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Abstract: After the completion of core manufacturing and before the assembly of transformer active part, 2N
small individual cores and 2N large individual cores are available and have to be optimally combined into N
transformers so as to minimise the total no-load loss (NLL) of N transformers. This complex combinatorial
optimisation problem is called transformer no-load loss reduction (TNLLR) problem. A new approach
combining differential evolution (DE) and multilayer perceptrons (MLPs) to solve TNLLR problem is proposed.
MLPs are used to predict NLL of wound core distribution transformers. An improved differential evolution
(IDE) method is proposed for the solution of TNLLR problem. The modifications of IDE in comparison to the
simple DE method are (i) the scaling factor F is varied randomly within some range, (ii) an auxiliary set is
employed to enhance the population diversity, (iii) the newly generated trial vector is compared with the
nearest parent and (iv) the simple feasibility rule is used to treat the constraints. Application results show
that the performance of the proposed method is better than that of two other methods, that is, conventional
grouping process and genetic algorithm. Moreover, the proposed method provides 7.3% reduction in the cost
of transformer main materials.
Nomenclature
CGP conventional grouping process

DE differential evolution

GA genetic algorithm

IDE improved differential evolution

MAPE mean absolute percentage error

MLP multilayer perceptron

NLL no-load loss

TNLLR transformer no-load loss reduction

1 Introduction
Construction of distribution transformers of high quality at a
minimum possible cost is crucial for any transformer
manufacturing industry to face market competition. A critical
measure of transformer quality is transformer no-load loss
(NLL). The less the transformer NLL is, the higher the
transformer quality and efficiency become. The transformer
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designer can reduce transformer NLL by using appropriate
magnetic materials (e.g. Hi-B or amorphous instead of typical
M3 grade of magnetic material) or reducing core flux density
or flux path length [1]. Transformer actual (measured) NLL
deviates from the designed NLL because of the variability in
production process [2]. Reduction of transformer actual NLL
is a very important task for any manufacturing industry, since
(i) it helps the manufacturer not to pay NLL penalties and
(ii) it reduces the material cost (since smaller NLL design
margin is used).

Electric utilities should use more generating capacity to
produce additional electrical energy so as to compensate for
transformer losses. In addition, transformer NLL appears
24 h per day, everyday, for a continuously energised
transformer. Thus, it is in general preferable to design a
transformer at minimum NLL [3].

After the completion of core manufacturing and before the
assembly of transformer active part, 2N small individual cores
and 2N large individual cores are available and have to be
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 10, pp. 960–969
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optimally combined into N transformers so as to minimise
the total NLL of N transformers. This complex
combinatorial optimisation problem is called transformer
no-load loss reduction (TNLLR) problem.

The current industrial practice to solve the TNLLR
problem is to pre-measure and assign a grade (quality
category) to each individual core and then combine higher
and lower graded individual cores to achieve an ‘average’
value for the entire transformer [1]. This is referred to as
conventional grouping process (CGP).

Differential evolution (DE) is a relatively new evolutionary
optimisation algorithm [4, 5]. DE has been successfully
applied for the solution of difficult power system problems
[6–16], but has not been applied to TNLLR so far. A new
approach combining DE and multilayer perceptrons
(MLPs) to solve TNLLR problem is proposed in this paper.
MLPs are used to predict NLL of wound core distribution
transformers. An improved differential evolution (IDE)
method is proposed for the solution of TNLLR problem.

Many studies demonstrated that DE converges fast and is
robust, simple in implementation and use, and requires only a
few control parameters. In spite of the prominent merits,
sometimes DE shows the premature convergence and
slowing down of convergence as the region of global
optimum is approached. In this paper, to remedy these
defects, some modifications are made to the simple DE.
An auxiliary set is employed to increase the diversity of
population and prevent the premature convergence. In the
simple DE, the trial vector, or offspring, is compared with
the target vector with the same running index, whereas in
this paper, the trial vector is compared with the nearest
parent in the sense of Euclidean distance. Moreover, the
comparison scheme is changed according to the
convergence characteristics. The scaling factor F, which is
constant in the original DE, is varied randomly within
Gener. Transm. Distrib., 2009, Vol. 3, Iss. 10, pp. 960–969
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some specified range. The above modifications form an
IDE algorithm that is applied for the solution of TNLLR
problem. The proposed IDE algorithm is extensively tested
on a transformer manufacturing industry and the results of
the proposed IDE are compared with the results of two
other methods.

