.6m, and a
four-band (Red, Green, Blue and NIR) MS image with a
resolution of 2.4m.

Washington DC Mall [139]: covers an urban area in
Washington DC Mall. The size of the degraded HS image
is 256 x 60 and that of the PAN image is 1280 x 300.
Moffett Field [139]: covers a mixed urban/rural area in
Moffett Field, California. The size of the degraded HS
image is 79 x 37 with 100m resolution and that of the
PAN image is 395 x 185 with 20m resolution.

Salinas Scene [139]: covers a rural area in Salinas Valley,
California. The size of the degraded HS image is 102 x
43 and that of the PAN image is 510 x 215.

Chikusei [258]: captured by the Headwall’s Hyperspec
Visible and Near-Infrared, series C (VNIRC) imaging
sensor over Chikusei, Ibaraki, Japan, on July 29, 2014.
Contains 128 bands in the spectral range of 363—1018nm.
The PAN image has 300 x 300 pixels with a spatial
resolution of 2.5m.

Foster [258]: has 33 spectral channels from 400-720nm
with 10nm per band. The original size of each HS image
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in the Foster data set is 1341 x 1022.

XI. ADVANCEMENTS IN COMPUTER VISION

Spatial enhancement or Super-resolution is being thoroughly
investigated in general Computer Vision and a great number of
methods have been proposed which build on previous research
and expand the state-of-the-art. Hence, in the CV field, some
informative review papers have been published in the last
couple of years focusing on CV DL algorithms for image
downscaling, such as [12] and [16]. In this section we present
some of the most promising and innovative studies in CV
published over the last few years, which to the best of our
knowledge have not yet been used in an RS context, hoping
to provide a source of inspiration for further applications in
the RS field.

Most of the studies found in literature train models on
synthetic datasets where LR counterparts are synthetically
constructed usually via a single predefined degradation algo-
rithm such as bicubic interpolation. This raises the question of
whether such a model can properly generalize to real-world
images that have undergone arbitrary degradation processes.
To that end, a number of publications (e.g. [259] (SFTMD),
[260], [261] (DAN)) explore deep networks which are trained
to jointly handle the downscaling task and learn the appro-
priate blur kernel in an end-to-end fashion. This family of
methods is usually referred to as Blind Super-resolution.

In some cases, the available dataset comprises LR images
which need to be downscaled, along with a number of HR
reference images of the same domain which however do not
correspond to the LR data. A family of methods attempt to
exploit such HR information through domain translation ap-
proaches and the adaptation of the CycleGAN [164] idea. For
example, [262] (CinCGAN), [263] (DDGAN), [264] (UISRPS)
and [265] (MCinCGAN) propose GAN architectures which are
trained to translate the LR images to cleaned, synthetic LR
counterparts and then further downscale the result to an HR
output. The use of cycle-consistency loss circumvents the need
for paired data so any HR data of the same domain can be
used.

An emerging trend in the field of Super-resolution ap-
proaches are the diffusion models. Initially proposed in [266]
diffusion models employ a Markov chain to slowly add
Gaussian noise to the input data and a trainable model to
stochastically learn the reverse process of gradually removing
this noise. Saharia et al. [267] (SR3) adapt this idea to image
super-resolution of faces and natural images by training a U-
Net to iteratively refine Gaussian noise conditioned on the LR
image. Their method achieved results of remarkable sharpness
and realism while remaining true to the LR input. In addition,
by cascading multiple such models, higher scaling factors can
be targeted (e.g. x8, x16) without compromising the final
image quality. This breakthrough study showed that diffusion
models can overcome GANs and set an interesting research
field for future exploration.

XII. DISCUSSION

A number of key findings have emerged from the present
literature review which showcase the limitations of the current
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approaches. In the following paragraphs we highlight some
essential topics for further exploration and research in the
task of image downscaling, focused especially on the field
of Remote Sensing.

Universal metrics. An important conclusion of Section IV is
the fact that there exist no established evaluation metrics for
downscaling models. Surely, a limited subset of the metrics
presented in Table I have become more popular and widely
used in recent studies, however none of them can entirely
capture and assess the quality of a produced SR image. The
design of a universal metric (or set of metrics) able to account
for both low distortion and high perceptual quality of an image
is still an open field of research and the DL community will
greatly benefit from any advancement in this area.

