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Abstract. Almost every real world problem involves simultaneous optimization of several incommensurable and 
often competing objectives which constitutes a multi-objective optimization problem. In multi-objective 
optimization problems the optimal solution is not unique as in single-objective optimization problems. This 
paper is concerned with large-scale structural optimization of skeletal structures such, as space frames and 
trusses, under static and/or seismic loading conditions with multiple objectives. Combinatorial optimization 
methods and in particular algorithms based on evolution strategies are implemented for the solution of this type 
of problems. In treating seismic loading conditions a number of accelerograms are produced from the elastic 
design response spectrum of the region. These accelerograms constitute the multiple loading conditions under 
which the structures are optimally designed. This approach for treating seismic loading is compared with an 
approximate design approach, based on simplifications adopted by the seismic codes, in the framework of multi-
objective optimization. 

1 Introduction 

In single-objective optimization problems the optimal solution is usually clearly defined since it is the 
minimum one, this does not hold in real world problems having multiple and conflicting objectives. Instead of a 
single optimal solution, there is usually a set of alternative solutions, generally denoted as the set of Pareto 
optimal solutions. These solutions are optimal in the wider sense since no other solution in the search space is 
superior to them when all objectives are considered. In the absence of preference information, none of the 
corresponding trade-offs can be said to be better than the others. On the other hand, the search space can be too 
large and too complex, which is the usual case of real world problems, to be solved by the conventional 
deterministic optimizers. Thus, efficient optimization strategies are required able to deal with the multiple 
objectives and the complexity of the search space. Evolutionary Algorithms (EA) have several characteristics 
that are desirable for this kind of problems and most frequently outperform the deterministic optimizers such as 
gradient based optimization algorithms. There are some classical methods for dealing with the multi-objective 
optimization problems, such as the linear weighting method, the distance function method and the constraint 
method, that have to be combined with the optimization algorithm. The implementation of gradient based 
optimizers for this type of problems becomes even more cumbersome. The application of EA in multi-objective 
optimization problems has received considerable attention in the last five years due to this difficulty of 
conventional optimization techniques, to be extended to multi-objective optimization problems [1]. EA 
optimizers employ multiple individuals that can search simultaneously for multiple solutions. Using some 
modifications on the operators used by the EA optimizers the search process can be driven to a family of 
solutions representing the set of Pareto optimal solutions. 

The performance of the proposed method for handling optimization problems with multiple objectives is 
examined in one space frame. For this test example both the rigorous approach and the simplified one with 
respect to the loading condition are implemented and their efficiency is compared in the framework of finding 
the optimum design of a structure under multiple objectives. In the context of the rigorous approach a number of 
artificial accelerograms are produced from the design response spectrum of the region for elastic structural 
response. 
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2 Single-objective Structural Optimization 

In sizing optimization problems the aim is to minimize a single-objective function, usually the weight of the 
structure, under certain behavioral constraints on stress and displacements. The design variables are most 
frequently chosen to be dimensions of the cross-sectional areas of the members of the structure. Due to 
fabrication limitations the design variables are not continuous but discrete since cross-sections belong to a 
certain set. A discrete structural optimization problem can be formulated in the following form 

j

d
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min              f (s)
subject to     g (s) 0   j=1,...,k

                    s R ,     i=1,...,n

≤

∈
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where Rd is a given set of discrete values and the design variables si (i=1,...,n) can take values only from this set. 
In the optimal design of frames the constraints are the member stresses and nodal displacements or inter-

storey drifts. For rigid frames with Ι-shapes, the stress constraints, under allowable stress design requirements 
specified by Eurocode 3 [2], are expressed by the following formula 
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where sd sd ,y sd,zN , M , M  are the stress resultants, pl,y pl,zW , W  are the plastic first moment of inertia, and fy is the 

yield stress. The safety factor γM1 is a Eurocode 1 [3] box value usually taken as 1.10. 