2 Formulation of TNLLR problem
The wound core shell-type distribution transformer is
composed of two small individual cores and two large
individual cores as shown in Fig. 1a. We denote with ‘11’ the
left small individual core, with ‘12’ the left large individual
core, and with ‘13’ and ‘14’ the other two individual cores, so
the arrangement of individual cores from left to right is ‘11’-
‘12’-‘13’-‘14’, as Fig. 1a shows. Industrial experiments have
shown that if the position of one core within the transformer
changes, then the transformer NLL also changes [1], for
example, the transformer with core arrangement
S1 � L1 � L2 � S2 has different transformer NLL in
comparison with the transformer with core arrangement
S2 � L1 � L2 � S1 (Fig. 1b). The small cores S1 and S2

theoretically have the same technical characteristics (e.g.
individual core NLL); however, in practice their characteristics
are different because of the variability in production process
[2], so the above two mentioned core arrangements have
different transformer NLL because of the non-homogeneous
electromagnetic field of the individual cores [1].

Transformers are usually produced in production batches
so as to minimise labour cost [1]. In this paper, the
production batch is defined as the production of N
theoretically identical transformers with exactly the same
technical characteristics that have been computed by one
and the same transformer design.

N three-phase transformers are constructed from 2N small
individual cores and 2N large individual cores. Let us denote
Figure 1 Wound core distribution transformer

a Assembled active part
b Impact of core position on transformer NLL [1]
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as Vs(Vl) the set of all 2N small (large) cores. A transformer is
represented by a vector t i , the elements of which correspond
to the four individual cores that assemble the transformer

t i ¼ sl
i l l

i l r
i sr

i

� �T
(1)

Variables sl
i, sr

i [ Vs represent the left and right small cores of
transformer t i, while l l

i , l r
i [ Vl the left and right large cores,

respectively. Since only one core (small or large) can be
assigned to one transformer and one position (left or right),
the following restrictions are held

sl
i = sr

i , l l
i = l r

i (2)

s{l,r}
k = s{l,r}

i , l {l,r}
k = l {l,r}

i with k = i (3)

where s{l,r}
i (l {l,r}

i ) indicates the small (large) core in the left or
right position for transformer t i.

Let us denote as c a vector containing one possible
combination of N three-phase transformers t i ,
i ¼ 1, 2, . . . , N , that can be constructed by 2N small
individual cores and 2N large individual cores

c ¼ tT
1 tT

2 . . . tT
N

� �T
(4)

where T indicates the transpose of a vector.

Vector c is of 4N � 1 dimensions since each transformer t i

is represented by a 4� 1 vector as (1) indicates. A specific
arrangement (combination) of all small and large cores, for
constructing the N three-phase transformers, corresponds
to a given value of vector c. Therefore any reordering of the
elements of vector c results in different arrangement of
individual cores, that is, different three-phase transformers.
Fig. 2 presents an example of vector c in case that six small
and six large cores are available. In particular, the serial
numbers from 1 to 6 correspond to small cores, whereas
the numbers from 7 to 12 to large cores. A randomly
selected arrangement of these cores is also presented in
Fig. 2 for constructing three different transformers. For
example, the first transformer consists of the small cores
with labels 5 and 1 and the large cores with labels 10 and
12. This is represented by the vector 5 10 12 1

� �T
in

accordance with (1). Then, vector c is constructed by
concatenating the vectors of the three transformers. The
core arrangement for the other two transformers is
generated accordingly and depicted in Fig. 2.

It is clear that the estimation of N transformers with
optimal quality (minimum total NLL) is equivalent to the
estimation of vector c, which minimises the following

copt ¼ arg min
c

XN

i¼1

NLLt i

( )
(5)

where NLLti
is the estimated NLL of transformer t i and copt
2
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is a vector that contains the optimal arrangement of all
available small and large cores so that the estimated total
NLL over all N transformers is minimised.

