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INTRODUCTION
Definition, Motivation, Challenges, Related Work
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Similarity vs. Dissimilarity

Toyota Corolla 
Sedan 2012

Tesla Model S 
Sedan 2012

● Color: white
● Angle: down front 

left

● Color: red
● Angle: up front right

Tesla Model S 
Sedan 2012

● Color: red
● Angle: up front right

Image Credit: Krause et al. 2011. 3D Object 
Representations for Fine-Grained Categorization
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How to choose this similarity function?

Handcrafted 
Solution

● Combining 
appropriate 
features by hand

Metric Learning

● Learn task-specific 
similarity functions 
and automate this 
process

Deep Metric 
Learning

● Use Convolution Neural 
Networks to extract 
features and learn a 
semantic  embedding
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“Learning a similarity function that increases the 
similarity between similar objects and decreases 

the similarity between dissimilar ones.”

Metric Learning
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Deep Metric Learning

● The default setup is introduced by Song et al. in Deep Metric Learning via Lifted 
Structure Feature Embedding

● Convolutional Neural Network is trained having available image annotations for 
each image and using a loss function that should have the Metric Learning 
properties.

● Half of the classes of the dataset are used for training, while the other half half 
for testing.

● Former losses: Contrastive, Triplet
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 Visualization of the 
embedding space on 

the test split of 
CARS196 using the 
LiftedStructure loss

Image Credit: Song et al. CVPR 2016. Deep Metric Learning via Lifted Structured Feature Embedding 8



BACKGROUND
Metric Learning, Neural Networks, Deep Metric Learning
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Metric Learning

Linear Metric Learning

● Mapping f is linear

Nonlinear Metric Learning

● Mapping f is nonlinear
● Can be done extending 

linear methods via 
kernelization 
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Neural Networks

3

Perceptron

1

Convolutional 
Neural Networks 

(CNNs)

2

Multilayer 
Perceptrons 

(MLPs)
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Perceptron

where:

is the input

is a weight vector

is the step function

Rosenblatt. 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms
Image credit: Mahdid, Perceptron algorithm from scratch in Python
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MultiLayer Perceptrons

Image credit: Mohanty, Multi layer perceptron models on real world banking data

● Efficient nonlinear function approximators
● MultiLayer Perceptron defines a mapping             and learns the value of parameters   

that result in the best approximation of a function
● Then naive MultiLayer Perceptron of figure can be formulated as:                                 , in 

which the functions are connected in chains and represent respectively the first and 
second layer it

● Activation functions: step, sigmoid, hyperbolic tangent, rectified linear unit (ReLU)
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LeNet

LeCun et al. Proceedings of the IEEE 1998. Gradient-based learning applied to document recognition

● 2 convolutional and 3 fully connected layers
● Convolutional layer consists of: convolutions, activation function, pooling
● Convolution: sliding a kernel (or equivalently a filter) over an image
● Pooling: replaces the output of a location with a summary statistic of the 

nearby outputs
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AlexNet

Krizhevsky et al. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks

● 5 convolutional and 3 fully connected layers
● The first to use the ReLU as an activation function
● Winner of the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) of 2012, outperforming all its competitors by more than 10%
● Probably the beginning of Deep Learning
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GoogLeNet (Inception v1)

Szegedy et al. CVPR 2015. Going Deeper With Convolutions

● 22 layers
● Inception module: 25 times less parameters than AlexNet
● Winner of the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) of 2014

Naive Inception module: simple feature-wise 
concatenation of three different convolutions and 

one max pooling

Inception module: 1x1 kernels are used as 
bottlenecks for dimensionality reduction
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BNInception (Inception v2)

Szegedy et al. CVPR 2016. Rethinking the Inception Architecture for Computer Vision

● Same architecture as GoogLeNet, but:
● Makes use of batch normalization transform
● BN layer can be added to any Network to manipulate any set of activation functions

17



ResNets

He et al. ICCV 2016. Deep Residual Learning for Image Recognition

● Motivation: increasing Network depth does not work by simply stacking more 
layers, as there is the notorious problem of vanishing gradients

● Idea: identity shortcut connections that skip one or more layers. These are the 
residual blocks.

