
Metric Learning:
A Deep Dive

Master’s Thesis Presentation

Bill Psomas
Supervisor: Yannis Avrithis

22 October 2020

01 02

Metric Learning, Neural
Networks, Deep Metric
Learning

EXPERIMENTAL SETUP
03

Datasets, Networks,
Evaluation, Implementation
Details, Issues

OUR METHOD
06

Definition, Formulation,
Visualization, Results

INTRODUCTION
Definition, Motivation,
Related Work

BACKGROUND

EXPERIMENTAL
RESULTS

04

Results, Discussion

OUR SETUP
05

Cross Validation, Fixed
Validation

2

INTRODUCTION
Definition, Motivation, Challenges, Related Work

3

Similarity vs. Dissimilarity

Toyota Corolla
Sedan 2012

Tesla Model S
Sedan 2012

● Color: white
● Angle: down front

left

● Color: red
● Angle: up front right

Tesla Model S
Sedan 2012

● Color: red
● Angle: up front right

Image Credit: Krause et al. 2011. 3D Object
Representations for Fine-Grained Categorization

4

How to choose this similarity function?

Handcrafted
Solution

● Combining
appropriate
features by hand

Metric Learning

● Learn task-specific
similarity functions
and automate this
process

Deep Metric
Learning

● Use Convolution Neural
Networks to extract
features and learn a
semantic embedding

5

“Learning a similarity function that increases the
similarity between similar objects and decreases

the similarity between dissimilar ones.”

Metric Learning

6

Deep Metric Learning

● The default setup is introduced by Song et al. in Deep Metric Learning via Lifted
Structure Feature Embedding

● Convolutional Neural Network is trained having available image annotations for
each image and using a loss function that should have the Metric Learning
properties.

● Half of the classes of the dataset are used for training, while the other half half
for testing.

● Former losses: Contrastive, Triplet

7

 Visualization of the
embedding space on

the test split of
CARS196 using the
LiftedStructure loss

Image Credit: Song et al. CVPR 2016. Deep Metric Learning via Lifted Structured Feature Embedding 8

BACKGROUND
Metric Learning, Neural Networks, Deep Metric Learning

9

Metric Learning

Linear Metric Learning

● Mapping f is linear

Nonlinear Metric Learning

● Mapping f is nonlinear
● Can be done extending

linear methods via
kernelization

10

Neural Networks

3

Perceptron

1

Convolutional
Neural Networks

(CNNs)

2

Multilayer
Perceptrons

(MLPs)

11

Perceptron

where:

is the input

is a weight vector

is the step function

Rosenblatt. 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms
Image credit: Mahdid, Perceptron algorithm from scratch in Python

12

MultiLayer Perceptrons

Image credit: Mohanty, Multi layer perceptron models on real world banking data

● Efficient nonlinear function approximators
● MultiLayer Perceptron defines a mapping and learns the value of parameters

that result in the best approximation of a function
● Then naive MultiLayer Perceptron of figure can be formulated as: , in

which the functions are connected in chains and represent respectively the first and
second layer it

● Activation functions: step, sigmoid, hyperbolic tangent, rectified linear unit (ReLU)

13

LeNet

LeCun et al. Proceedings of the IEEE 1998. Gradient-based learning applied to document recognition

● 2 convolutional and 3 fully connected layers
● Convolutional layer consists of: convolutions, activation function, pooling
● Convolution: sliding a kernel (or equivalently a filter) over an image
● Pooling: replaces the output of a location with a summary statistic of the

nearby outputs
14

AlexNet

Krizhevsky et al. NIPS 2012. ImageNet Classification with Deep Convolutional Neural Networks

● 5 convolutional and 3 fully connected layers
● The first to use the ReLU as an activation function
● Winner of the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) of 2012, outperforming all its competitors by more than 10%
● Probably the beginning of Deep Learning

15

GoogLeNet (Inception v1)

Szegedy et al. CVPR 2015. Going Deeper With Convolutions

● 22 layers
● Inception module: 25 times less parameters than AlexNet
● Winner of the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) of 2014

Naive Inception module: simple feature-wise
concatenation of three different convolutions and

one max pooling

Inception module: 1x1 kernels are used as
bottlenecks for dimensionality reduction

16

BNInception (Inception v2)

Szegedy et al. CVPR 2016. Rethinking the Inception Architecture for Computer Vision

● Same architecture as GoogLeNet, but:
● Makes use of batch normalization transform
● BN layer can be added to any Network to manipulate any set of activation functions

17

ResNets

He et al. ICCV 2016. Deep Residual Learning for Image Recognition

● Motivation: increasing Network depth does not work by simply stacking more
layers, as there is the notorious problem of vanishing gradients

● Idea: identity shortcut connections that skip one or more layers. These are the
residual blocks.