The estimated NLL, NLLt i
, of each transformer t i is

computed as follows

NLLti
¼ wti

� SNLLti
, 8t i, i ¼ 1, 2, . . . , N (6)

where wti
is the actual (measured) weight of the four

individual cores of transformer t i and SNLLti
is the

specific NLL (W/kg) of transformer t i that is estimated by
the MLP architecture of Section 3.1.

The estimated NLL of each transformer t i must be smaller
than a maximum NLL, NLLmax

NLLt i
, NLLmax, 8t i, i ¼ 1, 2, . . . , N (7)

It should be noted that the transformer manufacturer pays
NLL penalties for each transformer t i that violates (7).

In brief, the TNLLR problem is mathematically
formulated as follows: minimise the objective function (5)
subject to the constraints (2), (3) and (7).

As observed from (5), the estimation of the optimal core
arrangement results in a combinatorial optimisation
problem. For a typical number of small/large cores, direct
minimisation of (5) is practically infeasible since the
computational complexity for an exhaustive search is very

Figure 2 Example of codification of one candidate solution
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 10, pp. 960–969
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high. For example, for a typical production batch of 50
transformers (i.e. when 100 small and 100 large individual
cores are available), 5:35� 1022 combinations of core
arrangements should be considered [1]. Moreover, quality
control of individual cores can only check if the individual
cores are of acceptable quality or not, so quality control is
impossible to solve TNLLR problem. Because of the above
reasons, this paper introduces IDE-MLP technique for the
solution of TNLLR problem.

3 Overview of proposed
methodology
3.1 NLL prediction with MLPs

The transformer NLL is affected by magnetic material
parameters (e.g. thickness, type and hardness of magnetic
material), design parameters (e.g. rated magnetic induction,
dimensions of small and large individual cores) and
production parameters (e.g. mechanical stresses during the
formation of core, parameters of the annealing process,
actual weight of individual cores, actual NLL of individual
cores) [1, 17–24]. Unfortunately, there is no analytical
Gener. Transm. Distrib., 2009, Vol. 3, Iss. 10, pp. 960–969
i: 10.1049/iet-gtd.2009.0184
expression for NLL estimation that takes into account the
above qualitative and quantitative parameters. Moreover,
transformer NLL prediction is highly non-linear [1, 23–25].

Artificial neural networks, because of their highly non-
linear capabilities and universal approximation properties,
have been proven very effective for NLL prediction [1].
After enough experimentation, it was found that MLPs
with eight neurons in the input layer, one hidden layer and
one neuron in the output layer (i.e. transformer-specific
NLL) effectively solve the NLL prediction problem
[1, 17]. Moreover, it was found that the sigmoid activation
function provided the best results [1].

Table 1 shows the eight input parameters for NLL prediction
[1]. The three out of eight input parameters and more
specifically the parameters I6, I7 and I8 reflect the importance
of core arrangement on NLL [1]. In Table 1, the attribute I5

represents the ratio of actual over designed total NLL of the
four individual cores. The attribute I4 represents the ratio of
actual over designed total weight of the four individual cores.
The attribute I2 represents the average specific NLL of the
magnetic material of the four individual cores, where
Table 1 Input parameters (attributes) for NLL prediction

Attribute Description

I1 Rated magnetic induction

I2
smaterial, ‘11’

15 000 þ smaterial, ‘12’
15 000 þ smaterial, ‘13’

15 000 þ smaterial, ‘14’
15 000

4

I3
smaterial, ‘11’

17 000 þ smaterial, ‘12’
17 000 þ smaterial, ‘13’