● An ensemble of ResNets was the winner of the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) of 2015

Training and test error of a 20-layer and 56-layer Network. 
Increasing depth leads to worse performance.

The residual block.
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Deep Metric Learning

● CNN learns the nonlinear mapping from each input to a lower dimensional and 
semantically powerful embedding

● This is done by minimizing a loss function that: 
○ pushes embeddings of images of the same class closer 
○ pulls embeddings of images of different classes apart

● Loss functions can be split into:
○ Embedding loss functions (pair-based, triplet-based, in general tuple-based)
○ Classification loss functions (proxy-based)
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Deep Metric Learning

● Let              be a real-value instance vector,                  the corresponding instance 
matrix and                            a label vector for the      training samples respectively, 
where     are the classes and     the embedding dimension

● An input     is projected in a  -dimensional space by                          , where    is a 
Neural Network parametrized by     

● The similarity of two samples is defined as the dot product                                                            
resulting in a            similarity matrix     whose element at        is      

● For classification loss functions: let                                   be a weight vector 
corresponding to proxies  
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Contrastive

● Designed to encourage:
○ positive pairs to be as close as possible 
○ negative pairs to be apart from each other over a margin     :

where            indicates a positive pair, while            indicates a 
negative one.

Chopra et al. CVPR 2005. Learning a similarity metric discriminatively, with application to face verification
Hadsell et al. CVPR 2006. Dimensionality Reduction by Learning an Invariant Mapping
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Triplet

● Designed to ensure that an input vector      called an anchor is:
○ more similar to all other positives 
○ than to any other negative 

● Thus, the Triplet constraint:

where       and       denote the similarity of a positive pair and a 
negative pair with an anchor respectively,    is a margin enforced 
between positives and negatives and     is the set of all possible 
triplet is the training set

● The Triplet loss is:
Kilian et al. NIPS 2006. Distance metric learning for large margin nearest neighbor classification

Schroff et al. CVPR 2015. FaceNet: A unified embedding for face recognition and clustering
Hoffer et al. SIMBAD 2015. Deep metric learning using triplet network 22



Triplet

● Issue: Generating all the possible triplets would result in many 
triplets that easily fulfil the Triplet constraint and thus do not 
contribute in training, as their gradients are really small or even zero

● Solution: Mining is the process of finding informative pairs:
○ Hard, selecting:

■ hard positives, such that: 
■ hard negatives, such that: 

○ Semi-hard, selecting:
● Mining:

○ Online: selecting samples from within the batch
○ Offline: selecting samples from the whole training in order to 

construct the batch

Kilian et al. NIPS 2006. Distance metric learning for large margin nearest neighbor classification
Schroff et al. CVPR 2015. FaceNet: A unified embedding for face recognition and clustering

Hoffer et al. SIMBAD 2015. Deep metric learning using triplet network 23



LiftedStructure

● Takes full advantage of each sample within the 
batch by “lifting the vector of pairwise distances to 
the matrix of pairwise distances”.

● LiftedStructure loss:

where    is a fixed margin.
● Issue: Randomly selected negative pairs might 

carry limited information
● Solution: Online hard mining.

 Song et al. CVPR 2016. Deep Metric Learning via Lifted Structured Feature Embedding
24



MultiSimilarity

 Wang et al. CVPR 2019. Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning

● Defines three different types of similarity:
○ S: Self-similarity
○ N: Negative relative similarity
○ P: Positive relative similarity

● Introduces a loss function taking advantage of all types of similarity:

where            are hyperparameters,     and      the sets of positives and 
negatives respectively
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ProxyNCA

Movshovitz et al. ICCV 2017. No fuss distance metric learning using proxies

● Issue: when using embedding losses, only a specific subset of all 
possible tuples are taken into consideration

● Solution: use of proxies that serve as a concise representation for 
each semantic concept

● Proxies are equal to the number of classes 
● Proxy-based Triplet loss consisting of: anchor, learnable positive 

proxy, learnable negative proxy
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SoftTriple

Qian et al. ICCV 2019. SoftTriple Loss: Deep Metric Learning Without Triplet Sampling