Model interpretability. The definition of universal quality
indices for EO image downscaling contributes to the robust-
ness against the inherent super-resolved image hallucinations,
and increase in the trust and interpretability of proposed SR
models. Indeed, generative networks, widely used for image
downscaling and thoroughly presented in this review, while
they are able to achieve impressive aesthetic results, however
they are prone to creating hallucinations and/or artifacts. Con-
trolling and quantifying the trade-off between SR performance
vis-a-vis the expected hallucinations level remains an open
issue. In addition, it may be that a single metric characterising
overall model performance is not enough, but an additional
gridded output with uncertainty estimates should be produced.
Therefore, we consider critical to develop algorithms that will
help both ML practitioners and end-users to better understand,
interpret and trust the DL model outputs. Explainable Al
(xAl) algorithms [268] are essential tools towards an enhanced
understanding and transparency of the developed DL models,
especially for facilitating the operational uptake of EO image
downscaling models.

Benchmark datasets. The availability and abundance of Re-
mote Sensing images has greatly facilitated the formulation of
datasets which satisfy the needs of complex DL models. Many
researchers choose to directly download RS images from the
respective providers, perform the pre-processing pipeline that
best suits their analysis and subsequently evaluate the model
output on a held-out subset. However, there is an urgent need
for specific, carefully designed benchmark datasets tailored to
the downscaling task, which will help to objectively evaluate
and compare different models, thus gaining a more concrete
insight on their generalization and applicability.

Model performance. In addition to the point above, the
adoption of best practices during and after model-building
procedures is also necessary. In the former case, ablation
studies can be adopted more widely, while in the latter case,
results can be followed by some sort of evidence of statistical
strength when comparing models. As a result, practices such
as these, among others, may lead to more understandable
architectures and transparent results, as well as less biased
and weak inference regarding model performance.

Open source code and reproducibility. During our study we
observed a glaring lack of source code availability for the pre-
sented methods. This prevents objective evaluation and hinders
quick advancements in the field. Transparency, reproducibility
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and testability of the reported results and comparison with
novel approaches require publicly accessible source code of
the whole pipeline as well as a permissive license of use (e.g.
MIT, BSD, GNU, etc). In this way, faster scientific progress
can be achieved which from a model’s perspective means that
it can go up the Technology Readiness Level (TRL) faster. To
this end, a possible contribution from the authors in addition
to open source code, would be to explicitly make reference
to the number of trainable parameters of their models. This
information provides intuition to data scientists. Depending
on the problem at hand, the available data for training and the
computing resources, model size provides useful indications
for training time and effectiveness, although other factors, such
as the use of recursive architectures, can affect these.

Beyond a single degradation scheme. When the acquisition
of LR-HR image pairs is too expensive or overall impossible,
Wald’s protocol often comes to the rescue. Even though it
offers an outlet for the formulation of an appropriate training
dataset, LR images are usually constructed with a single
degradation algorithm. Consequently, a model trained on such
a dataset learns to “reverse” this particular degradation scheme
and therefore may fail to generalize on different degrada-
tion/distortion operations. Further study is required for the
development of models able to handle diverse types of image
distortion, applicable in real world scenarios during a sensor
capture of an image.

Multimodal fusion. The spectral fusion of images can greatly
assist the downscaling process (Section VII). But apart from
captures lying in the visible and infrared spectra, new ap-
proaches can be investigated for the fusion of other spectral
ranges. For example, radar imaging can provide complemen-
tary information to optical imaging, such as surface topogra-
phy, and is also able to penetrate canopies and clouds/smoke.
Therefore, an interesting topic of study would be the fusion
of Synthetic-aperture radar (SAR) and optical data for the
purpose of downscaling, which to our knowledge has not yet
been investigated in the DL field.

GANs or else. GANs manage to better approximate the
boundary of the Perception-Distortion plane and achieve more
realistic and perceptually convincing results (see Section IV).
Therefore, a further study of the GAN framework is needed in
order to exploit its potential to the full extend. Additionally, an
exploration of novel architectures and training schemes may
lead to performances even closer to the boundary. For example,
recent studies have unveiled the great power of diffusion
models and future research may possibly establish them as
the successor of GANSs to the downscaling state-of-the-art.