17 000 þ smaterial, ‘14’
17 000

4

I4
wcore, ‘11’

actual þ wcore, ‘12’
actual þ wcore, ‘13’

actual þ wcore, ‘14’
actual

wcore, ‘11’
designed þ wcore, ‘12’

designed þ wcore, ‘13’
designed þ wcore, ‘14’

designed

I5
score, ‘11’

actual � wcore, ‘11’
actual þ score, ‘12’

actual � wcore, ‘12’
actual þ score, ‘13’

actual � wcore, ‘13’
actual þ score, ‘14’

actual � wcore, ‘14’
actual

score, ‘11’
designed � w

core, ‘11’
designed þ score, ‘12’

designed � w
core, ‘12’
designed þ score, ‘13’

designed � w
core, ‘13’
designed þ score, ‘14’

designed � w
core, ‘14’
designed

I6
score, ‘11’

actual þ score, ‘12’
actual

score, ‘11’
designed þ score, ‘12’

designed

I7
score, ‘12’

actual þ score, ‘13’
actual

score, ‘12’
designed þ score, ‘13’

designed

I8
score, ‘13’

actual þ score, ‘14’
actual

score, ‘13’
designed þ score, ‘14’

designed
963
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smaterial, ‘11’
15 000 denotes the specific NLL (W/kg) at 15 000 Gauss of

the magnetic material of the individual core that is placed at
position ‘11’ shown in Fig. 1a. Table 1 uses some more
variables. In particular, the parameter smaterial, ‘11’

17 000 denotes the
specific NLL at 17 000 Gauss of the magnetic material of the
individual core that is placed at position ‘11’. The variable
score, ‘11’
actual represents the actual specific NLL of the individual

core at place ‘11’, that is, the ratio of actual NLL of the
individual core at place ‘11’ over its actual weight. It should be
noted that score, ‘11’

actual refers to the manufactured individual core,
whereas smaterial, ‘11’

15 000 refers to the magnetic material of the
individual core. Moreover, for an individual core operated at
15 000 Gauss, score, ‘11’

actual . smaterial, ‘11’
15 000 , because of the effect of

the manufacturing process on the NLL of the individual core
[1]. The variable score, ‘11’

designed represents the designed specific
NLL of the individual core at place ‘11’, which is calculated
from the NLL curve of the individual core [1]. The parameter
wcore,‘11’

actual represents the actual weight of the individual core at
place ‘11’, whereas the variable wcore, ‘11’

designed represents the
designed weight of the individual core at place ‘11’.

Table 1 shows that the following data have to be recorded
for each individual core:

1. The specific NLL of the magnetic material of the
individual core at 15 000 and at 17 000 Gauss.

2. The actual weight of the individual core.

3. The actual NLL of the individual core.

It should be noted that for the same production batch, all
individual cores have the same rated magnetic induction and
the same designed specific NLL. Moreover, all small
individual cores have the same designed weight. Similarly,
all large individual cores have the same designed weight.

It was found that the best results are obtained if each of the
MLPs corresponds to a different environment (i.e. to a
4
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certain supplier, grade and thickness of magnetic material)
[1, 17]. The MLP performance is evaluated by the mean
absolute percentage error (MAPE), which is defined as
follows

MAPE ¼
1

N

XN

i¼1

jSi � Ŝij

Si

� 100% (8)

where Si is the actual (measured) specific NLL of transformer
i, Ŝi is the specific NLL of transformer i that is predicted by
the MLP and N is the number of samples in the considered
set (training set or test set).

3.2 NLL reduction with IDE-MLP

Table 2 presents a summary of the main steps of IDE-MLP
solution to TNLLR problem.

4 IDE methodology for TNLLR
4.1 Overview

DE is a genetic algorithm (GA)-like optimisation algorithm
but it differs from GA with respect to the mechanisms of
reproduction and selection.

The proposed IDE methodology for the solution of
TNLLR problem is composed of the following steps:

Step 1: Generation counter G is set to zero. Next,
initialisation takes place (Section 4.2).

Step 2: Evaluation of candidate solutions (Section 4.9).

Step 3: Generation counter G is increased by one.

