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bstract

In this paper, a decision tree method is proposed for the selection of the winding material in power transformers. The proposed method is very

ast and effective, since it divides by two the effort of the transformer design engineer. The accuracy of the proposed method is 94%, which makes
t very efficient for industrial use.
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. Introduction

The variation in the cost of the materials used in the trans-
ormer manufacturing has direct impact in the design of the
ptimum transformer, i.e. the transformer that meets the spec-
fication with the minimum manufacturing cost. The material
f the transformer windings can be copper (CU) or aluminum
AL). Since CU and AL are stock exchange commodities, their
rices can significantly change from time to time. In addition,
U and AL conductors have different technical characteristics.
onsequently, in some transformer designs it is more economi-
al to use CU windings instead of AL windings and vice versa.
owever, this has to be checked in every transformer design,
hich means that for each design, there is a need to optimize

wice the transformer (once with CU and once with AL wind-
ngs) and afterwards to select the most economical design. In this
aper, a decision tree (DT) method is proposed for the selection
f the winding material. The proposed method is very fast and
ffective, since it divides by two the effort of the transformer
esign engineer. The accuracy of the proposed method is 94%,
hich makes it very efficient for industrial use.

The paper is organized as follows: Section 2 briefly presents

he procedure to find the optimum transformer. Section 3
resents an overview of the decision tree methodology. Sec-
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ions 4 and 5 are focused on the application of the decision
ree methodology for the selection of winding material in power
ransformers. Section 4 describes the creation of the learning and
est sets and Section 5 presents the results. Section 6 concludes
he paper.

. Optimum transformer

The power transformers considered in this paper are three-
hase, wound core and their magnetic circuit is of shell type. In
he industrial environment considered, the optimum transformer
s calculated with the help of a suitable computer program, which
ses 134 input parameters in order to make the transformer
esign as parametric as possible [1]. The computer program
llows many variations in design variables. These variations per-
it the investigation of enough candidate solutions. For each one

f the candidate solutions, it is checked if all the specifications
limits) are satisfied, and if they are satisfied, the cost is estimated
nd the solution is characterized as acceptable. On the other
and, the candidate solutions that violate the specification are
haracterized as non-acceptable solutions. Finally, among the
cceptable solutions, the transformer with the minimum man-
facturing cost is selected, which is the optimum transformer.
ome of these 134 input parameters have very strong impact

n the determination of the optimum transformer, e.g. the input
arameters such as the unit cost (in $/kg) of the magnetic mate-
ial, the unit cost of the winding material and the type of the
inding material (CU or AL).
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. Overview of decision trees

The decision tree methodology [2–4] is a non-parametric
earning technique able to produce classifiers about a given prob-
em in order to reduce information for new, unobserved cases.
he DT is a tree structured upside down, built on the basis of a
earning Set (LS). The LS comprises a number of preclassified
tates defined by a list of candidate attributes.

In order to detect if a node is terminal, i.e. “sufficiently” class
ure, the classification entropy of the node with a minimum
reset value Hmin is compared. If it is lower than Hmin, then the
ode is sufficiently class-pure and it is not further split. Such
odes are labeled LEAVES. Otherwise, a suitable test is sought
o divide the node, by applying the optimal splitting rule. In
he case that no test can be found with a statistically significant
nformation gain, the node is declared a DEADEND and it is
ot split.

DTs are tested using test sets (TS), comprising a number of
imilar, preclassified, but independent transformer designs. The
lass (CU or AL) of each of these transformer designs is com-
ared to the class of the terminal node finally led to by applying
he tests of the various non-terminal nodes. This comparison
rovides the DT classification error rate.

Each node possesses a subset of transformer designs with the
ollowing characteristics:

En: the transformer designs subset of node n of the DT.
N: size (number of transformer designs) of En.
nCU: number of transformer designs with CU windings in En.
nAL: number of transformer designs with AL windings in En.

The relative frequencies of transformer designs with CU and
L windings for node n will be

CU = nCU

nCU + nAL
= nCU

N
and fAL = nAL

nCU + nAL
= nAL

N

(1)

The entropy of En with respect to the class partition of its
lements, is defined as

c(En) = −(fCU log fCU + fAL log fAL) (2)

A test T is defined at node n as

: Ai ≤ t (3)

here Ai is the value of attribute i of a particular transformer
esign and t is a threshold value.

By applying the test T to all transformer designs (TD) of node
, En is split into two subsets En1 and En2

n1 = {TD ∈ En : Ai ≤ t} and En2 = {TD ∈ En : Ai > t}
(4)
If ni is the number of transformer designs in Eni, i = 1, 2, the
orresponding frequencies are given by

1 = n1

n1 + n2
= n1

N
and f2 = n2

n1 + n2
= n2

N
(5)
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The entropy of En with respect to the partition induced by T
s

T (En) = −(f1 log f1 + f2 log f2) (6)

here HT(En) is a measure of the uncertainty of the outcome of
est T.