3 Multi-objective Structural Optimization 

In practical applications of structural optimization of 3D frames and trusses the material weight rarely gives a 
representative measure of the performance of the structure. In fact, several conflicting and incommensurable 
criteria usually exist in real-life design problems that have to be dealt with simultaneously. This situation forces 
the designer to look for a good compromise design between the conflicting requirements. These kinds of 
problems are called optimization problems with many objectives. The consideration of multi-objective 
optimization in its present sense originated towards the end of the 19th century when Pareto presented the 
optimality concept in economic problems with several competing criteria. Since then, although many techniques 
have been developed in order to deal with multi-objective optimization problems the corresponding applications 
were confined to mathematical functions. The first applications in the field of structural optimization with 
multiple objectives appeared at the end of the seventies. 

3.1 Criteria and conflict 

The designer looking for the optimum design of a structure is faced with the question of selecting the most 
suitable criteria for measuring the economy, the strength, the serviceability or any other factor that affects the 
performance of a structure. Any quantity that has a direct influence on the performance of the structure can be 
considered as a criterion. On the other hand, those quantities that must satisfy only some imposed requirements 
are not criteria but they can be treated as constraints. Most of the structural optimization problems are treated 
with one single-objective usually the weight of the structure, subjected to some strength constraints. These 
constraints are set as equality or inequality constraints using some upper and lower limits. When there is a 
difficulty in selecting these limits, then these parameters are better treated as criteria. 

One important basic property in the multicriterion formulation is the conflict that may or may not exist 
between the criteria. Only those quantities that are competing should be treated as independent criteria whereas 
the others can be combined into a single criterion to represent the whole group. The local conflict between two 
criteria can be defined as follows: The functions fi and fj are called locally collinear with no conflict at point s if 
there is c > 0 such that ∇fi(s)=c∇fj(s). Otherwise, the functions are called locally conflicting at s. According to 
this definition any two criteria are locally conflicting at a point of the design space if their maximum 
improvement is achieved in different directions. The global conflict between two criteria can be defined as 
follows: The functions fi and fj are called globally conflicting in the feasible region F of the design space when 
the two optimization problems mins∈Ffi(s) and mins∈Ffj(s) have different optimal solutions. 

3.2 Formulation of a multiple objective optimization problem 

In formulating an optimization problem the choice of the design variables, criteria and constraints represents 
undoubtedly the most important decision made by the engineer. In general the mathematical formulation of a 
multi-objective problem includes a set of n design variables, a set of m objective functions and a set of k 
constraint functions and can be defined as follows: 
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where the vector s = [s1 s2 ... sn]T represents a design variable vector and F is the feasible set in design space Rn.  
It is defined as the set of design variables that satisfy the constraint functions g(s) in the form: 

F  = { s ∈ Rn | g(s) ≤ 0} (4) 
Usually there exists no unique point which would give an optimum for all m criteria simultaneously. Thus 

the common optimality condition used in single-objective optimization must be replaced by a new concept the 
so called Pareto optimum: A design vector s* ∈ F is Pareto optimal for the problem of eq. (4) if and only if there 
exists no other design vector s ∈ F such that 

fi(s) ≤ fi(s*) for i=1,2,...,m 
with 

fj(s) < fj(s*)  
(5) 

for at least one objective j. 

3.3 Solving the multi-objective optimization problem 

Classical methods for generating the Pareto optimal set combine the objectives into a single, parameterized 
objective function. Basically, this procedure is independent of the underlying optimization algorithm. Three 
previously used methods in the literature [4-6] are briefly discussed and are compared in this study with the 
proposed modified ES in terms of computational time and efficiency for treating multiobjective optimization 
problems. 

3.3.1 Linear weighting method 

The first method called the linear weighting method [6] combines all the objectives into a single scalar 
parameterized objective function by using weighting coefficients. If wi, i=1,2,...,m are the weighting coefficients 
the problem of eq. (5) can be written as follows: 

m

s i i
i 1

min w f (s)∈
=
∑F  (7) 

with no loss of generality the following normalization of the weighting coefficients is employed 
m

i
i 1

w 1
=

=∑  (8) 

By varying these weights it is now possible to generate the set of Pareto optima solutions for problem of eq. 
(5). The values of the weighting coefficients are adjusted according to the importance of each criterion. Every 
combination of those weighting coefficients correspond to a single Pareto optimal solution, thus, performing a 
set of optimization processes using different weighting coefficients it is possible to generate the full set of Pareto 
optimal solutions. 