Step 4: Mutation with randomly varied scaling factor F
(Section 4.3).
Table 2 Summary of the main steps of IDE-MLP solution to TNLLR problem

Step 1 Based on customer requirements and several techno-economical criteria, design the transformers of a specific
production batch [1]. From the transformer design, the environment type (i.e. supplier, thickness and grade of

magnetic material) is defined

Step 2 Based on transformer design, construct the small and large individual cores and measure all necessary parameters
(i.e. the actual NLL and weight) so that the eight attributes of Table 1 for a specific core arrangement can be

calculated

Step 3 Solve the TNLLR problem of Section 2 using IDE (Section 4)

Step 4 Assemble the transformers using the optimal core arrangement copt that has been computed by the IDE of Step 3

Step 5 Measure the actual NLL for all constructed transformers of the production batch. Then, compare them with the
predicted NLL, which are provided by the MLP

Step 6 In case of large deviation between the measured and the predicted NLL, retrain the MLP [1]. Then, store the new
estimated weights in the MLP database to be used for the following production batches. Otherwise, retain the

same MLP weights
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 10, pp. 960–969
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Step 5: Crossover (Section 4.4).

Step 6: Evaluation of candidate solutions (Section 4.9).

Step 7: Selection (Section 4.5) with the use of the auxiliary set
concept (Section 4.6).

Step 8: If the termination criterion (maximum number of
generations) is not met, then go to Step 3, else IDE
terminates.

4.2 Initialisation

An initial population of NP candidate solutions is randomly
generated and is used as the parent population of the first
iteration or generation. More specifically, the population is
initialised by randomly generated individuals within the
boundary constraints

x0
j,i ¼ randj,i[0, 1](x(U)

j � x(L)
j )þ x(L)

j (9)

where i ¼ 1, 2, . . . , NP, j ¼ 1, 2, . . . , D, D is the
variable dimension, x(L)

j and x(U)
j are the lower and upper

boundary of the j component, respectively, and randj,i[0, 1]
denotes a uniformly distributed random value in the range
[0, 1]. In the initial population, the solution of CGP is
also included.

4.3 Mutation

For each target vector, or parent vector xG
i , a mutant vector is

generated according to

vGþ1
i ¼ xG

n1 þ F (xG
n2 � xG

n3) (10)

where random indexes n1, n2 and n3 are integers, mutually
different, and also chosen to be different from the running
index i. In the initial DE scheme [4], the parameter F is a
real and constant factor during the entire optimisation
process, whose range is F [ (0, 2]. However, no optimal
choice of F has been proposed in the bibliography of DE.
All the studies used an empirically derived value, and in
most cases, F varies from 0.4 to 1. This means F is
strongly problem-dependent and the user should choose F
carefully after some trial and error tests. In this paper, F is
varied randomly within some specified range, as follows

F ¼ a þ b � randi[0, 1] (11)

where a and b are positive and real-valued constants, the sum
of a and b is less than 1, and randi[0, 1] denotes a uniformly
distributed random value in the range [0, 1].

Consequently, F is different for each generation, and the
computation of F by (11) is effective when the optimal
value of F is difficult to be determined for complicated
problems like TNLLR.
Gener. Transm. Distrib., 2009, Vol. 3, Iss. 10, pp. 960–969
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4.4 Crossover

The trial vector uGþ1
i is generated using the parent and

mutated vectors as follows

uGþ1
j,i ¼

vGþ1
j,i if randj,i[0, 1) � CR or j ¼ k

xG
j,i otherwise

(
(12)

where k [ {1, 2, . . . , D} is the randomly selected index
chosen once for each i, and CR is the parameter that is a
real-valued crossover factor in the range [0, 1] and controls
the probability that a trial vector component comes from
the randomly chosen, mutated vector vGþ1

j,i , instead of the
current vector xG

j,i . If CR is 1, then the trial vector uGþ1
i is

the replica of the mutated vector vGþ1
i .

4.5 Selection

To select the population for the next generation, the trial
vector uGþ1

i and the target vector xG
i are compared, and the

individual of the next generation xGþ1
i is obtained

according to the following rule for minimisation problems

xGþ1
i ¼

uGþ1
i if f (uGþ1

i ) � f (xG
i )

xG
i otherwise

(
(13)

In the original DE, the trial vector or offspring uGþ1
i is

compared with the target vector xG
i whose index is the

same as running index i using (13). More specifically,
the offspring replaces the parent if it is fitter. Otherwise,
the parent survives and is passed on to the next generation
(iteration of the algorithm). This means that the original
DE uses a greedy selection scheme where the offspring
only replaces the parent if it has a better fitness score.
According to the selection scheme of the original DE, a
trial vector is compared with only one individual, not all
the individuals in the current population. Owing to the
greedy selection scheme, all the individuals of the next
generation are as good as or better than their counterparts
in the current generation.

