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Deep Metric Learning & Mixup Interpolating Labels Improving Losses with Metrix

Given M (a), which is the possible choices of mixing pairs (positive-positive,
positive-negative, negative-negative), the labeled mixed embedding is:

e Goal - Learning a discriminative representation that generalizes to
unseen classes.
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Non-additive losses also involve non-linear functions ¢ and o~ e “Positivity” is equivalent to 94(a;0)/0s(a,v) < 0. !
e Under positive-negative mixing, i.e. M(a) C U™ (a) x U™ (a), the probability e Low utilization indicates that there are examples in the training set that
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Positives P(a)and negatives N(a) of anchor a have the same or different e We measure this function both purely empirically and theoretically: [ Nt el
class label as the anchor.
A binary class label y € {0, 1} for each example in P(a) U N(a)is defined: 1 —
without
y = 1for positives, y = 0 for negatives. 0.8 | mixup
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