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Abstract: The scope of this study is the optimal siting and sizing of distributed generation within a power distribution network
considering uncertainties. A probabilistic power flow (PPF)-embedded genetic algorithm (GA)-based approach is proposed in
order to solve the optimisation problem that is modelled mathematically under a chance constrained programming framework.
Point estimate method (PEM) is proposed for the solution of the involved PPF problem. The uncertainties considered include:
(i) the future load growth in the power distribution system, (ii) the wind generation, (iii) the output power of photovoltaics,
(iv) the fuel costs and (v) the electricity prices. Based on some candidate schemes of different distributed generation types
and sizes, placed on specific candidate buses of the network, GA is applied in order to find the optimal plan. The proposed
GA with embedded PEM (GA–PEM) is applied on the IEEE 33-bus network by considering several scenarios and is
compared with the method of GA with embedded Monte Carlo simulation (GA–MCS). The main conclusions of this
comparison are: (i) the proposed GA–PEM is seven times faster than GA–MCS, and (ii) both methods provide almost
identical results.
1 Introduction

Distributed generation (DG) technologies have become more
and more important in power systems [1]. Technologies that
are classified as DG are categorised into renewable and
fossil fuel-based sources. Renewable energy sources (RES)
comprise of wind turbines, photovoltaics, biomass,
geothermal, small hydro and so on. Fueled DGs are internal
combustion engines, combustion turbines and fuel cells.
Environmental, economic and technical factors have played
an important role in DG development [2, 3]. In accordance
with the Kyoto agreement on climate change, many efforts
to reduce carbon emissions have taken place, and as a result
the penetration of DGs in distribution systems rises [4].
DG placement significantly affects distribution network

operation. Inappropriate DG placement may increase system
capital and operating costs and network losses. On the other
hand, optimal DG placement (ODGP) helps keep the
voltage profile within the specified limits, can reduce power
flows and network losses and can improve power quality
and reliability of supply. The aim of the ODGP is to
provide the best locations (buses) and sizes of DGs to
optimise distribution network operation and planning taking
into account the network operating constraints, DG
operation constraints and investment constraints. The
ODGP is a complex mixed integer non-linear optimisation
problem, which has attracted the interest of many research
efforts in the last 15 years [1].
An ordinal optimisation method is proposed in [4] for
solving the ODGP. Mixed integer non-linear programming
solves an ODGP model in hybrid electricity markets [5].
The optimal location of DG is determined by a sensitivity
test and the optimal size of the DG is computed by a
heuristic curve-fitted technique [6]. A fuzzy genetic
algorithm (GA) solves a weighted multiobjective ODGP
model that maximises the system loading margin and the
profit of the distribution network operator [7]. Particle
swarm optimisation is applied to solve an ODGP model by
considering variable power load models [8].
ODGP becomes more complex considering some

uncertainties that are involved, such as future load growth
and the generation of non-dispatchable RES [1]. A variant
of a non-dominated sorting GA in conjunction with a max–
min approach solves a multiobjective ODGP that considers
the uncertainties by using fuzzy numbers [9]. GA and
decision theory are applied to solve an ODGP problem
under uncertainty including power quality issues [10].
ODGP models with uncertainties are solved by GA in
conjunction with Monte Carlo simulation (GA–MCS) in
[11, 12]. An ODGP model considering the uncertainties and
DG reactive capability is developed in [13]. ODGP models
considering load uncertainty are solved by cuckoo
optimisation algorithm and artificial neural network in [14,
15], respectively. A systematic qualitative assessment of the
state of the art models and methods applied to the ODGP
problem in power distribution networks together with the
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contribution of all of the reviewed ODGP works can be found
in [1].
The solution of the power flow problem helps evaluate the

state of the power system for a specific set of values of the
input variables (generations and loads for a given network
topology). In case of uncertainties in the input variables of
the power system, it is desirable to assess the system
output variables (bus voltages and line flows) for many
load and generation conditions. It is necessary to run many
times the deterministic power flow routine in order to
evaluate possible system states. Many methods have been
proposed for estimating the state of the power systems
considering uncertainties. The most accurate method is
Monte Carlo simulation (MCS), which is commonly used
as benchmark method [16]. This paper proposes the point
estimate method (PEM) [17] for solving the probabilistic
power flow (PPF) that is involved in the ODGP under
uncertainties.
This paper introduces a new technique for solving the

ODGP under uncertainties, formulated as a chance
constrained programming (CCP) optimisation problem,
which is a type of stochastic programming. The new
algorithm (GA–PEM) combines the GA and the PEM. The
PEM is embedded in the GA-based developed model for
evaluating each chromosome and handling the chance
constraints. MCS-embedded GA (GA–MCS) has been
introduced in [11, 12] for the solution of ODGP. This paper
proposes the use of PEM instead of MCS, because PEM is
much faster than MCS in solving each one of the many
PPF problems that are required by the GA to solve the
ODGP. Thus, the proposed GA–PEM method solves the
ODGP problem much faster than the GA–MCS method.
The paper is organised as follows: modelling of the

uncertainties that affect power flow and the state of the
distribution system is given in Section 2. The PEM for PPF
calculation is outlined in Section 3. In Section 4, the ODGP
under uncertainties is formulated by using the mathematical
model of chance constrained programming. The proposed
GA–PEM method for solving the ODGP is described in
Section 5. In Section 6, the proposed method is applied for
solving the ODGP problem of the IEEE 33-bus distribution
network and the obtained results verify the effectiveness
and the validity of the proposed method. Conclusions are
drawn in Section 7.
2 Modelling of the uncertainties