In the improved DE, the only modification to the original
DE is regarding the individual (parent) being replaced. In the
original DE, the offspring only replaces the parent if it has a
better fitness score, whereas in the improved DE the
offspring replaces the most similar individual of the
population (if it is fitter) [26]. Since DE uses a real-valued
encoding, the similarity measure used was Euclidean
distance between two candidate solutions [26]. By this
scheme, as the optimisation proceeds, the individuals are
scattered and gathered around the local optimal points.
However, in this paper, only global optimisation is
considered, and if there is no improvement of the optimal
value during a predefined number of generations, then the
comparison scheme is changed to that of the original DE.
Therefore in the initial period of optimisation, the DE
algorithm explores to find not only global but also local
965
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optima, and in the later stage, it searches only for the global
optima with greedy selection scheme.

4.6 Auxiliary set

In the original DE, one population set is used: the main set
Pm. In the improved DE, instead of one population set Pm,
two population sets are used: the main set Pm and the
auxiliary set Pa. The reason for this is to make use of
potential trial points that are normally rejected in the
original DE. It has been shown in [27] that the introduction
of Pa increases the exploration of the search in the case of
very practical large-scale global optimisation problems.
Initially, two sets each containing NP points are generated
in the following way: create V using (9) and next iteratively
sample two points from V, the best point xi going to Pm

and the other x‘i to Pa. At each generation, if the trial point
yi, corresponding to the target xi, does not satisfy the greedy
criterion f (yi) , f (xi), then the point yi is not abandoned
altogether, rather it competes with its corresponding target
in the set Pa. If f (yi) , f (x‘i), then yi replaces x‘i in the
auxiliary set Pa. Some good points from Pa can then be used
to replace some bad points in Pm periodically.

4.7 Treatment of constraints

Most optimisation problems in the real world have constraints
to be satisfied. One common approach to deal with constraints
is to penalise constraint violations using an appropriate
penalty function [28]. In this approach, considerable effort is
required to tune the penalty coefficients. In this paper, three
selection criteria are used to handle the constraints of the
TNLLR problem:

1. If two solutions are in the feasible region, then the one
with the better fitness value is selected.

2. If one solution is feasible and the other is infeasible, then
the feasible one is selected.

3. If both solutions are infeasible, then the one with the
lowest amount of constraint violation is selected.

4.8 Handling of integer variables

DE in its initial form is a continuous variables optimisation
algorithm, and was extended to mixed variables problems
[5, 29]. During the evolution process, the integer variable is
treated as a real variable, and in evaluating the objective
function, the real value is transformed to the nearest integer
value as follows

f ¼ f (Y ) : Y ¼ yj (14)

where

yj ¼
xj if xj is integer
INT(xj) if xj is continuous

�
(15)
6
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where INT (xj) function gives the nearest integer to xj, and
the solution vector is x ¼ [x1, x2, . . . , xD].

4.9 Evaluation

For each candidate solution c, the specific NLL, SNLLt i
, of

transformer t i is computed by the MLP method. Next, the
estimated NLL, NLLti

, of transformer t i is computed by
(6), since wti

(the actual weight of the four individual cores
of transformer t i) is known (it has been measured and
recorded into a database). Finally, the value of the objective
function is

PN
i¼1 NLLti

, as (5) shows.

5 Results and discussion
This section presents NLL prediction and reduction results.
In case of NLL prediction, the MLP method is compared
with the NLL curve method. In case of NLL reduction, the
proposed IDE-MLP is compared with the CGP and the
GA-MLP method. All these methods were implemented
using MATLAB 6.1 on a computer with Pentium 1.5 GHz
processor. MATLAB neural network toolbox 4.0 was used
for training the MLPs for TNLLR prediction.