In real world problems different units correspond to different objectives leading to variations of some orders 
of magnitude between the values of the objectives. It is therefore advisable that the objectives should be 
normalized according the following expression: 

i i  min
i

i  max i  min

f (s) ff (s)
f f

−
=

−
�  (9) 

where the normalized objectives ( ) [0,1]∈�
if s , i = 1,2,...,m, use the same design space with the non normalized 

ones, while fi min and fi max are the minimum and maximum values of the objective function i. 

3.3.2 Distance function method 

The distance methods [4] are based on the minimization of the distance between the set of the objective 
function values and some chosen reference points belonging to the so called criterion space. Where as criterion 
space is defined the set of the objective function values that correspond to design vectors of the feasible domain. 
The resulting scalar problem is: 

min s ∈ F   dp(s) (10) 
where the distance function can be written as follows: 

[ ]
1/ pm

p
p i i i
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d (s) w f (s) z
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= −⎨ ⎬
⎩ ⎭
∑  (11) 
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and p is an integer number.  
The reference point zid ∈ Rm that is selected by the designer is also called ideal or utopian point. A reference 

point that is frequently used is the following: 
zid = [ f1 min  f2 min  ...  fm min ]T (12) 

where fi min is the optimum solution of the single-objective optimization problem where the i-th objective 
function is treated as the unique objective. The normalization function eq. (8) for the weighting factors wi is also 
used. In the case that p = ∞ eq. (10) is transformed to the minimax problem: 

[ ]i is i
min max w f (x)
∈F

, i = 1, 2, ... , m (13) 
In the case of p=1 the formulation of the distance method is equivalent to the linear method when the reference 
point used is the zero ẑ = 0, while the case of p=2 the method is called weighted quadratic method. 

3.3.3 Constraint method 

According to this method the original multicriterion problem is replaced by a scalar problem where one 
criterion fk is chosen as the objective function and all the other criteria are removed into the constraints [2]. By 
introducing parameters εi into these new constraints an additional feasible set is obtained: 

Fk ( εi ) = { s ∈ Rn |  fi(s) ≤ εi , i = 1, 2, ..., m  µε  i ≠ k } (14) 
If the resulting feasible set is denoted by k k= ∩F F F  the parameterized scalar problem can be expressed as: 

k ksmin f (s)∈F  (15) 
The constraint method gives the opportunity to obtain the full domain of optimum solutions, in the horizontal or 
vertical direction using one criterion as objective function and the other as constraint. 

3.3.4 Modified Evolution strategies for multiobjective optimization 

The three above mentioned methods for multi objective optimization have been used in the past with 
mathematical programming optimization algorithms where at each optimization step one design point was 
examined as an optimum design candidate. In order to locate the set of Pareto optimum solutions a family of 
optimization runs have to be executed. On the other hand, evolutionary algorithms work simultaneously with a 
population of design points, instead of a single design point, which constitute a population of optimum design 
candidates, in the space of design variables. Due to this characteristic, evolutionary algorithms have a great 
potential in finding multiple optima, in a single optimization run, which is very useful in Pareto optimization 
problems. Since the early nineties a number of researchers have suggested the use of evolutionary algorithms in 
multiobjective optimization problems [1]. 

In our study the method of Evolution Strategies (ES) is applied for the first time for structural multi-objective 
optimization problems. To this purpose some changes have to be made in the random operators in order to guide 
the convergence to a population that represent the set of Pareto optimal solutions. These changes refer to (i) the 
selection of the parent population at each generation that has to be modified in order to guide the search 
procedure towards the set of Pareto optimum solutions, and (ii) the presentation from convergence to a single 
design point, and preserve diversity in the population in every generation step. The first demand is possible to be 
fulfilled using random selection of the objective according to which the individual will be chosen for 
reproduction. While in order to preserve diversity in the population and fulfil the second requirement, the fitness 
sharing is implemented. The idea behind sharing is to degrade those individuals that are represented in higher 
percentage in the population. The modified objectives after sharing are the following: 

i
i

h

f (s)f (s)
sh(d(s,h))

′ =
∑

 (16) 

where the sharing function used in the current study is the following: 

share
share

d(s, h)1  if d(s, h)
sh(d(s, h))

0           otherwise

α⎧ ⎛ ⎞
⎪ − < σ⎜ ⎟= σ⎨ ⎝ ⎠
⎪
⎩

 (17) 