2.1 Output power of wind turbines

Many experiments have demonstrated that a good expression
for modelling the stochastic behaviour of wind speed is the
Weibull probability density function (PDF). The PDF of
wind speed is given by Atwa et al. [18]

f (v) = k

ck
vk−1 exp − v

c

( )k( )
, 0 ≤ v , 1 (1)

where v is the wind speed that follows the Weibull
distribution, and k and c are the shape and the scale index,
respectively, of the Weibull distribution. Assuming that the
wind speed PDF is known, the output power of a wind
turbine can be computed as follows [18]
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PWT =

0, if 0 ≤ v ≤ vci

PWT n
(v− vci)

(vn − vci)
, if vci ≤ v ≤ vn

PWT n, if vn ≤ v ≤ vco
0, if vco , v

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2)

where v is the wind speed, vci is the cut-in wind speed, vco is
the cut-out wind speed, vn is the nominal wind turbine speed
and PWT_n is the nominal output power of the wind turbine.

2.2 Output power of photovoltaics

On using the historical and meteorological data for each
region, it has been observed that the solar illumination
intensity approximately follows the Weibull distribution
[12], hence its PDF is given by

f (s) = ks
ckss

s ks−1( ) exp − s/cs
( )ks( )

, 0 ≤ s , 1 (3)

where s is the solar illumination intensity, and ks and cs are the
shape and the scale index, respectively, of the Weibull
distribution of s.
The relationship between the output power of a

photovoltaic and the illumination intensity is [12]

Ps =
Ps n

s

sn
, 0 ≤ s ≤ sn

Ps n, sn ≤ s

⎧⎨
⎩ (4)

where s is the illumination intensity, sn is the nominal
illumination intensity of the photovoltaic panel and Ps_n is
the nominal output power of the photovoltaic panel.

2.3 Uncertain load growth

Owing to the sustainable development of technology and
industry, electricity demand has increased. By using
statistical studies and the historical data, it has been found
that the load growth of bus i at year t, ΔPLi(t), follows the
normal distribution with mean μi(t) and standard deviation
σi(t) [12].

2.4 Uncertain fuel prices

The operating cost of fueled DGs mainly consists of fuel price
cost. The fuel price is dependent on the laws of supply and
demand of fuel, affected by numerous unforeseen
geopolitical factors such as weather, political and military
crises, availability of refining units, subsidies or taxation
and therefore it cannot be predicted accurately. Generally, it
has been observed that the price of fuel tends to follow the
Geometric Brownian Motion (GBM) described by the
following formula [19]

pf (t) = pf (t − 1) exp mf −
1

2
s2
f

( )
t + sf W (t)

[ ]
(5)

where pf(t) is the price in year t; pf(t− 1) is the price in year
t − 1; μf and σf are the mean value and standard deviation of
price in year t; and the variable W(t) is the Brownian motion
and W(t)∼ N(0, t).
Hence, the notation pf(t)∼GBM(pf(t − 1), μf, σf) means

that the variable pf(t) follows the GBM in year t.
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2.5 Uncertain electricity prices

It is supposed that electricity prices, such as the on-grid
price CL, also follows the GBM in year t, which means that
CL(t)∼GBM(CL(t− 1), μL, σL) [18].

3 PEM for solving the PPF problem

The PEM is applied in order to calculate the statistical
moments of a random variable that is a function of several
random variables. It was first developed by Rosenblueth in
1975 [20] and since then, many methods that improve the
original Rosenblueth’s method have been presented. The
PPF model efficiently assesses the uncertainties the
stochastic variables involve in the power flow calculation.
Hong's PEM [21] is adopted in this paper for the solution
of the PPF problem.
Let us assume that the function F is the set of non-linear

power flow equations that relate the input and the output
variables; Z is the vector of stochastic output variables and
pi is the ith random input variable; then, the set Z of
random output variables can be expressed as follows

Z(l, k) = F p1, p2, . . . , pl, . . . , pm
( )

(6)