● Motivation: a class in a real-world data can consist of multiple local 
clusters and thus a single proxy might not be able to capture the inherent 
structure of the data

● Idea: a proxy-based (softmax-like) Triplet loss that uses multiple proxies 
and thus is more capable of modeling the intra-class variability

where    is a margin and      is a scaling factor 
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ProxyAnchor

Kim et al. CVPR 2020. Proxy Anchor 
Loss for Deep Metric Learning

● Motivation: a loss function that combines the good points of embedding 
and classification loss functions, while correcting their defects

● Idea: A proxy-based loss that associates each proxy with all samples in a 
batch

● Thus:
○ as a proxy-based loss: fast and stable convergence, no tuple 

sampling, robust against noisy labels and outliers
○ while also utilizing data-to-data relations 

28



EXPERIMENTAL SETUP
Datasets, Networks, Evaluation, Implementation Details, Issues
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Datasets

CARS196 SOP

● Online products
● 22634 classes
● 120023 images
● ~5 images/class

● Birds
● 200 classes
● 11788 images
● ~59 images/class

CUB200-2011

● Cars
● 196 classes
● 16185 images
● ~82 images/class

Wah et al. 2011. The Caltech-UCSD Birds-200-2011 Dataset
Krause et al. 2011. 3D Object Representations for Fine-Grained Categorization

Song et al. CVPR 2016. Deep Metric Learning via Lifted Structured Feature Embedding
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Networks
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Evaluation

● Recall@k metric:
○ Compute the embeddings of every image in the test set
○ Each of these retrieves k nearest neighbors from the test set

■ Receives score 1 if an image of the same class is retrieved 
among the k 

■ Otherwise receives score 0
● Recall@k averages this score over all images of the test set
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Implementation Details

● all 3 datasets: 
○ CUB200-2011
○ CARS196
○ SOP

● most common Networks: 
○ GoogLeNet
○ BNInception
○ ResNet50

● 4 different embedding sizes: 
○ 64
○ 128
○ 512
○ 1024

● 10 different loss functions:
○ Contrastive
○ Triplet
○ LiftedStructure
○ NPair
○ ProxyNCA
○ Margin
○ ArcFace
○ MultiSimilarity
○ SoftTriple
○ ProxyAnchor

Extensive experiments on:
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Implementation Details

● Under the same conditions (so that no method is favored):
○ epochs: 100
○ optimizer: AdamW variant of Adam
○ scheduler: StepLR
○ hyperparameters:

■ of losses like margins, scales, etc. are taken from papers
■ of optimization like learning rate and scheduling taken 

from papers once available, else from a small search 
around the default values

○ batch size:
■ 100 for ResNet50
■ 180 for GoogLeNet and BNInception

○ mining: as proposed in the respective paper
○ sampling: as proposed in the respective paper
○ evaluation: Recall@k, which shows the retrieval quality 

● Using either NVIDIA V100 or the NVIDIA GeForce RTX 2080 Ti

Extensive experiments:
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Implementation Details
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Issues

Why do we conduct these experiments?
● Unfair comparisons concerning:

○ Networks
○ embedding sizes
○ details omitted (BN freeze, GAP + GMP, crop type)

● Lack of validation set
● Benchmark and Ablation Study
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EXPERIMENTAL RESULTS
Results, Discussion
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Results
CUB200-2011 ResNet50

● Performance:
○ Worst: Triplet, NPair
○ Best: ProxyAnchor, SoftTriple, 

MultiSimilarity 
○ Better than expected: Contrastive

● Unfair comparison confirmed:
○ In paper (R@1):

■ Margin: 63.60% (R)
■ LiftedStructure: 43.57% (G)
■ Triplet: 42.60% (G)

○ In our results (R@1)
■ Margin: 63.00% (R)
■ LiftedStructure: 60.16% (R)
■ Triplet: 60.48% (R)

R: ResNet50, G: GoogLeNet 38



Results
CUB200-2011 ResNet50

● Chronological order
● Embedding size = 128
● Lack of improvement visible

● Sizes 512 and 1024 almost 
the same retrieval quality
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Results
CUB200-2011 BNInception