The distance function used is in the objective space: 
d(s, h) f (s) f (h)= −  (18) 

4 Structural design under seismic loading 

The equations of equilibrium for a finite element system in motion can be written in the usual form 
i t i t i t tM(s )u C(s )u K(s )u R+ + =�� �  (19) 
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where M(si), C(si), and K(si) are the mass, damping and stiffness matrices for the i-th design vector si; Rt is the 
external load vector, while u,u and u� ��  are the displacement, velocity, and acceleration vectors, respectively of 
the finite element assemblage. The solution methods of response spectrum modal analysis, which is based on the 
mode superposition approach and direct integration of the equations of motion will be considered in this work. 

5 Solution of the optimization problem 

There are three types of algorithms belonging to the class of evolutionary computation that imitate nature by 
using biological methodologies in order to find the optimum solution of a problem: (i) evolutionary 
programming (EP), (ii) genetic algorithms (GAs) and (iii) evolution strategies (ESs). Their main difference is 
that GAs deal with bit-strings of fixed sizes, ES with real vectors and EP with finite state automata. GAs basic 
assumption is that the optimal solution can be found by assembling building blocks, i.e. partial pieces of 
solutions, while ESs and EP simply ensure the emergence of the best solutions. The most important consequence 
of this different approach is related to the recombination operator, viewed as essential for GA, as potentially 
useful for ES and as possibly harmful for EP. The modern tendencies seem to follow combinations of the two 
approaches, since GA users have turned to real number representations when dealing with real numbers 
following experimental results or heuristic demonstrations, whereas ES users have included recombination as a 
standard operator, and have designed special operators for non real-valued problems. 

5.1 ES in multi-objective structural optimization problems 

The application of evolutionary algorithms in multi-objective optimization problems has attracted the interest 
of a number of researchers in the last five years due to the difficulty of conventional optimization techniques, 
such as gradient based methods, to be extended to multi-objective optimization problems. EA, however, have 
been recognized to be more appropriate to multi-objective optimization problems since early in their 
development. Multiple individuals can search for multiple solutions simultaneously, taking advantage of any 
similarities available in the family of possible solutions to the problem.  

In the first implementation where the classical methods are used, the optimization procedure, in order to 
generate a set of Pareto optimal solutions, initiates with a set of parent design vectors needed by the ES 
optimizer and a set of weighting coefficients for the combination of all objectives into a single scalar 
parameterized objective function. These weighting coefficients are not set by the designer but are being 
systematically varied by the optimizer after a Pareto optimal solution has been achieved. There is an outer loop 
which systematically varies the parameters of the parameterized objective function, and is called decision 
making loop. The inner loop is the classical ES process, starting with a set of parent vectors. If any of these 
parent vectors gives an infeasible design then this parent vector is modified until it becomes feasible. 
Subsequently, the offsprings are generated and checked if they are in the feasible region. According to (µ+λ) 
selection scheme in every generation the values of the objective function of the parent and the offspring vectors 
are compared and the worst vectors are rejected, while the remaining ones are considered to be the parent 
vectors of the new generation. On the other hand, according to (µ,λ) selection scheme only the offspring vectors 
of each generation are used to produce the new generation. This procedure is repeated until the chosen 
termination criterion is satisfied. The number of parents and offsprings involved affects the computational 
efficiency of the multi-membered ES discussed in this work. It has been observed that when the values of µ and 
λ are equal to the number of the design variables produce better results. 

Two ES algorithms for multi-objective structural optimization applications under seismic loading are 
compared and tested in the subsequent section: 

(i) The ES algorithm combined with the classical methods which can be stated as follows: 
 

Outer loop - Decision making loop 
Set the parameters wi of the parameterized objective function 
Inner loop - ES loop 
1. Selection step : selection of is  (i = 1,2,...,µ) parent vectors of the design variables 
2. Analysis step : solve i i iM(s )u C(s )u K(s )u R(t)+ + =�� �  (i=1,2,...,µ) 
3. Evaluation of parameterized objective function      
4. Constraints check : all parent vectors become feasible 
5. Offspring generation : generate js , (j=1,2,...,λ) offspring vectors of the design variables 
6. Analysis step : solve  j j jM(s )u C(s )u K(s )u R(t)+ + =�� �  (j=1,2,...,λ) 
7. Evaluation of the parameterized objective function 
8. Constraints check : if satisfied continue, else change js  and go to step 5 
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9. Selection step : selection of the next generation parents according to (µ+λ) or (µ,λ) selection schemes 
10. Convergence check :  If satisfied stop, else go to step 5 
End of Inner loop 
End of Outer loop 

