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Seabed mapping in shallow waters 
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2.5% of the seabed is “shallow” (<20-
25m depth) excluding lakes

Shallow waters in EU

Map source: EMODnet
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ML/DL methods



PASSIVE Airborne/Satellite-borne image-based bathy-
mapping
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• Can provide a cheap alternative to traditional (LiDAR-SONAR etc.) and expensive shallow seabed 
mapping techniques

• Offer important visual information and high detail

• Offer high density 3D point clouds and meshes

• Facilitate "easier" semantic segmentation approaches with known FCNs (dealing with images)

• Cover large areas in reduced time and cost

• Useful for mapping & reconnaissance of submerged CH in high resolution and extended 
coverage, enabling CH risk assessment and risk mitigation



Shallow waters examples: Limassol marina, Cyprus 
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Clear and Shallow

Turbid and Shallow

Data: CUT, Photogrammetric Vis. Lab.
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Clear and Shallow

Turbid and Shallow

Shallow waters examples: Latsi, Cyprus 
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Data: CUT, Photogrammetric Vis. Lab.
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Clear and Shallow

Clear and Deep

Shallow waters examples: Agia Napa, Cyprus 
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Data: CUT, Photogrammetric Vis. Lab.
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Submerged CH examples: Pafos, Cyprus
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Ancient breakwater

Data: CUT, Photogrammetric Vis. Lab.

Current breakwater
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Submerged CH examples: Amathus, Cyprus
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Data: CUT, Photogrammetric Vis. Lab.

Ancient port deck
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Submerged CH examples: Epidavros, Greece
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Submerged CH examples: Epidavros, Greece
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Data: CUT, Photogrammetric Vis. Lab.
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Submerged CH examples: Epidavros, Greece
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Data: CUT, Photogrammetric Vis. Lab.



15

Submerged CH examples: Epidavros, Greece

Agrafiotis P.: Learning-based bathymetric mapping for shallow coastal waters using RGB Imagery,

Data: CUT, Photogrammetric Vis. Lab.
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Shallow waters examples: Lemnos island, Greece

Agrafiotis P.: Learning-based bathymetric mapping for shallow coastal waters using RGB Imagery,



17

Clear and Shallow

Clear and Deep

Shallow waters examples: Andros island, Bahamas
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Clear and Shallow

Shallow waters examples: Wadden Sea, Netherlands-Germany
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Turbid and Shallow

Shallow waters examples: Ionian Sea, Greece
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Varying conditions and water 
column characteristics due to:

• Weather (or extreme weather)
• Seasonal changes
• Anthropogenic activities



Necessity of Airborne/Satellite-borne image-based bathy-
mapping in CH applications [1]
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Necessity of Airborne/Satellite-borne image-based bathy-
mapping in CH applications [2]
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Necessity of Airborne/Satellite-borne image-based bathy-
mapping in CH applications [3.1]
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Necessity of Airborne/Satellite-borne image-based bathy-
mapping in CH applications [3.2]
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Necessity of Airborne/Satellite-borne image-based bathy-
mapping in CH applications [3.3]
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Why are they special cases of mapping ?
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Snell’s law

The law is based on Fermat's principle, also 
known as the principle of least time 

Fermat's principle states that the path
taken by a ray between two given points is
the path that can be traversed in the least
time.

Info - Refraction effect

The ratio of the sines of the angles of
incidence and refraction is equivalent to the
ratio of phase velocities in the two media,
or equivalent to the reciprocal of the ratio
of the indices of refraction

Agrafiotis P.: Learning-based bathymetric mapping for shallow coastal waters using RGB Imagery,

a1

a2

n1

n2

Error: 30-40% of depth

• Violates the Collinearity Equation
• Generate apparent depths
• Roughly, acts like a non-uniform radial distortion, 

depending on the incidence angles and the depth
• In SfM-MVS adds noise in the de-facto erroneous 

generated depths
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Geometry – based methods 

(SfM-MVS + refraction correction)
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• Violation of the 
Collinearity Equation

• Apparent depths

Figure: Agrafiotis et al., 2020

Multi-media Photogrammetry – Single View Geometry
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• Violation of the Collinearity 
Equation

• Apparent depths

• Increased noise in the point 
clouds

Figure: Agrafiotis, 2020

Multi-media Photogrammetry – Multiple View Geometry
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• Analytical correction: modification of the collinearity equation.

• Image-space correction: re-projection of the original photo to correct the water 
refraction.

• Machine/Deep Learning-based: depends on models that learn the underestimation of 
depths and predict the correct depth knowing only the apparent one or the spectral 
values.

Other methods: multiplying the apparent depth with a constant number, which in most of the 
cases is the refraction index of the water the use of this form of correction might be 
acceptable in the very shallow waters, however, remarkable errors are expected after 2-3 m 
depth.

Multi-media Photogrammetry – Correction Basics
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Figures: Agrafiotis et al., 2020

Multi-media Photogrammetry – Image Space Correction
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Figures: Agrafiotis et al., 2020

Multi-media Photogrammetry – ML-based Correction

Agrafiotis et al., 2019:
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Need for synthetic data & generated data

• Accuracy & reliability of depths
• Known EO & IO
• Avoid errors and limitations in image 

matching caused by the visibility 
restrictions (turbidity, caustics, sun 
glint)

• Avoid errors introduced by the wavy 
surface

The only unknown is the 
refraction effect

• 8 datasets – 4 with refraction and 4 
without

• Flying height from 150m-2800m
• Various sensors
• Camera constant from 3.6mm to 

100.5mm

Z = f (X, Y)