The mean conditional entropy of En, given the outcome of
est, corresponds to the residual entropy after the application of

and is defined as

c(En|T ) = f1Hc(En1) + f2Hc(En2) (7)

The information gained from the application of test T is
xpressed by the achieved reduction of the learning subset
ntropy

(En; T ) = Hc(En) − Hc(En|T ) (8)

A more objective (less biased) estimator of the merit of test
is provided by the normalized information gain, defined as

(En; T ) = 2I(En; T )

Hc(En) + HT (En)
∈ [0, 1] (9)

Under the hypothesis of no correlation between the test T and
he class partition in the Universe U of the transformer designs
resp. Un), that is for zero actual increase in information, the ran-
om variable NI(En;T), which is an estimator of the total actual
nformation gain, is X2-distributed with one degree of freedom
nd its expected value is positive and inversely proportional to
he size of the subset En

I(En; T ) ∼ X2(1) (10)

If α is the risk level of not detecting situations of only appar-
nt information gain and Xcr the value such that P(X > Xcr) = α,
here X a random variable following an X2 distribution with
ne degree of freedom, then the following statistical test can be
ormulated: “the node splitting test T is rejected as uncorrelated
ith the class partition if Q1 = NI(En;T) < Xcr”, where N is the
umber of learning states in En.

. Creation of the learning and test sets

For the creation of the learning and test sets, six power rat-
ngs (250, 400, 630, 800, 1000 and 1600 kVA) are considered.
or each transformer, nine categories of losses are taken into
ccount, namely AA′, AB′, AC′, BA′, BB′, BC′, CA′, CB′, CC′,
ccording to Ref. [5]. Seven different unit costs (in $/kg) are
onsidered for the CU and the AL winding. Based on the above,
× 9 × 7 = 378 transformer design optimizations with CU wind-

ng (CU designs) and 378 transformer design optimizations with
L winding (AL designs) are realized. For each design, either

he CU design or the AL design is the final optimum design
with the least manufacturing cost). In total, 6 × 9 × 72 = 2646
nal optimum designs are collected and stored into databases.

he databases are composed of sets of final optimum designs

FOD) and each FOD is composed of a collection of input/output
airs. The input pairs or attributes are the parameters affecting
he selection of winding material. Attributes have been selected
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Table 1
Attributes

Symbol Attribute name

I1 CU unit cost ($/kg)
I2 AL unit cost ($/kg)
I3 I1/I2

I4 Magnetic material unit cost ($/kg)
I5 I4/I1

I6 I4/I2

I7 Guaranteed no-load losses (W)
I8 Guaranteed load losses (W)
I9 I7/I8

I10 Rated power (kVA)
I11 Guaranteed short-circuit voltage (%)
I12 I7/I10
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Table 3
Transformer attribute values

Attribute Value Unit

I1 4.81 $/kg
I2 5.13 $/kg
I3 0.94 –
I4 1.78 $/kg
I5 0.37 –
I6 0.35 –
I7 610 W
I8 6000 W
I9 0.10 –
I10 400 kVA
I11 4 %
I
I
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5.2. Selection of winding material

T
D

N

1
1
1
1

13 I8/I10

ased on extensive research and transformer designers’ expe-
ience. The list of 13 attributes, initially selected, is shown in
able 1. The output pairs comprise the type of winding (CU or
L) that corresponds to each FOD. The learning set is composed
f 1350 sets of FODs and the test set has 1296 independent sets
f FODs.

. Results and discussion

.1. Decision tree

Fig. 1 shows the decision tree for the selection of the winding
aterial. The decision tree is automatically built on the basis

f the learning set of 1350 FODs with the 13 attributes list of
able 1. The notation used for the DT nodes is explained in
ig. 2.

Each terminal node of the decision tree of Fig. 1 produces
ne decision rule, on the basis of its CU index, i.e. the ratio
f CU designs over the FODs of that node. For example, from
erminal node 21 the following rule is derived: if I3 > 0.7616 and

5 ≤ 0.4452 and I3 > 0.9564 and I7 > 860, then choose AL, since
he CU index of node 21 is 0.0. Table 2 presents the 13 decision
ules of the 13 terminal nodes of the decision tree of Fig. 1. t

able 2
ecision tree rules

umber Node Rule

1 4 If I3 ≤ 0.7616 and I
2 7 If I3 ≤ 0.7616 and I
3 8 If I3 ≤ 0.7616 and I
4 9 If I3 ≤ 0.7616 and I
5 15 If 0.7616 < I3 ≤ 0.9
6 17 If 0.7616 < I3 ≤ 0.9
7 18 If 0.7616 < I3 ≤ 0.9
8 19 If 0.7616 < I3 ≤ 0.9
9 21 If I3 > 0.9564 and I5