PEM concentrates all the statistical information provided by the
first central moments of the stochastic input variables and
computes K points for each variable, named concentrations.
The kth concentration (pl, k, wl, k) of a random variable pl
can be defined as a pair of a location pl, k and a weight wl, k.
The location is the kth value of the variable pl at which
function F is evaluated and the weight wl, k is a weighting
factor that accounts for the relative importance of this
evaluation in the random output variable [17].
By using Hong’s PEM, the function F has to be evaluated

only K times for each random variable pl by maintaining the
mean value μ of all the other random variables m− 1, that is,
if Z(l, k) is the set of random output variables of the lth
variable for the kth concentration, then Z(l, k) is computed
as follows: Z(l, k) = F(μp1, μp2, …, pl, k, …, μpm). The total
number of simulations depends on the number of points K
that will be selected, and the number of random input
variables m of the power system. Therefore the total amount
of power flow computations is equal to k ×m. In this paper,
2PEM (2m + 1) is used with 2m + 1 simulations that give
very accurate results running only for several times and it is
used for solving the PPF [17].
The location pl, k is given by

pl,k = m pl
+ jl,ksl,k (7)

where m pl
is the mean value of variable pl, σl, k is the standard

deviation of variable pl and ξl, k is the standard location.
The standard location ξl, k and the weight wl, k are

calculated by solving the non-linear system of the following
equations

∑K
k=1

wl,k =
1

m
(8a)

∑K
k=1

wl,k jl,k
( )j= ll,j (8b)

where λl, j is the jth standard central moment of pl random
variable, given by the following formulae
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ll,k =
Mj(pl)

sj
pl

(9)

Mj(pl) =
∫+1

−1
pl − m pl

( )j
f pl dpl (10)

Thus, by considering the scheme of 2PEM with the 2m + 1
simulations (K = 3) the standard location ξl, k and the weight
wl, k are computed by (11) and (12), respectively

jl,k =
ll,3
2

+ −1( )3−k

����������������
ll,4 −

3

4
ll,3
( )2√

, for k = 1, 2

jl,3 = 0 (11)

wl,k =
−1( )3−k

jl,k jl,1 − jl,2
( ) , for k = 1, 2

wl,3 =
1

m
− 1

ll,4 − ll,3
( )2

(12)

More specifically, using as data the probability distribution of
the random variables that are input to the power system, first,
the locations and the weights are computed and next a
deterministic load flow is executed for every
point-concentration as follows

Z(l, k) = F m p1, m p2, . . . , pl,k , . . . , m pm

( )
(13)

where Z(l, k) is the set of random output variables of
concentration k of variable pl. The output variable Z(l, k)
refers to: (i) the active power flow (Pij) and reactive power
flow (Qij) of the branch i− j of the network, (ii) the voltage
magnitude (V ) and the voltage angle (δ) of the buses, (iii)
the total power losses (Ploss) and (iv) the active power
injections (Pi) and reactive power injections (Qi). F(.)
stands for the set of non-linear equations of deterministic
power flow that relate the input variables with the output
variables.
The vector Z(l, k) is used to evaluate the first j moments of

the random output variables of the power system as follows

E(Z) =
∑K
k=1

∑m
l=1

wl,kZ(l, k) (14)

E Zj( ) = ∑K
k=1

∑m
l=1

wl,k(Z(l, k))
j (15)

where E(Z ) is the expected value and E(Zj) is the jth moment
of output of the random output variable Z, respectively. For
j = 2, the standard deviation of Z is evaluated.
Therefore the algorithm for solving PPF using Hong’s

PEM is shown in Fig. 1.

4 Formulation of the ODGP problem under
uncertainties

The design variables (unknowns) of the ODGP problem are
the following: (i) the buses at which the DGs will be
installed, (ii) the installed capacity of each DG unit and (iii)
the type of each DG (fueled DG, microturbine, wind
turbine, photovoltaic, biomass unit etc.) to be installed.
391
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Fig. 1 Flowchart of PEM for the PPF problem

www.ietdl.org
The placement of the DG units, and especially the RES
placement, is affected by many factors such as wind speed,
solar irradiation, environmental factors, geographical
topography, political factors and so on. For example, wind
turbines cannot be installed near residential areas, either
because of the reactions of the residents, either because of
legislation or even because of interference from
environmental organisations.
The type of the DG units to be installed depends directly on

both the installation costs and the operating costs. Owing to
392
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rising fuel prices, fueled DGs, despite the low investment
costs, become more expensive to operate, unlike RES,
which have higher investment costs but virtually no
operating costs.
In this work, the types of DG to be studied are: (i) wind

turbines, (ii) photovoltaics and (iii) fueled DGs. The
uncertainties that affect the state of the distribution network
have been modelled in Section 2. The ODGP will be solved
for the case of the peak load. Given the complexity of the
problem, some scenarios will be used, through which the
optimal solution will be selected.

4.1 Objective function

In ODGP, the main purpose is to minimise or maximise an
objective function, choosing the suitable one depending on
the problem [1]. In this paper, costs associated with the
installation of DGs in a distribution system are the
investment cost, operating cost, maintenance cost, capacity
adequacy cost and network loss cost and thus the objective
function is the minimisation of the total costs and is
described by the following formula in compact form [12]

min f = b1C
I + b2C

M + b3C
O + b4C

Lt + b5C
A (16)

or equivalently by the following formula in detailed form [12]

min f = b1
∑Ntype

k=1

∑
i[NDGk

CI
DGkP

N
DGki

( )

+ b2
∑Ntype

k=1

∑
i[NDGk

CM
DGkTDGkiP

N
DGki

( )

+ b3
∑Ntype

k=1

∑
i[NDGk

CO
DGkTDGkiP

N
DGki

( )+b4C
LWloss

+ b5C
L
∑Ntype

k=1

∑
i[NDGk

TDGki P
N
DGki − PDGki

( )