● An ensemble of ResNets was the winner of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) of 2015

Training and test error of a 20-layer and 56-layer Network.
Increasing depth leads to worse performance.

The residual block.

18

Deep Metric Learning

● CNN learns the nonlinear mapping from each input to a lower dimensional and
semantically powerful embedding

● This is done by minimizing a loss function that:
○ pushes embeddings of images of the same class closer
○ pulls embeddings of images of different classes apart

● Loss functions can be split into:
○ Embedding loss functions (pair-based, triplet-based, in general tuple-based)
○ Classification loss functions (proxy-based)

19

Deep Metric Learning

● Let be a real-value instance vector, the corresponding instance
matrix and a label vector for the training samples respectively,
where are the classes and the embedding dimension

● An input is projected in a -dimensional space by , where is a
Neural Network parametrized by

● The similarity of two samples is defined as the dot product
resulting in a similarity matrix whose element at is

● For classification loss functions: let be a weight vector
corresponding to proxies

20

Contrastive

● Designed to encourage:
○ positive pairs to be as close as possible
○ negative pairs to be apart from each other over a margin :

where indicates a positive pair, while indicates a
negative one.

Chopra et al. CVPR 2005. Learning a similarity metric discriminatively, with application to face verification
Hadsell et al. CVPR 2006. Dimensionality Reduction by Learning an Invariant Mapping

21

Triplet

● Designed to ensure that an input vector called an anchor is:
○ more similar to all other positives
○ than to any other negative

● Thus, the Triplet constraint:

where and denote the similarity of a positive pair and a
negative pair with an anchor respectively, is a margin enforced
between positives and negatives and is the set of all possible
triplet is the training set

● The Triplet loss is:
Kilian et al. NIPS 2006. Distance metric learning for large margin nearest neighbor classification

Schroff et al. CVPR 2015. FaceNet: A unified embedding for face recognition and clustering
Hoffer et al. SIMBAD 2015. Deep metric learning using triplet network 22

Triplet

● Issue: Generating all the possible triplets would result in many
triplets that easily fulfil the Triplet constraint and thus do not
contribute in training, as their gradients are really small or even zero

● Solution: Mining is the process of finding informative pairs:
○ Hard, selecting:

■ hard positives, such that:
■ hard negatives, such that:

○ Semi-hard, selecting:
● Mining:

○ Online: selecting samples from within the batch
○ Offline: selecting samples from the whole training in order to

construct the batch

Kilian et al. NIPS 2006. Distance metric learning for large margin nearest neighbor classification
Schroff et al. CVPR 2015. FaceNet: A unified embedding for face recognition and clustering

Hoffer et al. SIMBAD 2015. Deep metric learning using triplet network 23

LiftedStructure

● Takes full advantage of each sample within the
batch by “lifting the vector of pairwise distances to
the matrix of pairwise distances”.

● LiftedStructure loss:

where is a fixed margin.
● Issue: Randomly selected negative pairs might

carry limited information
● Solution: Online hard mining.

 Song et al. CVPR 2016. Deep Metric Learning via Lifted Structured Feature Embedding
24

MultiSimilarity

 Wang et al. CVPR 2019. Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning

● Defines three different types of similarity:
○ S: Self-similarity
○ N: Negative relative similarity
○ P: Positive relative similarity

● Introduces a loss function taking advantage of all types of similarity:

where are hyperparameters, and the sets of positives and
negatives respectively

25

ProxyNCA

Movshovitz et al. ICCV 2017. No fuss distance metric learning using proxies

● Issue: when using embedding losses, only a specific subset of all
possible tuples are taken into consideration

● Solution: use of proxies that serve as a concise representation for
each semantic concept