5.1 NLL prediction

The MLP-based NLL prediction technique has been
extensively tested on a transformer industry and three
different environments have been examined [1, 17]. The
first environment corresponds to a magnetic steel of grade
M3 (according to USA AISI 1983), thickness of 0.23 mm,
while the supplier of the magnetic material is Supplier
A. The second corresponds to grade M4, 0.27 mm,
Supplier B. The third environment has grade Hi-B,
0.23 mm thickness, also from Supplier A.

In case of the first environment, a set of 1680 actual
industrial measurements (training set) has been used to train
the MLP and a set of 560 independent industrial
measurements (test set) has been utilised to evaluate the
prediction accuracy of the MLP. The trained MLP presents
a MAPE of 0.95% on the test set in comparison with 2.85%
MAPE that is obtained by the NLL curve (current
practice). This performance has been also verified for the
other two environments where the MLP method improves
the NLL prediction accuracy by more than 65% in
comparison with the NLL curve method, as Table 3 shows.

5.2 NLL reduction

5.2.1 Test cases: Ten test cases have been considered that
correspond to commercial transformers with rated power of
50, 100, 160, 250, 400, 630, 800, 1000, 1250 and
1600 kVA, respectively. Each test case corresponds to a
production batch of 50 transformers, that is, for each test
case it is requested to optimally group 100 small and 100
large cores so as to produce N ¼ 50 transformers. Because
of the complexity of each test case and the huge number
of 5:35� 1022 combinations of core arrangements of the
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 10, pp. 960–969
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whole solution space, currently there is no tool available to
find the global optimum solution with 100% certainty. A
Greek transformer manufacturer provided all the necessary
data for these test cases.

5.2.2 Parameter values for IDE: The population size
and the maximum number of generations are set to 30 and
200, respectively. The best parameter values for IDE were
selected after 100 trials of IDE method with varied values
of IDE parameters. The average total NLL of the final
solutions for different values of IDE parameters are shown
in Table 4. The best settings are a ¼ 0.4, b ¼ 0.4 and
CR ¼ 0:9, since they provide the minimum total NLL, as
Table 4 shows. These settings were also confirmed for the
other nine test cases of Section 5.2.1.

5.2.3 Comparison of TNLLR methods: The proposed
IDE-MLP is compared with the CGP as well as the GA-MLP
method. The IDE-MLP and the GA-MLP are evolutionary
optimisation techniques. In each evolutionary optimisation
technique: (i) the population size is set to 30, (ii) the
maximum number of generations is set to 200 and (iii) the
integer codification of (4) is used for the candidate solutions.
In case of IDE-MLP, the parameter values of IDE are
a ¼ 0.4, b ¼ 0.4 and CR ¼ 0:9, as computed in Section
5.2.2. In case of GA-MLP, the parameter values of GA are
crossover probability 0.3, mutation probability 0.06 and
uniform crossover [1, 17]. The statistic results of IDE-MLP
and GA-MLP over 100 trials are shown in Table 5 together

Table 3 Comparison of NLL curve and MLP method in the
prediction of transformer NLL

Environment MAPE on test
set, %

MAPE reduction of MLP
against NLL curve, %

NLL
curve

MLP

1 2.85 0.95 66.7

2 3.76 1.18 68.6

3 3.08 1.07 65.3

Table 4 Impact of IDE parameters on the computed final
solution for the case of 100 kVA transformers

IDE
parameters

Average total NLL, W

a b CR

0.2 0.3 0.8 10 931

0.3 0.3 0.9 10 855

0.3 0.4 0.8 10 693

0.4 0.4 0.9 10 688

0.4 0.5 0.8 10 796
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with the results of a single execution of CGP deterministic
technique. Table 5 shows that only the proposed IDE-MLP
technique converges to the optimal solution, for example,
10 685 W minimum total NLL for the 50 transformers. The
success rate of IDE-MLP is 83%, that is, 83 times out of 100
trial runs the same optimal answer is obtained. As can be seen
from Table 5, the execution time of all methods is very low,
so all methods are applicable in an actual industrial
environment; however, the IDE-MLP method is finally the
best, since it is the only technique that finds the optimum
solution. It should be noted that the superiority of IDE-
MLP method has been also verified on the other nine test
cases of Section 5.2.1.