(17)

where b1 + b2 + b3 + b4 + b5 = 1; b1, b2, b3, b4 and b5 are the
weighting coefficients; CI, CM, CO and CA are the costs ($)
for DGs investment, maintenance, operation and the
capacity adequacy cost ($), respectively; CLt is the loss cost
($) of the distribution network; CL is the electricity price
($/kWh); Wloss is the energy loss (kWh) of the distribution
network; CI

DGk , C
M
DGk and CO

DGk are the per-unit investment,
maintenance and operation cost, respectively, of the kth
type of DG; PN

DGki is the installed capacity of the kth type of
DG at bus i; PDGki is the active power output of the kth
type of DG at bus i; Ntype is the number of different DG
types; NDGk is the set of candidate buses for installing DG
of type k; and TDGki is the equivalent generation hours of
the kth type of DG at bus i.

4.2 Constraints modelling

4.2.1 Deterministic equality constraints: The power
flow equations (18) and (19) are used for computing the
output variables of the distribution system, such as the
power flow of each branch, the voltage magnitude and
angle per bus, the total power losses and so on. The
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 3, pp. 389–400
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Newton–Raphson method is applied to solve the power flow
problem for each state of random input variables

PDGi − PLi − V 2
i Gkk

− Vi

∑
k[A(i)

Vk Gik cos dik + Bik sin dik
( ) = 0 (18)

QDGi − QLi + V 2
i Bkk

− Vi

∑
k[A(i)

Vk Gik sin dik − Bik sin dik
( ) = 0 (19)

where PDGi andQDGi are the real and reactive power produced
at bus i, PLi and QLi are the real and reactive power consumed
at bus i, Vi is the voltage magnitude at bus i, δik is the voltage
angle between bus i and bus k, Yik =Gik + jBik is the element
of the bus admittance matrix that refers to the line between
buses i and k and A(i) corresponds to the set of buses
connected to bus i.

4.2.2 Deterministic inequalityconstraints: Deterministic
inequality constraints are strict and cannot be violated. They
have direct relationship with technical specifications of the
power system and are commonly formed by the network
designers and engineers for the best possible quality of
voltage and power supplied. These include the upper limit
of real and reactive output power produced by DG units
(PDGimax, QDGimax), the permitted total capacity of DGs
installed in the distribution system and the lower limit of
RES penetration for the carbon emissions reduction and for
empowering the penetration of RES in distribution system
as proportion of the total DG penetration. More specifically,
the following deterministic inequality constraints have to be met

PDGi ≤ PDGimax, i = 1, 2, . . . , NDG (20)

QDGi ≤ QDGimax, i = 1, 2, . . . , NDG (21)

∑NDG

i=1

PN
DGi ≤ DGpen

∑NB

i=1

PLi (22)

∑NRES

i=1

PN
DGi ≥ RES pen

∑NDG

i=1

PN
DGi (23)

where NDG is the number of installed DGs, NB is the number
of buses of the distribution system, NRES is the number of
installed RES, DGpen is the maximum penetration of DGs
and RESpen is the minimum penetration of RES in
distribution system as a fraction of the total installed DGs
capacity.

4.2.3 Chance constraints: Chance constraints are not
crucial limitations and it is possible to be violated a few
times under a confidence level a. The following chance
constraints are considered [12, 22]

Pr Sij ≤ Sijmax

{ }
≥ a, i, j = 1, 2, . . . , Nb (24)

Pr Vmin ≤ Vi ≤ Vmax

{ } ≥ a, i, j = 1, 2, . . . , NB − 1

(25)

where Sij and Sijmax are the power flow (MVA) and the
maximum permissible power flow in branch i− j,
respectively; Nb is the number of branches of the
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 3, pp. 389–400
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distribution system and NB− 1 is the number of distribution
system buses except the slack bus, which has predefined
voltage magnitude V1 and angle δ1 = 0o.

4.3 Mathematical model

Owing to the uncertainties included, the ODGP problem has
to be formulated with a mathematical model of stochastic
programming. CCP is a method of stochastic programming
[23]; its constraints and its objective function contain
stochastic variables. The developed model of the
CCP-based optimal DG placement has the following form

min
X

{f (X , j)}

subject to: Pr f (X , j) ≤ �f
{ } ≥ b

Pr {g(X , j) ≤ 0} ≥ a
G = 0

Hmin ≤ H ≤ Hmax

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(26)

where X is the vector of the design variables, ξ is the set of
stochastic variables, f (X, ξ) is the objective function, �f is
the optimal value of the objective function satisfying the
confidence level b, g(X, ξ) presents the inequalities
(chance constraints) described by (24) and (25); G = 0 and
Hmin ≤H ≤Hmax correspond to the deterministic equality
and inequality constraints, respectively; Pr{ev} denotes the
probability of the event ev.