● Proxies are equal to the number of classes
● Proxy-based Triplet loss consisting of: anchor, learnable positive

proxy, learnable negative proxy

26

SoftTriple

Qian et al. ICCV 2019. SoftTriple Loss: Deep Metric Learning Without Triplet Sampling

● Motivation: a class in a real-world data can consist of multiple local
clusters and thus a single proxy might not be able to capture the inherent
structure of the data

● Idea: a proxy-based (softmax-like) Triplet loss that uses multiple proxies
and thus is more capable of modeling the intra-class variability

where is a margin and is a scaling factor
27

ProxyAnchor

Kim et al. CVPR 2020. Proxy Anchor
Loss for Deep Metric Learning

● Motivation: a loss function that combines the good points of embedding
and classification loss functions, while correcting their defects

● Idea: A proxy-based loss that associates each proxy with all samples in a
batch

● Thus:
○ as a proxy-based loss: fast and stable convergence, no tuple

sampling, robust against noisy labels and outliers
○ while also utilizing data-to-data relations

28

EXPERIMENTAL SETUP
Datasets, Networks, Evaluation, Implementation Details, Issues

29

Datasets

CARS196 SOP

● Online products
● 22634 classes
● 120023 images
● ~5 images/class

● Birds
● 200 classes
● 11788 images
● ~59 images/class

CUB200-2011

● Cars
● 196 classes
● 16185 images
● ~82 images/class

Wah et al. 2011. The Caltech-UCSD Birds-200-2011 Dataset
Krause et al. 2011. 3D Object Representations for Fine-Grained Categorization

Song et al. CVPR 2016. Deep Metric Learning via Lifted Structured Feature Embedding
30

Networks

31

Evaluation

● Recall@k metric:
○ Compute the embeddings of every image in the test set
○ Each of these retrieves k nearest neighbors from the test set

■ Receives score 1 if an image of the same class is retrieved
among the k

■ Otherwise receives score 0
● Recall@k averages this score over all images of the test set

32

Implementation Details

● all 3 datasets:
○ CUB200-2011
○ CARS196
○ SOP

● most common Networks:
○ GoogLeNet
○ BNInception
○ ResNet50

● 4 different embedding sizes:
○ 64
○ 128
○ 512
○ 1024

● 10 different loss functions:
○ Contrastive
○ Triplet
○ LiftedStructure
○ NPair
○ ProxyNCA
○ Margin
○ ArcFace
○ MultiSimilarity
○ SoftTriple
○ ProxyAnchor

Extensive experiments on:

33

Implementation Details

● Under the same conditions (so that no method is favored):
○ epochs: 100
○ optimizer: AdamW variant of Adam
○ scheduler: StepLR
○ hyperparameters:

■ of losses like margins, scales, etc. are taken from papers
■ of optimization like learning rate and scheduling taken

from papers once available, else from a small search
around the default values

○ batch size:
■ 100 for ResNet50
■ 180 for GoogLeNet and BNInception

○ mining: as proposed in the respective paper
○ sampling: as proposed in the respective paper
○ evaluation: Recall@k, which shows the retrieval quality

● Using either NVIDIA V100 or the NVIDIA GeForce RTX 2080 Ti

Extensive experiments:

34

Implementation Details

35

Issues

Why do we conduct these experiments?
● Unfair comparisons concerning:

○ Networks
○ embedding sizes
○ details omitted (BN freeze, GAP + GMP, crop type)

● Lack of validation set
● Benchmark and Ablation Study

36

EXPERIMENTAL RESULTS
Results, Discussion

37

Results
CUB200-2011 ResNet50

● Performance:
○ Worst: Triplet, NPair
○ Best: ProxyAnchor, SoftTriple,

MultiSimilarity
○ Better than expected: Contrastive

● Unfair comparison confirmed:
○ In paper (R@1):

■ Margin: 63.60% (R)
■ LiftedStructure: 43.57% (G)
■ Triplet: 42.60% (G)

○ In our results (R@1)
■ Margin: 63.00% (R)
■ LiftedStructure: 60.16% (R)
■ Triplet: 60.48% (R)