 
(ii) The modified ES algorithm (ESMO) as described in section 3.3.4 which can be stated as follows: 

 
1. Selection step : selection of is  (i = 1,2,...,µ) parent vectors of the design variables 
2. Analysis step : solve i i iM(s )u C(s )u K(s )u R(t)+ + =�� �  (i=1,2,...,µ) 
3. Evaluation of the objective functions 
4. Constraints check : all parent vectors become feasible 
5. Offspring generation : generate js , (j=1,2,...,λ) offspring vectors of the design variables 
6. Analysis step : solve  j j jM(s )u C(s )u K(s )u R(t)+ + =�� �  (j=1,2,...,λ) 
7. Evaluation of the objective functions 
8. Constraints check : if satisfied continue, else change js  and go to step 5 
9. Selection step : random selection of the potential objective for the each individual and selection of the 

next generation parents according to (µ+λ) or (µ,λ) selection schemes  
10. Fitness sharing 
11. Convergence check :  If satisfied stop, else go to step 5 

6 Numerical results 

The performance of the multi-objective optimization methods discussed in this paper is investigated in two 
benchmark test examples: A six storey space frame and a multi-layered space truss. The following abbreviations 
are used in this section: DTI refers to the Newmark Direct time Integration method. RSMA refers to the 
Response Spectrum Modal Analysis. LWM refers to the Linear Weighting method for treating multi-objective 
optimization problems. DFM refers to the Distance Function method for treating multi-objective optimization 
problems. CM refers to the Constraint method for treating multi-objective optimization problems. ESMO refers 
to the proposed Evolution Strategies for treating Multi-objective Optimization problems. 

The objective functions considered for this problem are the weight of the structure and the maximum 
displacement. The constraints are imposed on the inter-storey drifts and for each element group on the maximum 
stress constraint of Eqs. (2) under a combination of axial force and bending moments. The space frame consists 
of 63 elements with 180 degrees of freedom as shown in Figure 2. The length of the beams and the columns are 
L1=7.32 m and the columns L2=3.66 m, respectively. The structure is loaded with a 19.16 kPa gravity load on all 
floor levels and a static lateral load of 109 kN applied at each node in the front elevation along the z direction. 
The element members are divided into 5 groups, each one having two design variables resulting in ten total 
design variables. The cross section of each member is assumed to be a Ι-shape and for each member two design 
variables are considered as shown in Figure 1. The modulus of elasticity is 200 GPa and the yield stress is 
σy=250 MPa. 

b

h

i

i

 
Figure 1: I-shape cross section 
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Figure 2: Six storey space frame 

The Pareto optimal set of solutions was first computed with the LWM. The performance of this method for 
the case of seeking the simultaneous minimization of weight and maximum displacement is depicted in Figures 
3 and 4 for both static and seismic loading conditions. In Figures 3 and 4 the performance of the DFM and 
ESMO methods are also presented. For the case of the DFM the zero (0) point was considered as the utopian 
point, while four different schemes of the DFM were examined. p=1: equivalent to the LWM, p=2: called 
quadratic LWM and p=8: equivalent to the p=∞. 
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Figure 3: Six Storey frame: Performance of the methods for static and combined static and seismic loading 
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Figure 4: Six Storey frame: Performance of the methods for combined static and seismic loading conditions 
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6 Conclusions 
Evolution Strategies can be considered as an efficient tool for multi-objective design optimization of structural 
problems such as space frames under static and seismic loading conditions. The ESMO method compared to the 
linear weighing method and the constraint method appears to be robust and reliable for treating multi-objective 
structural optimization problems giving almost identical results. The generalization of the linear weighing 
method for p>1 called the distance function method is also examined in this study. The results obtained by the 
distance function method were somewhat different than those taken by the other two methods, while for large 
values of p it produces either too close or disperse points in the Pareto sets. 
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