5 Proposed solution for the ODGP problem

The traditional method for solving a CCP-based optimisation
problem is to convert chance constraints into deterministic
constraints according to the given confidence level. A GA
with embedded PEM (GA–PEM) is introduced for the
solution of the CCP described in (26), that is, for the
solution of the ODGP under uncertainties. More
specifically, the GA searches the best solution among a
number of possible solutions, whereas the PEM is proposed
for the solution of the PPF problems, which are necessary
for the evaluation of each chromosome of the GA. The
flowchart of the proposed method is shown in Fig. 2.
Complete explanation of the method is presented in
Sections 5.1–5.5.
The GA has been well introduced and analysed in many

power system problems [24–26]. Certain features of the
GA, such as the structure of the chromosome, the coding of
the design variables, the creation of the initial population,
the decoding of the encoded chromosome, the handling of
constraints and the evaluation of fitness function, will be
discussed in the following.

5.1 Chromosome structure

Encoding of potential possible solutions is a basic tool for the
efficient application of the GA. The accurate calculation of
the objective function depends on the installed capacity and
the allocation of DG units. Therefore every potential
solution (chromosome) has to be represented with a
three-part vector that has as many parts as the types of DGs
to be installed in the distribution system

X = XWDG, XSDG, XFDG( )
(27)

where XWDG is an LW dimension vector corresponding to
393
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Fig. 2 Flowchart of the proposed GA–PEM method
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the installed capacity PWDG
i of wind turbines, in each of the

candidate buses for wind turbine installation; LW is the
number of candidate buses for wind turbine installation;
XSDG is an LS dimension vector corresponding to the
installed capacity PSDG

i of photovoltaics, in each of the
candidate buses for installation of photovoltaics; LS is
the number of candidate buses for installation of
photovoltaics; XFDG is an LF dimension vector
corresponding to the installed capacity PFDG

i of fueled DGs,
in each of the candidate buses for installation of fueled
DGs; LF is the number of candidate buses for installation of
fuelled DGs. Consequently, the dimension L of the
chromosome is equal to LW + LS + LF.
Each element of vector X (each gene of the chromosome in

the GA) is represented by an integer, selected through a set of
394
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integer values, that is,

X = 0, if there is no DG
1 or 2 or · · · or NC, if there is DG

{
(28)

where X = 0 corresponds to the absence of DG, whereas
X = {1 or 2 or … or NC} corresponds to the first, or the
second, or …., or the NCth candidate DG capacity [24].
For instance, considering the first candidate bus for

installing wind turbines and assuming that this is the bus
number 4 of the distribution system, having five possible
scenarios of installed capacities (e.g. 20, 40, 60, 80 and
100 kW, such as those of Table 5), the value X = 1
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 3, pp. 389–400
doi: 10.1049/iet-gtd.2013.0442



www.ietdl.org

corresponds to 20 kW installed capacity, whereas the value
X = 5 corresponds to 100 kW installed capacity.
5.2 Initial population

The GA starts with the creation of the initial random
population of chromosomes (the initial population of
possible solutions of the problem), creating a table with
dimensions Npop × Npar with zero elements, where Npop is
the number of chromosomes and Npar is the number of
genes of each chromosome.

Step 1: for each possible solution, an integer number is
randomly selected between 1 and Npar.
Step 2: an h dimension vector H is randomly selected with
integer elements between 1 and Npar. For example, let us
suppose that Npar = 8 and that h = 5 is randomly chosen,
then the vector H is filled with integer numbers in the
interval [1, …, 8], for example, H = {1, 4, 8, 3, 6} where
H represents the 1st, 4th, 8th, 3rd and the 6th gene.
Step 3: finally, in an iterative process, for each element of H a
random number is generated between 1 and NC, that is, some
of the candidate scenarios are placed randomly in the gene of
H. For example, let us suppose that H1 = 1, so the first gene of
the chromosome will randomly pick a value between 1 and
NC; if, for example, H2 = 4, then the fourth gene of the
chromosome will randomly pick a value between 1 and NC

and so on.

In fact, the initial population includes zeros (no DG
placement) and random sizing of capacity installed in each
candidate bus. In this way, faster convergence to a good
solution can be achieved and an initial population with
random penetration rates of DG units is created.
5.3 Decoding and chromosome evaluation

Each chromosome is decoded using a decoding procedure.
This procedure takes as argument three tables, one per each
type of DG, and a coded chromosome (genes) and returns a
decoded chromosome (phenotypes). Each table contains the
candidate scenarios (potential sizes of DG for each
candidate bus). Therefore the zeros and integers 1, 2, …,
Fig. 3 IEEE 33-bus radial distribution system
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NC are translated into DG absence and DG installed
capacity, respectively.
For the evaluation of each chromosome, a PEM is solved in

order to obtain all the statistical information that is necessary
for calculating the objective function and controlling the
satisfaction of the constraints. If a constraint is violated, a
penalty is given in the objective function value, as
described in Section 5.4.