Agrafiotis, P., Karantzalos, K., Georgopoulos, A., & Skarlatos, D. (2021). Learning from Synthetic Data: Enhancing Refraction Correction Accuracy for 
Airborne Image-Based Bathymetric Mapping of Shallow Coastal Waters, PFG, 144, doi: 10.1007/s41064-021-00144-1
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A deeper look into Multimedia Photogrammetry
Errors due to refraction
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Cross site approach

9m 2.5m

Ratio-based  VS  ML-based refraction correction methods

Figures and Table: Agrafiotis, 2020
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By correcting the images from refraction, the texture of the 3D model is improved

Improvement in texture

Figures and Table: Agrafiotis, 2020

Uncorrected Corrected Uncorrected Corrected
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Bathymetry Examples – Real world applications [1]

Figure: Photogrammetric Vision Lab, Cyprus University of Technology 

Ancient breakwater
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Figure: Photogrammetric Vision Lab, Cyprus University of Technology 

Bathymetry Examples – Real world applications [2]
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Data: CUT, Photogrammetric Vis. Lab.

Bathymetry Examples – Real world applications [3]
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Data: CUT, Photogrammetric Vis. Lab.

Bathymetry Examples – Real world applications [4]
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Satellite images CNN-based detection and localization of submerged Cultural Heritage sites
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Semantics Examples - Submerged CH detection with Deep Learning
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Mandlburger, G., Kölle, M., Nübel, H. et al. BathyNet: A 

Deep Neural Network for Water Depth Mapping from 
Multispectral Aerial Images. PFG 89, 71–89 (2021).

Semantics Examples – Seagrass semant. segm. with Deep Learning
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Data: CUT, Photogrammetric Vis. Lab., 3[Deep]Vision

Orthoimage and 
isodepth lines

Bathymetric point clouds 
and 3D models

Semantic classification of 
the seabed
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Semantics/Bathymetry Examples with Deep Learning
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Spectral – based methods
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Figures: Legleiter et al., 2018, 

Spectral-based bathymetry (SBB)
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No geometry – Only spectral values for bathymetry

No generalized method – sensitive to different types of seabed
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Multi-media Photogrammetry – DL-based Correction [1]
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Mandlburger, G., Kölle, M., Nübel, H. et al. BathyNet: A 

Deep Neural Network for Water Depth Mapping from 
Multispectral Aerial Images. PFG 89, 71–89 (2021).
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Multi-media Photogrammetry – DL-based Correction [2]
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Mandlburger, G., Kölle, M., Nübel, H. et al. BathyNet: A 
Deep Neural Network for Water Depth Mapping from 
Multispectral Aerial Images. PFG 89, 71–89 (2021).

A modified U-Net
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LT is the total upwelling radiance
Lp are the contributions from the atmosphere
Ls is the radiance reflected from the water surface
Lc is the radiance from the water column
Lb is the bottom-reflected radiance

Ls depends on the roughness of the water surface and sun position (sun glint)
Lb is related to depth and is the radiance reflected by the bottom
Lc is related to the water’s optical property (i.e. turbidity)

Sl ide retrieved from Mandlburger 2017, “Bathymetry from active and passive airborne remote sensing – looking back and ahead”

Basics of SBB
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Colour loss – light absorption 

Figure: Bianco et al., 2015
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Colour loss – light absorption 

Figure: Bianco et al., 2015
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Overwater image-based methods



51

• The standard linear algorithm (Lyzenga, 1978) 
assumes a log-linear relationship between 
reflectance (R(𝜆i )) and water depth (z):

• Stumpf et al., 2003 bathymetric algorithm
The method approximates “physics” of light in the 
water:

where m1 is a tunable constant to scale the ratio to depth, 
n is a fixed constant for all areas, and m0 is the offset for a 
depth of 0 m

pSDB “pseudo 
depth”

• Cluster-Based Method (CBR)

• SVMs

• CNNs

Common colour-to-depth relation/methodology in SBB

• Empirically tune coefficients
• Tuning successful with chart 

soundings/LiDAR etc.
• Generalized model

Agrafiotis P.: Learning-based bathymetric mapping for shallow coastal waters using RGB Imagery,
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Factors affecting SBB (UAV or satellite)

Sun glint - Turbidity - High Aerosol

Agrafiotis P.: Learning-based bathymetric mapping for shallow coastal waters using RGB Imagery,
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Multi-scene processing to improve the accuracy

Figures: Ilori and Knudby, 2020

Factors affecting SBB (UAV or satellite) - Solution
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Deep Learning for SBB
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Ai, Bo, et al. "Convolutional neural network to 
retrieve water depth in marine shallow water area 
from remote sensing images." IEEE Journal of 

Selected Topics in Applied Earth Observations 
and Remote Sensing 13 (2020): 2888-2898.

A modified ResNet
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Figure: TCARTA, https://www.tcarta.com/events/geospatial-intelligence-month-april-2020

Fine tuning SBB ML/DL models with LiDAR data
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Figures: Geyman and Maloof, 2019

Examples-SBB – Satellite-borne
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Figures: Caballero and Stumpf, 2020

Examples-SBB – Satellite-borne – Variation of depths through time
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Geometric Methods (Multi-media SfM-MVS) - refraction correction is necessary!
• Passive method
• Geometric
• Requires texture to perform SfM-MVS
• Measured depth through triangulation & Delivers colour information
• Delivers high point density in shallow water areas
• Max depth ~ 1 Secchi

Spectrally based methods
• No sophisticated geometry processing necessary
• Requires visibility of bottom features (similar to SfM-MVS, but not texture is required here)
• Can handle certain differences in substrate type and water clarity
• Requires ground-truth for calibrating coefficients
• Covers large areas (satellite)
• Max depth ~ 1 Secchi

• Lack generalization potential due to the daily/seasonal etc . variability of spectral values

Wrap up

Agrafiotis P.: Learning-based bathymetric mapping for shallow coastal waters using RGB Imagery,
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