0 22 If I3 > 0.9564 and I5

1 23 If I3 > 0.9564 and I5

2 24 If I3 > 0.7616 and I5

3 25 If I3 > 0.7616 and I5
12 1.53 W/kVA

13 15 W/kVA

Among the 13 candidate attributes, the decision tree auto-
atically selected the following five most important attributes:

3 = CU unit cost

AL unit cost

5 = magnetic material unit cost

CU unit cost

7 = guaranteed no load losses [W]

8 = Guaranteed load losses [W]

13 = guaranteed load losses

rated power

[
W

kVA

]

The selection of the above five attributes is reasonable and
xpected, since they are all related to the selection of winding
aterial (CU or AL) in power transformers.
Let us suppose that the decision tree of Fig. 1 has to select
he winding material of a transformer that the attribute values

5 ≤ 0.3760 then AL

5 > 0.3760 and I8 > 17240 then AL

5 > 0.3760 and I8 ≤ 17240 and I3 ≤ 0.6399 then CU

5 > 0.3760 and I8 ≤ 17240 and I3 > 0.6399 then CU
564 and I5 ≤ 0.4452 and I7 > 1121 then AL
564 and I5 ≤ 0.4452 and I7 ≤ 1121 and I13 > 13.3377 then AL
564 and I5 ≤ 0.4452 and I7 ≤ 1121 and I13 ≤ 13.3377 and I9 ≤ 0.1600 then CU
564 and I5 ≤ 0.4452 and I7 ≤ 1121 and I13 ≤ 13.3377 and I9 > 0.1600 then AL
≤ 0.4452 and I7 > 860 then AL
≤ 0.4452 and I7 ≤ 773 then AL
≤ 0.4452 and 773 < I7 ≤ 860 then AL
> 0.4452 and I7 ≤ 1121 then CU
> 0.4452 and I7 > 1121 then AL
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Fig. 1. Decision tree for the

re shown in Table 3. The winding material of the transformer
s selected as follows:

We start from node 1. The transformer has I3 = 0.94, so

the node 1 test I3 ≤ 0.7616 is not satisfied, so we lead to
node 3.
The transformer has I5 = 0.37, so the node 3 test I5 ≤ 0.4452
is satisfied, so we lead to node 10.

•

•

Fig. 2. Notation of the d
ion of the winding material.

The transformer has I3 = 0.94, so the node 10 test I3 ≤ 0.9564
is satisfied, so we lead to node 12.
The transformer has I7 = 610, so the node 12 test I7 ≤ 1121 is
satisfied, so we lead to node 14.

The transformer has I13 = 15, so the node 14 test I13 ≤ 13.3377
is not satisfied, so we lead to node 17.
Node 17 is a terminal node with CU index of 0.0, so 0% of
transformers of this node are from CU winding. As a result,

ecision tree nodes.
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Table 4
Calculation of the classification success rate of the decision tree

Node number Node type CU index Transformer designs Correctly classified transformer designs Classification success rate (%)

4 DEADEND 0.3571 26 20 76.9
7 DEADEND 0.4211 18 13 72.2
8 LEAF 0.9902 196 195 99.5
9 DEADEND 0.8110 122 105 86.1
15 DEADEND 0.0467 103 101 98.1
17 LEAF 0.0000 23 23 100.0
18 DEADEND 0.6102 57 42 73.7
19 DEADEND 0.1429 41 38 92.7
21 LEAF 0.0000 398 398 100.0
22 DEADEND 0.0291 165 163 98.8
23 DEADEND 0.3636 32 26 81.3
24 DEADEND 0.6351 71 54 76.1
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Athanassios T. Souflaris was born in Athens, Greece in 1956. He received
5 DEADEND 0.1522 44

otal 1296

the decision tree of Fig. 1 estimates that the transformer of
Table 3 has to be designed with AL winding.

.3. Classification success rate

Following the methodology of Section 5.2, the winding
aterial for all the 1296 FODs of the test set is estimated.
he estimated winding material is compared to the actual
inding material for all these 1296 FODs and this com-
arison provides the DT classification success rate. Table 4
hows that the success rate of the DT, tested with the
ndependent test set, is 94%. The accuracy of the pro-
osed method (94%) makes it very efficient for industrial
se.

. Conclusions

In this paper, a decision tree method is proposed for the
election of the winding material in power transformers. The
asic steps in the application of the method to power trans-
ormers, like the generation of the learning set and test set,
he selection of candidate attributes and the derivation of a
haracteristic decision tree are presented. The decision tree auto-
atically selected the five most important attributes among

he 13 candidate ones. With the learning set and test set used
nd for the selected candidate attributes, the decision tree
ethod achieves a total classification success rate of 94%,
hich makes it very suitable for the selection of winding mate-
ial in power transformers. The proposed method is very fast
nd effective, since it divides by two the effort of the trans-
ormer design engineer for the design of the optimum trans-
ormer.

t
G
E
E

41 93.2

1219 94.1%
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