5.4 Handling of constraints and calculation of
fitness function

In the GA, in order to handle the violation of constraints while
seeking the best solution, a penalty function is applied.
Penalty function measures the degree the objective function
will be charged [27]. Penalties are incorporated into fitness
function, which is the evaluation function of the chromosome

Ffitness = �f (X , j)+
∑Nconstra ints

i=1

penaltyi (29)

where �f (X , j) is the value of the objective function as it is
calculated using PEM; Nconstra int s is the set of constraints;
penaltyi is the penalty because of ith constraint violation.
The penalty is calculated by the following formula

penaltyi = Cid
n
i (30)

where di is the distance from the upper or the lower limit, in
the case the constraint is violated; Ci is the coefficient of
violation equals to W1 near the limits and equals to W2 far
from the limits, with W1≪W2 and n usually equals to
two [28].

5.5 Next generations and GA termination

After evaluating the initial population, the best chromosomes
are selected as prospective parents, the pairs are selected and
the genetic operators are applied (crossover, mutation, special
genetic operators [26]), for the creation of the new population.
Comparing the population of the new generation with the one
of the previous generation, the best Npop chromosomes are
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Table 1 Data for the IEEE 33-bus distribution system

Branch Sending
bus

Receiving
bus

Resistance,
R, Ω

Reactance,
X, Ω

Real power load at receiving
bus, MW

Reactive power load at receiving
bus, MVΑr

1 1 2 0.0922 0.0477 0.1 0.06
2 2 3 0.493 0.2511 0.09 0.04
3 3 4 0.366 0.1864 0.12 0.08
4 4 5 0.3811 0.1941 0.06 0.03
5 5 6 0.819 0.707 0.06 0.02
6 6 7 0.1872 0.6188 0.2 0.1
7 7 8 1.7114 1.2351 0.2 0.1
8 8 9 1.03 0.74 0.06 0.02
9 9 10 1.04 0.74 0.06 0.02
10 10 11 0.1966 0.065 0.045 0.03
11 11 12 0.3744 0.1238 0.06 0.035
12 12 13 1.468 1.155 0.06 0.035
13 13 14 0.5416 0.7129 0.12 0.08
14 14 15 0.591 0.526 0.06 0.01
15 15 16 0.7463 0.545 0.06 0.02
16 16 17 1.289 1.721 0.06 0.02
17 17 18 0.732 0.574 0.09 0.04
18 2 19 0.164 0.1565 0.09 0.04
19 19 20 1.5042 1.3554 0.09 0.04
20 20 21 0.4095 0.4784 0.09 0.04
21 21 22 0.7089 0.9373 0.09 0.04
22 3 23 0.4512 0.3083 0.09 0.05
23 23 24 0.898 0.7091 0.42 0.2
24 24 25 0.896 0.7011 0.42 0.2
25 6 26 0.203 0.1034 0.06 0.025
26 26 27 0.2842 0.1447 0.06 0.025
27 27 28 1.059 0.9337 0.06 0.02
28 28 29 0.8042 0.7006 0.12 0.07
29 29 30 0.5075 0.2585 0.2 0.6
30 30 31 0.9744 0.963 0.15 0.07
31 31 32 0.3105 0.3619 0.21 0.1
32 32 33 0.341 0.5302 0.06 0.04

Table 2 Average value (μ) and standard deviation (σ) of load
growth for the IEEE 33-bus distribution system

Bus μ (kW) σ (kW)

1 0 0
2 0.0035 0.0013
3 0.00315 0.0018
4 0.0042 0.0018
5 0.0021 0.0012
6 0.0021 0.00085
7 0.007 0.0031
8 0.007 0.00327
9 0.0021 0.00096
10 0.0021 0.00125
11 0.001575 0.00061
12 0.0021 0.0012
13 0.0021 0.00082
14 0.0042 0.0025
15 0.0021 0.00071
16 0.0021 0.00073
17 0.0021 0.00113
18 0.00315 0.0011
19 0.00315 0.0015
20 0.00315 0.0014
21 0.00315 0.00123
22 0.00315 0.00138
23 0.00315 0.00149
24 0.0147 0.0046
25 0.0147 0.0078
26 0.0021 0.0012
27 0.0021 0.00084
28 0.0021 0.00112
29 0.0042 0.00218
30 0.007 0.0037
31 0.00525 0.0022
32 0.00735 0.0036
33 0.0021 0.00084
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selected as the new generation. The algorithm terminates
when it has exceeded the maximum number of generations
or when a better solution than the current best solution
cannot be found for a certain number of generations.

6 Results and discussion

The IEEE 33-bus radial distribution system is used for
demonstrating the proposed method. The GA–PEM and
GA–MCS algorithms were developed in Matlab 7.12 and
the computer program was executed in a PC having the
following specifications: processor Intel Core 2 Duo 2.00
GHz, 3 GB RAM, running under MS Windows 7 Pro
version 2009.
The IEEE 33-bus distribution system is shown in Fig. 3 and

its data are given in Table 1. Bus 1 is the slack bus and as a
result DG units cannot be connected there. The other buses
Table 3 Investment, maintenance and operating costs of DGs
and energy loss cost of the distribution system