Unsupervised learning. Acquiring ground truth HR labels in
the training dataset is often a time consuming and expensive
task, while in some cases it may also be practically infea-
sible. On the other hand, a synthetic training dataset can be
developed through Wald’s protocol, but this process requires
additional degradation and high-frequency information loss.
To tackle this problem, some studies employ a completely
unsupervised learning scheme with specially designed loss
functions. Even though these models still struggle to match
the performance of their supervised competitors, they tend
to preserve high-frequency details and stay faithful to the
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spectral content of the LR input. Therefore, we believe that
unsupervised learning offers a potential outlet for handling the
lack of training targets in downscaling and further research will
only achieve fruitful results.

CV paradigm. The field of general Computer Vision has
made a lot more progress on the task of downscaling and
novel architectures and ideas have been recently introduced.
We believe that the RS domain could greatly benefit from an
adaptation and expansion of these developments. We introduce
some of these methods in Section XI. However, caution is
needed when directly applying such approaches since scaling
factors in the RS domain are usually considerably larger and
may hinder the model’s performance. For example, Super-
resolution in natural images usually involves a magnification
factor much smaller than those in the Remote Sensing domain
(ranging from x2 to x4 compared with X8 to x16) where
texture information is severely distorted and high-frequency
details are almost impossible to retrieve. Therefore a simple
transfer learning approach is not possible and specialized
architectures must be designed when it comes to RS data.

Downscaling SAR imagery. The techniques proposed in
the literature for SAR image enhancement are few and they
compare well-established techniques borrowed from computer
vision research on SISR. However, special care is needed to
downscale SAR data, since they present properties that need
to be either taken explicitly into account by tailored model
architectures or to be eliminated beforehand. For example,
few authors use fully PoOISAR data and even fewer incorporate
the complex number nature of SAR data in their models. In
addition, preprocessing steps need to be presented in a clearer
way, while in our review only a number of authors apply
SR techniques on data of the same level of preprocessing.
This may lead to SAR unique properties such as speckle
noise and geometric distortions (e.g. foreshortening, layover)
affecting the model performance or resulting in misleading
outcomes. Therefore, we believe that there is room for sig-
nificant improvement in SAR imagery SR modeling, focusing
on the unique SAR properties and designing proper model
architectures, loss functions and accuracy metrics. Last but
not least, other potential future research orientations could
be towards adaptation of MISR and expansion of SISR ap-
proaches using SAR data acquired from different SAR imaging
sensors. This will provide new external information to assist
the downscaling process, exploiting different view geometries
through incidence angle diversity, radar frequency bands (e.g.
C-, X-, L-band), imaging modes (e.g. StripMap, Wide Swath,
Spotlight, etc.), and availability of polarimetric data.

XIII. CONCLUSION

In this survey we offer a detailed overview of the methods
available in the literature for spatial downscaling of Remote
Sensing imagery. We explore the different types of spatial
enhancement and introduce a comprehensive taxonomy of
the various approaches. Additionally, we conduct a thorough
investigation on the most popular metrics and datasets for
this task, and analyze the trade-off between Perception and
Distortion as a key factor for the selection of an appropriate
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loss function and training scheme. Finally, we discuss the
weaknesses and shortcomings of the current state of the art in
the field and briefly present recent advancements in the general
Computer Vision community as a source of inspiration.

As seen from our analysis, although there is a strong
presence of the Deep Learning paradigm in RS and the
publication rates are ever increasing, there is still plenty of
room for improvement and exploration. Various facets of the
downscaling problem could benefit from new contributions,
such as universal evaluation metrics and model interpretability
algorithms towards xAl, multi-modal datasets, innovative up-
sampling layers/frameworks, novel training schemes, original
architectures, and many more. Due to the wide range of RS
data and applicability, there is and will be an incessant need for
better, more efficient and trustworthy DL models. We hope that
this survey will further stimulate the research community and
assist in avoiding common pitfalls in the design, development
and assessment of new DL techniques.
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