R: ResNet50, G: GoogLeNet 38

Results
CUB200-2011 ResNet50

● Chronological order
● Embedding size = 128
● Lack of improvement visible

● Sizes 512 and 1024 almost
the same retrieval quality

39

Results
CUB200-2011 BNInception

● Performance:
○ Worst: Triplet, NPair
○ Best: ProxyAnchor, SoftTriple,

MultiSimilarity
○ Better than expected: Contrastive,

LiftedStructure, SoftTriple
● SoftTriple:

○ In paper (R@1): 65.40%
○ In our results (R@1): 66.76%

● Unfair comparison confirmed:
○ In paper (R@1):

■ ProxyNCA: 49.21% (BN)
■ LiftedStructure: 43.57% (G)

○ In our results (R@1)
■ ProxyNCA: 56.98% (BN)
■ LiftedStructure: 58.29% (BN)

R: ResNet50, G: GoogLeNet, BN:BNInception 40

Results
CUB200-2011 BNInception

● Embedding size = 512
● Impressive performance:

Contrastive, SoftTriple

● Size 1024 improves the
retrieval quality by little

41

Results
CUB200-2011 GoogLeNet

● Performance:
○ Worst: Triplet, NPair, ProxyNCA
○ Best: ProxyAnchor
○ Worse than before: MultiSimilarity,

SoftTriple
○ Better than expected: Contrastive,

LiftedStructure
○ Better than before: ArcFace (ranks

second using sizes of 512 and
1024)

42

Results
CUB200-2011 GoogLeNet

● Embedding size = 512
● Impressive performance:

ArcFace, Contrastive,
LiftedStructure

● Size 1024 improves
significantly the retrieval
quality

43

Results
CARS196 BNInception

● Performance:
○ Worst: Triplet, NPair
○ Best: ProxyAnchor, SoftTriple,

MultiSimilarity
○ Ranked in the middle:

LiftedStructure, ProxyNCA, Margin
○ Better than expected: Contrastive
○ Better as the embedding size

increases: ArcFace
● Unfair comparison confirmed:

○ In paper (R@1):
■ ProxyNCA: 73.22% (BN)
■ LiftedStructure: 52.98% (G)

○ In our results (R@1)
■ ProxyNCA: 72.52% (BN)
■ LiftedStructure: 73.53% (BN)

G: GoogLeNet, BN:BNInception 44

Discussion
About Networks

● ResNet50’s
representations are more
powerful

● A loss function using
ResNet cannot be
compared with one using
one of the other
Networks

● If that happens, the
superiority would
probably be due to the
Network, rather than due
to the loss

45

Discussion
About embeddings

● Cannot really draw a
clear conclusion

● GoogLeNet seems to
improve performance
when 512 →1024

● BNInception and
ResNet50 not always

● Taking into account the
computational cost: 512
the optimal

46

Discussion
About Datasets

● CUB200-2011 is the
smallest one, with ~59
images/class

● CARS196 is slightly
bigger with ~82
images/class

● SOP is huge with 22.5k
classes, 120k images
and ~5 images/class

● However, CUB’s retrieval
scores are the lowest

● Reason: intraclass
variance (birds in
different poses and ages)

47

Discussion
About Loss Functions

● Embedding losses (pair-based, triplet-based, tuple-based):
○ Able to capture data-to-data relations
○ Sensitive to noisy labels and outliers
○ Can sometimes easily fulfil their constraints →mining needed
○ Converge slowly

● Classification losses (proxy-based):
○ Fast, reliable convergence
○ Less hyperparameter finetuning
○ Robust again noisy labels and outliers

48

Discussion
Tournament of Loss Functions

● A quantitative process on CUB200-2011 that will help us draw more conclusions:
○ Collect the ranking of each loss in each experiment
○ Total experiments=12=(4 different embedding sizes x 3 different Networks)
○ Ranking examples: ProxyAnchor=1, NPair=10
○ Sum of rankings → Total Rankings
○ Divide by 12 → Average Ranking
○ Calculate the Standard Deviation of each loss

49

Discussion
Tournament of Loss Functions

● Winner→ Proxy Anchor:
○ Use of Log-Sum-Exp
○ Use of proxies
○ Association of proxies with

samples in batch
● Runner Up→SoftTriple:

○ Multiple proxies
○ Able to capture inherent

structure of data
● Third→MultiSimilarity:

○ Use of Log-Sum-Exp
○ Data-to-data relations

● Fourth→Contrastive:
○ Exploits our batch size
○ Simple but effective

● Last→Triplet & NPair:
○ Problematic convergence
○ Sophisticated mining needed 50

Discussion
About Setup

● Minor changes in hyperparameters→affect the performance more than expected
● Difficulties in finetuning
● Not sure if hyperparameters are surely the optimal ones
● Lack of validation set→not a good tactic, generalization to be questioned

51

OUR SETUP
Cross Validation, Fixed Validation

52

Our Setup
Cross Validation

● 10-fold CV
● Keep the classes of the test set the same
● Training classes of default setup→9/10 Training, 1/10 Validation
● Random selection, as consecutive classes sometimes are semantically similar
● By the end of CV→all the classes will have been included once in validation

● At each epoch→ report R@1 on validation set
● By the end of one fold→save and load the model with the best R@1 on validation set

for testing
● By the end of CV→compute the average and std of the R@1 scores of the 10 models

● Experiments using:
○ BNInception with a 512-dimensional embedding
○ CUB200-2011
○ ProxyAnchor, SoftTriple, MultiSimilarity

53

Our Setup
Cross Validation

CV R@1 scores Default Setup R@1 scores

● Hyperparameter searching proved really expensive→not made
● Consider that fact of training 10 models instead of 1
● CV R@1 scores are lower because 90 classes are used

54

Our Setup
Fixed Validation

● Idea: train only 1 model, but split the classes in order to have a validation set
● Problem: What’s the best split ratio?
● Answer: 90/10

Experiments using MultiSimilarity in different split schemes on CUB200-2011

55

Our Setup
Fixed Validation

● Experiments using:
○ BNInception with a 512-dimensional embedding
○ CUB200-2011
○ ProxyAnchor, SoftTriple, MultiSimilarity

● Exhaustive hyperparameter grid-like searching:
○ Define a range of search for each hyperparameter
○ Define a search step
○ Train until the impact of the value is visible ~10 epochs

56

Our Setup
Fixed Validation

Our Default Setup R@1 scoresOur Fixed Validation R@1 scores

● ProxyAnchor is the only out of 3 that had already optimal hyperparameters
● MultiSimilarity and SoftTriple slightly improve their performance
● Not expected: training is done using 90 classes
● Speculation: authors avoid to conduct extensive finetuning - they know finetuning on

test set is not a good practice
● Propose Fixed Validation as the new default setup of Deep Metric Learning

Authors Default Setup R@1
scores

57

OUR METHOD
Definition, Formulation, Visualization, Results

58

Our Method

● Different shapes→different classes
● Black nodes→proxies
● Blue nodes→samples
● Green edges→positive associations
● Red edges→negative associations

● Thickness of edges is analogous to
gradients

● Gradients are determined by relative
hardness:
○ Positives: the farther the

greater
○ Negatives: the closer the

greater

59

Our Method
● Assign one proxy to each class
● Samples of the batch are associated with positive proxies
● Proxies themselves are treated as negatives that should be pushed away
● Two different variations
● The second one utilizes a trick in order to exploit more data-to-data relations:

the similarity between proxies is computed by taking into consideration the
samples of the batch too

60

Our Method
● Experiments using the second variation of OurLoss and the BNInception

with a 512-dimensional embadding on all 3 datasets

CARS196 SOPCUB200-2011

61

Conclusions

● Success of CNNs: Metric Learning→Deep Metric Learning
● Issues related to Deep Metric Learning: unfair comparisons, lack of validation
● Conduct extensive experiments→draw important conclusions about:

○ Loss Functions
○ Networks
○ Embeddings
○ Datasets
○ Setup

● Propose:
○ Fixed Validation as the new default setup of Deep Metric Learning

● Introduce:
○ New loss function that is in between classification and embedding ones and

its performance is almost on a par with the state-of-the-art

62

Future Work

● Extensive experiments using our Fixed Validation setup
● Redesign our loss to capture even more data-to-data relations
● Experiment with ideas like offline mining for batch construction, memory, multiple

proxies per class

63

Thank you!

64