Cost component DG type

Wind
DG

Photovoltaics
DG

Fueled DG

investment cost CI,
$/kW

1800 2000 850

maintenance cost
CM, $/kWh

0.05 0.03 0.02

operation cost CO,
$/kWh

0 0 GBM (0.03,
0.02, 0.01)

energy loss cost CL,
$/kWh

GBM (0.08, 0.09, 0.02)
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Table 6 Parameters of the GA

population size 50
rate of population for mating 30%
crossover probability 0.9
mutation probability 0.2
special genetic operators probability 0.2
elitism 1 chromosome
maximum generation number 200
number of consecutive generations that a
better chromosome has not been found

25

Table 7 Definition of scenarios

Scenario Wind speed
parameters

Solar radiation
parameters

Weights of the
objective function

1 kv = 2.1,
cv = 7.5

ks = 1.4, cs = 5.5 b1 = 0.1, b2 = 0.11,
b3 = 0.34, b4 = 0.34,

b5 = 0.11
2 kv = 1.8, cv = 6 ks = 1.8, cs = 6.5 b1 = 0.1, b2 = 0.11,

b3 = 0.34, b4 = 0.34,
b5 = 0.11

3 kv = 2.1,
cv = 7.5

ks = 1.4, cs = 5.5 b1 = 0.34, b2 = 0.11,
b3 = 0.34, b4 = 0.11,

b5 = 0.10

Table 4 Technical specifications of DGs

DG type Technical specification

wind turbines vci = 4 m/s
vco = 25 m/s
vn = 15 m/s
Poper factor = 0.9 lagging

photovoltaics sn = 1000 W/m2

power factor = 1.0
fueled DGs stable power

power factor = 0.9 lagging

Table 5 Candidate schemes for the type, allocation and sizing
of DGs

Bus Installed capacity, kW DG type

4 20 40 60 80 100 1, 2
7 40 80 120 160 200 1, 2, 3
8 40 80 120 160 200 1, 2
14 20 40 60 80 100 1, 2
18 20 40 60 80 100 1, 2, 3
24 100 200 300 400 500 1, 2, 3
25 100 200 300 400 500 1, 2, 3
30 40 80 120 160 200 1, 2
32 40 80 120 160 200 1, 2, 3

Note for DG type: 1 – wind DG, 2 – photovoltaics DG and
3 – fueled DG
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are PQ buses. Voltage in slack bus is supposed to be
V1 = 1.02 pu, the base power is 1 MVA and the base
voltage is 12.66 kV. The total load of the distribution
system is 3.715 MW and 2.3 MVAr.
Table 8 Optimal DG placement by GA–PEM for the IEEE 33-bus
correspond to different wind speed and solar radiation parameters

DG type Bus

Before DG placement After D

wind DG 14 —
18 —
32 —

photovoltaics DG 14 —
18 —
25 —
30 —
32 —

fueled DG 7 —
18 —
25 —
32 —

energy losses, MWh 1765.0
network loss ratio, % 5.14
DG penetration,% 0
RES penetration,% 0
RES/DG 0
probability of chance
constraint Pr{Sij≤Sijmax} to
be satisfied

—

probability of chance
constraint Pr{Vmin≤V≤
Vmax} to be satisfied

—

investment cost CI, $ —
maintenance cost CM, $ —
operating cost CO, $ —
energy loss cost CLt, $ —
capacity adequacy cost CA,
$

—

objective value f, $ —

IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 3, pp. 389–400
doi: 10.1049/iet-gtd.2013.0442
The load is expected to increase in the next year (year after
the reference year) as is shown in Table 2. The costs of DG
are as shown in Table 3. The technical characteristics of
DGs are shown in Table 4. The network constraints are as
follows: the voltage magnitude cannot exceed ± 6% of the
nominal grid voltage and power flow on the lines of the
network should not exceed 4 MVA. These restrictions are
distribution system for the Scenarios 1 and 2 of Table 7 that

Installed capacity (kW)

G placement – Scenario 1 After DG placement – Scenario 2

60 0
40 40
80 0
60 60
0 80
0 100
0 120

160 40
160 80
80 100
200 400
160 40

1199.4 1277.4
3.33 3.54
26.01 27.03
10.40 10.92
0.40 0.40
0.901 0.90

0.93 0.94

1 274 000 1 399 000
215 290 241 906
162 839 168 372
107 642 114 569
70 862 79 974

250 840 271 507
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Fig. 5 Evolution of individual costs of the best chromosome per
generation of the GA for Scenario 1

a Investment cost
b Maintenance, operation, energy loss and capacity adequacy cost

www.ietdl.org

not strict and must be met with a probability greater than 0.9,
which means that these are chance constraints. Penetration of
DG should not exceed 50% of the total load and the
percentage of renewable energy must be at least 40% of
total DG in order to achieve the target set by the network
operator for carbon emissions reduction and energy saving.
The candidate schemes of DG installation for the 33-bus

distribution system are shown in Table 5, where the
candidate buses are presented together with the candidate
sizes and type of DG that may be installed per bus. The
parameters of GA used are shown in Table 6. The
confidence level for the chance constraints is a = 0.9.
The three scenarios of Table 7 have been designed in order

to investigate the effect of uncertain parameters (shape and
scale parameters of the Weibull distribution of wind speed
and solar radiation) as well as the impact of the weights of
the objective function on the results. It should be noted that
Scenario 3 uses the optimal weights of the objective
function (17) computed by an analytic hierarchy process in
[12].
The proposed GA–PEM algorithm was executed 5–7 times