● Performance:
○ Worst: Triplet, NPair
○ Best: ProxyAnchor, SoftTriple, 

MultiSimilarity 
○ Better than expected: Contrastive, 

LiftedStructure, SoftTriple
● SoftTriple:

○ In paper (R@1): 65.40%
○ In our results (R@1): 66.76%

● Unfair comparison confirmed:
○ In paper (R@1):

■ ProxyNCA: 49.21% (BN)
■ LiftedStructure: 43.57% (G)

○ In our results (R@1)
■ ProxyNCA: 56.98% (BN)
■ LiftedStructure: 58.29% (BN)

R: ResNet50, G: GoogLeNet, BN:BNInception 40



Results
CUB200-2011 BNInception

● Embedding size = 512
● Impressive performance: 

Contrastive, SoftTriple

● Size 1024 improves the 
retrieval quality by little
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Results
CUB200-2011 GoogLeNet

● Performance:
○ Worst: Triplet, NPair, ProxyNCA
○ Best: ProxyAnchor
○ Worse than before: MultiSimilarity, 

SoftTriple
○ Better than expected: Contrastive, 

LiftedStructure
○ Better than before: ArcFace (ranks 

second using sizes of 512 and 
1024)
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Results
CUB200-2011 GoogLeNet

● Embedding size = 512
● Impressive performance: 

ArcFace, Contrastive, 
LiftedStructure

● Size 1024 improves 
significantly the retrieval 
quality 
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Results
CARS196 BNInception

● Performance:
○ Worst: Triplet, NPair
○ Best: ProxyAnchor, SoftTriple, 

MultiSimilarity
○ Ranked in the middle: 

LiftedStructure, ProxyNCA, Margin
○ Better than expected: Contrastive
○ Better as the embedding size 

increases: ArcFace
● Unfair comparison confirmed:

○ In paper (R@1):
■ ProxyNCA: 73.22% (BN)
■ LiftedStructure: 52.98% (G)

○ In our results (R@1)
■ ProxyNCA: 72.52% (BN)
■ LiftedStructure: 73.53% (BN)

G: GoogLeNet, BN:BNInception 44



Discussion
About Networks

● ResNet50’s 
representations are more 
powerful

● A loss function using 
ResNet cannot be 
compared with one using 
one of the other 
Networks

● If that happens, the 
superiority would 
probably be due to the 
Network, rather than due 
to the loss 
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Discussion
About embeddings

● Cannot really draw a 
clear conclusion

● GoogLeNet seems to 
improve performance 
when 512 →1024

● BNInception and 
ResNet50 not always

● Taking into account the 
computational cost: 512 
the optimal
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Discussion
About Datasets

● CUB200-2011 is the 
smallest one, with ~59 
images/class

● CARS196 is slightly 
bigger with ~82 
images/class

● SOP is huge with 22.5k 
classes, 120k images 
and ~5 images/class

● However, CUB’s retrieval 
scores are the lowest

● Reason: intraclass 
variance (birds in 
different poses and ages)
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Discussion
About Loss Functions

● Embedding losses (pair-based, triplet-based, tuple-based):
○ Able to capture data-to-data relations
○ Sensitive to noisy labels and outliers
○ Can sometimes easily fulfil their constraints →mining needed
○ Converge slowly

● Classification losses (proxy-based):
○ Fast, reliable convergence
○ Less hyperparameter finetuning
○ Robust again noisy labels and outliers
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Discussion
Tournament of Loss Functions

● A quantitative process on CUB200-2011 that will help us draw more conclusions:
○ Collect the ranking of each loss in each experiment 
○ Total experiments=12=(4 different embedding sizes x 3 different Networks)
○ Ranking examples: ProxyAnchor=1, NPair=10
○ Sum of rankings → Total Rankings
○ Divide by 12 → Average Ranking
○ Calculate the Standard Deviation of each loss 
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Discussion
Tournament of Loss Functions

● Winner→ Proxy Anchor:
○ Use of Log-Sum-Exp
○ Use of proxies
○ Association of proxies with 

samples in  batch
● Runner Up→SoftTriple:

○ Multiple proxies
○ Able to capture inherent 

structure of data
● Third→MultiSimilarity:

○ Use of Log-Sum-Exp
○ Data-to-data relations

● Fourth→Contrastive:
○ Exploits our batch size
○ Simple but effective

● Last→Triplet & NPair:
○ Problematic convergence
○ Sophisticated mining needed 50



Discussion
About Setup

● Minor changes in hyperparameters→affect the performance more than expected
● Difficulties in finetuning 
● Not sure if hyperparameters are surely the optimal ones
● Lack of validation set→not a good tactic, generalization to be questioned
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OUR SETUP
Cross Validation, Fixed Validation
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Our Setup
Cross Validation

● 10-fold CV
● Keep the classes of the test set the same
● Training classes of default setup→9/10 Training, 1/10 Validation
● Random selection, as consecutive classes sometimes are semantically similar
● By the end of CV→all the classes will have been included once in validation

● At each epoch→ report R@1 on validation set
● By the end of one fold→save and load the model with the best R@1 on validation set 

for testing
● By the end of CV→compute the average and std of the R@1 scores of the 10 models

● Experiments using:
○ BNInception with a 512-dimensional embedding
○ CUB200-2011
○ ProxyAnchor, SoftTriple, MultiSimilarity
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Our Setup
Cross Validation

CV R@1 scores Default Setup R@1 scores

● Hyperparameter searching proved really expensive→not made
● Consider that fact of training 10 models instead of 1
● CV R@1 scores are lower because 90 classes are used
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Our Setup
Fixed Validation

● Idea: train only 1 model, but split the classes in order to have a validation set
● Problem: What’s the best split ratio?
● Answer: 90/10

Experiments using MultiSimilarity in different split schemes on CUB200-2011
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Our Setup
Fixed Validation

● Experiments using:
○ BNInception with a 512-dimensional embedding
○ CUB200-2011
○ ProxyAnchor, SoftTriple, MultiSimilarity

● Exhaustive hyperparameter grid-like searching:
○ Define a range of search for each hyperparameter
○ Define a search step
○ Train until the impact of the value is visible ~10 epochs
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Our Setup
Fixed Validation

Our Default Setup R@1 scoresOur Fixed Validation R@1 scores

● ProxyAnchor is the only out of 3 that had already optimal hyperparameters
● MultiSimilarity and SoftTriple slightly improve their performance
● Not expected: training is done using 90 classes
● Speculation: authors avoid to conduct extensive finetuning - they know finetuning on 

test set is not a good practice
● Propose Fixed Validation as the new default setup of Deep Metric Learning

Authors Default Setup R@1 
scores
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OUR METHOD
Definition, Formulation, Visualization, Results

58



Our Method

● Different shapes→different classes
● Black nodes→proxies
● Blue nodes→samples
● Green edges→positive associations
● Red edges→negative associations

● Thickness of edges is analogous to 
gradients

● Gradients are determined by relative 
hardness:
○ Positives: the farther the 

greater
○ Negatives: the closer the 

greater
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Our Method
● Assign one proxy to each class
● Samples of the batch are associated with positive proxies
● Proxies themselves are treated as negatives that should be pushed away
● Two different variations
● The second one utilizes a trick in order to exploit more data-to-data relations: 

the similarity between proxies is computed by taking into consideration the 
samples of the batch too
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Our Method
● Experiments using the second variation of OurLoss and the BNInception 

with a 512-dimensional embadding on all 3 datasets

CARS196 SOPCUB200-2011
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Conclusions

● Success of CNNs: Metric Learning→Deep Metric Learning 
● Issues related to Deep Metric Learning: unfair comparisons, lack of validation
● Conduct extensive experiments→draw important conclusions about:

○ Loss Functions
○ Networks
○ Embeddings
○ Datasets
○ Setup

● Propose:
○ Fixed Validation as the new default setup of Deep Metric Learning

● Introduce:
○ New loss function that is in between classification and embedding ones and 

its performance is almost on a par with the state-of-the-art
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Future Work

● Extensive experiments using our Fixed Validation setup
● Redesign our loss to capture even more data-to-data relations 
● Experiment with ideas like offline mining for batch construction, memory, multiple 

proxies per class
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Thank you!
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