5.2.4 Exploitation of results: It was found in Section
5.2.3 that the best technique for the solution of TNLLR
problem is the proposed IDE-MLP method. That is why
several core production batches of various power and
voltage ratings have been grouped using IDE-MLP
method and the MAPE of these batches is 1.14%, as
Table 6 shows. This MAPE value is coming from the
accuracy of the MLP (Section 5.1) that is used during the
IDE-MLP-based grouping process. This is compared with
5.22% MAPE for the CGP, as Table 6 shows. It is
common practice that the transformer designer usually uses
a NLL design margin, for example, 15% higher [1] than
the respective MAPE value, so NLL design margins of
1.31% and 6.00% have been used when the core grouping
process is based on IDE-MLP and CGP, respectively, as
can be seen from Table 6.

Table 5 Optimisation results for grouping 100 small and 100
large cores of the same transformer design with 100 kVA
rated power

Parameter Method

CGP GA-MLP IDE-MLP

minimum total NLL, W 11 221 10 737 10 685a

average total NLL, W 10 846 10 688

maximum total NLL, W 10 963 10 708

minimum error, % 5.02 0.49 0.00

average error, % 1.51 0.03

maximum error, % 2.60 0.22

success rate, % 0 0 83

average number of
generations

168 91

average execution time
per trial, min

0.23 2.45 2.08

a10 685 W is considered as the optimum solution and error
values and success rates are computed according to this
optimal solution
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The significant reduction of NLL design margin that is
due to the effectiveness of IDE-MLP in the solution of
TNLLR problem yields significant reduction in the cost
of transformer main materials. As an example, the design
of the same transformer (same specification) with 160 kVA
rated power and 315 W NLL is implemented twice. The
first design, denoted as Design 1, uses 6.00% NLL design
margin (the core grouping is based on CGP), so the
designed NLL is 315� (1� 0:06), that is, 296 W. The
second design, denoted as Design 2, uses 1.31% NLL
design margin (the core grouping is based on IDE-MLP),
so the designed NLL is 315� (1� 0:0131), that is,
311 W. With the help of appropriate software that is based
on a parallel mixed integer programming-finite element
method [1], the above two transformer designs are
optimised, that is, their main materials cost is minimised
and the results are shown in Table 7. Using the cost data
of Table 7, Fig. 3 is created that compares the cost of
materials of the two different designs of Table 7. Fig. 3
shows that a 100� 92:7, that is, 7.3% cost saving on the
four main materials is obtained because of the reduced
NLL design margin that is a reality thanks to the use of
IDE-MLP grouping method. It can be also seen from
Fig. 3 that the cost saving of magnetic material is 11.8%,
whereas the cost saving of winding material (copper) is 2.4%.

Table 6 Accuracy of optimisation methods and NLL design
margin

Method MAPE, % NLL design margin, %

CGP 5.22 6.00

IDE–MLP 1.14 1.31

Table 7 Comparison of the cost of materials of two different
designs for the same 160 kVA transformer specification

Description Design 1
(CGP)

Design 2
(IDE-MLP)

rated power, kVA 160 160

specified NLL, W 315 315

NLL design margin, % 6.00 1.31

designed NLL, W 296 311

magnetic material
cost, $

1825.18 1610.66

winding material cost,
$

1626.32 1587.03

insulating material
cost, $

194.01 172.40

oil cost, $ 298.45 286.62

main materials cost, $ 3943.96 3656.71
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6 Conclusion
A novel approach combining IDE and MLPs to solve the
TNLLR problem is proposed in this paper. More
specifically, MLPs are used to predict NLL of wound core-
type transformers prior to their assembly. The proposed
IDE-MLP performs better than GA-MLP and CGP. The
application of IDE-MLP method to the solution of
TNLLR problem reduces the NLL design margin to
1.31%, which in turn provides 7.3% cost saving on the four
main materials of transformer. Thanks to its effectiveness,
the IDE-MLP method protects the manufacturer from
paying NLL penalties.
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