and it gave practically the same optimal solution for each
execution. The GA converged in the optimal solution after
45–55 generations. Thus, it can be concluded that running
five times the proposed GA–PEM, good results can be
obtained. More specifically, the application of the proposed
GA–PEM provides the optimal DG placement results
shown in Table 8 for the case of the IEEE 33-bus
distribution system for two different scenarios of values of
uncertain parameters (Scenarios 1 and 2 of Table 7). It is
concluded that the DGs are placed in the areas where
voltage drop seems to be more appreciable and out of the
limits. Despite the random load growth in the period under
examination, the energy losses reduce from 1765 MWh
(before DG placement) to 1199 MWh (Scenario 1) and
1277 MWh (Scenario 2), respectively. Chance constraints
and the ratio RES/DG converge close to the specified
limitations. The total RES penetration is equal to 10.40%
(Scenario 1) and 10.92% (Scenario 2), respectively, of total
load of the examined distribution system. The optimal
solution of Table 8 satisfies all the constraints and
minimises the total cost. Table 8 shows that in Scenario 2,
the penetration of photovoltaics increases, whereas the
installation of wind generation decreases. This is because of
the lower level of wind speed and the higher level of solar
illumination of Scenario 2 in comparison to Scenario 1
(Table 7).

Fig. 4 shows the evolution of the best chromosome per
generation of the GA for Scenario 1. It can be observed that
Fig. 4 Fitness value evolution of the best chromosome per
generation of the GA for Scenario 1

Fig. 6 Voltage variations at each node of the 33-bus distribution
system before and after DG placement for Scenario 1

a Before DG placement
b After DG placement
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Table 9 Comparison of the optimum solution found by GA–PEM and GA–MCS for the IEEE 33-bus distribution system for the
Scenarios 1 and 3 of Table 7 that correspond to different weights of the objective function

Scenario 1 Scenario 3

GA–PEM GA–MCS GA–PEM GA–MCS

energy losses, MWh 1199.4 1173.8 1175.6 1149.9
network loss ratio, % 3.33 3.37 3.26 3.30
DG penetration,% 26.01 26.01 27.04 27.04
RES penetration,% 10.40 10.40 10.92 10.92
RES/DG 0.40 0.40 0.40 0.40
probability of chance constraint Pr{Sij ≤Sijmax} to be satisfied 0.901 0.906 0.909 0.96
probability of chance constraint Pr{Vmin≤V≤Vmax} to be satisfied 0.93 0.99 0.97 0.99
investment cost CI, $ 1 274 000 1 274 000 1 335 000 1 335 000
maintenance cost CM, $ 215 290 212 659 224 850 223 150
operating cost CO, $ 162 839 163 132 168 232 168 221
energy loss cost CL, $ 107 642 104 964 105 508 102 957
capacity adequacy cost CA, $ 70 862 68 634 75 607 74 213
objective value f, $ 250 840 249 495 554 999 554 388
number of generations 48 51 51 54
total time elapsed, min 77.15 569.31 81.63 604.83
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the optimal solution of the ODGP problem has been found
after 48 generations. Fitness value corresponds to the
objective function value, as it is minimised, and these two
values are equal when all the constraints are satisfied, that
is, when there is no penalty cost. Fig. 5 illustrates the
evolution of individual costs of DGs in GA procedure for
Scenario 1. After DG placement, although the load
increases at each bus of the distribution system, an
improvement in the voltage profile is observed, as can be
seen in Fig. 6.
Table 9 compares the optimum solution found by the

proposed GA–PEM with that provided by the GA–MCS
of [11, 12] for Scenarios 1 and 3 of Table 7. It can be
observed from Table 9 that both methods provide
practically the same results. However, the proposed GA–
PEM is seven times faster than the GA–MCS. More
specifically, in case of Scenario 1, the GA–PEM
converged to the best solution after 77.15 minutes,
whereas the optimum solution of the GA–MCS was found
after 569.31 minutes. The much faster execution of the
proposed GA–PEM is due to the fact that PEM is much
faster than MCS in the solution of the PPF problem,
which has to be solved many times evaluating each
chromosome in each generation. Table 9 also shows the
impact of the weights of the objective function on the
results. More specifically, in Scenario 3, the value of the
objective function is increased in comparison to Scenario
1, mainly because of the increased value of the weight of
the investment cost.

7 Conclusion

In this paper, chance constrained programming was
introduced, as a stochastic programming model and a
PEM-embedded GA-based approach was proposed as a new
methodology for solving the ODGP problem considering
the uncertainties of load growth, wind power production,
protovoltaics production and the volatile future fuel prices
and electricity prices. The new method was demonstrated
on the IEEE 33-bus radial distribution system and
compared with the GA–MCS method. It was found that the
two methods provide practically the same results, however,
the proposed GA–PEM is seven times faster than the GA–
MCS because of the fact that PEM solves much faster than
MCS the many PPF problems that are evaluated by the GA.
IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 3, pp. 389–400
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