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Abstract

The objective of this paper is to investigate the efficiency of various evolutionary algorithms (EA), such as genetic

algorithms and evolution strategies, when applied to large-scale structural sizing optimization problems. Both type of

algorithms imitate biological evolution in nature and combine the concept of artificial survival of the fittest with

evolutionary operators to form a robust search mechanism. In this paper modified versions of the basic EA are im-

plemented to improve the performance of the optimization procedure. The modified versions of both genetic algorithms

and evolution strategies combined with a mathematical programming method to form hybrid methodologies are also

tested and compared and proved particularly promising. The numerical tests presented demonstrate the computational

advantages of the discussed methods, which become more pronounced in large-scale optimization problems. � 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Computer algorithms based on the process of natural

evolution have been found capable to produce very

powerful and robust search mechanisms although the

similarity between these algorithms and the natural

evolution is based on crude imitation of biological re-

ality. The resulting evolutionary algorithms (EA) are

based on a population of individuals, each of which

represents a search point in the space of potential solu-

tions of a given problem. These algorithms have some

selection process based on the fitness of the individuals

and some recombination operators. The best known EA

in this class include evolutionary programming (EP)

[1,2], genetic algorithms (GA) [3,4] and evolution strat-

egies (ES) [5,6].

Both GA and ES imitate biological evolution in na-

ture and have three characteristics that differ from other

conventional optimization algorithms: (i) In place of the

usual deterministic operators, they use randomized op-

erators: mutation, selection and recombination. (ii) In-

stead of a single design point, they work simultaneously

with a population of design points in the space of de-

sign variables. (iii) They can handle, with minor modi-

fications, continuous, discrete or mixed optimization

problems. The second characteristic allows for natural

implementation of GA and ES on a parallel computing

environment [7,8].

In a gradient-based mathematical programming ap-

proach the optimization algorithm proceeds with the

following steps: (i) Evaluation of displacements and

stresses. (ii) Computation of sensitivities by perturbing

each design variable by a small amount. (iii) Solution of

the optimization problem and update the design of the

structure. These steps are repeated until convergence is

achieved. The most time-consuming part of this process

is related to the sensitivity analysis phase, which is an

important ingredient of all mathematical programming
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optimization methods and may consume a large part of

the total computational effort [9]. On the other hand, the

application of EA that are based on probabilistic

searching, such as GA and ES, do not need gradient

information and therefore avoid performing the com-

putationally expensive sensitivity analysis step.

Mathematical programming methods, such as the

sequential quadratic programming (SQP) approach,

make use of local curvature information derived from

linearization of the original functions by using their

derivatives with respect to the design variables. The

linearization is performed at points obtained in the

process of optimization to construct an approximate

model of the initial problem. These methods present a

satisfactory local rate of convergence, but they cannot

assure that the global optimum can be found. They do

although assure if the problem is strictly convex. On the

other hand, EA are in general more robust and present a

better global behaviour than the mathematical pro-

gramming methods. They may suffer, however, from a

slow rate of convergence towards the global optimum

and do not guarantee convergence to the global opti-

mum.

Structural optimization problems are characterized

by various objective and constraint functions, which are

generally non-linear functions of the design variables.

These functions are usually implicit, discontinuous and

non-convex. The mathematical formulation of structural

optimization problems with respect to the design vari-

ables, the objective and constraint functions depends on

the type of the application. However, all optimization

problems can be expressed in standard mathematical

terms as a non-linear programming problem (NLP),

which in general form can be stated as follows:

min F ðsÞ
subject to hjðsÞ6 0 j ¼ 1; . . . ;m
with sli 6 si 6 sui i ¼ 1; . . . ; n

ð1Þ

where, s is the vector of design variables, F ðsÞ is the
objective function to be minimized, hjðsÞ are the be-
havioral constraints, sli and sui are the lower and the
upper bounds of a typical design variable si. Equality
constraints are rarely imposed in this type of problems

except in some cases for design variable linking.

Whenever they are used they are treated for simplicity as

a set of two inequality constraints.

In this work the efficiency of various EA is investi-

gated in structural sizing optimization problems. Fur-

thermore, in order to benefit from the advantages of

both methodologies, combinations of EA with SQP are

also examined in an attempt to increase further the ro-

bustness as well as the computational efficiency of the

optimization procedure. The numerical tests presented

demonstrate the computational advantages of the dis-

cussed methods, which become more pronounced in

large-scale and computationally intensive optimization

problems.

2. Genetic algorithms

GA are probably the best-known EA, receiving sub-

stantial attention in recent years. The first attempt to use

EA took place in the sixties by a team of biologists [10]

and was focused in building a computer program that

would simulate the process of evolution in nature.

However, the GA model used in this study and in many

other structural design applications refers to a model

introduced and studied by Holland and co-workers [4].

In general the term genetic algorithm refers to any pop-

ulation-based model that uses various operators (selec-

tion–crossover–mutation) to evolve. In the basic genetic

algorithm each member of this population will be a bi-

nary or a real valued string, which is sometimes referred

to as a genotype or, alternatively, as a chromosome.

2.1. The basic genetic algorithms

2.1.1. The three main steps of the basic GA

Step 0 initialization: The first step in the implemen-

tation of any genetic algorithm is to generate an initial

population. In most cases the initial population is gen-

erated randomly. In this study in order to perform a

comparison between various optimization techniques

the initial population is fixed and is chosen in the neigh-

borhood of the initial design used for the mathematical

programming method. After creating an initial popula-

tion, each member of the population is evaluated by

computing the representative objective and constraint

functions and comparing it with the other members of

the population.

Step 1 selection: Selection operator is applied to the

current population to create an intermediate one. In the

first generation the initial population is considered as

the intermediate one, while in the next generations this

population is created by the application of the selection

operator.

Step 2 generation (crossover–mutation): In order to

create the next generation, crossover and mutation op-

erators are applied to the intermediate population to

create the next population. Crossover is a reproduction

operator, which forms a new chromosome by combining

parts of each of the two parental chromosomes. Muta-

tion is a reproduction operator that forms a new chro-

mosome by making (usually small) alterations to the

values of genes in a copy of a single parent chromosome.

The process of going from the current population to the

next population constitutes one generation in the evo-

lution process of a genetic algorithm. If the termination

criteria are satisfied the procedure stops, otherwise, it

returns to step 1.
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2.2. Micro genetic algorithms

The micro genetic algorithm (lGA) was introduced
by Krishnakumar [11] and applied to simple mathe-

matical test functions and to the wind shear optimal

guidance problem. The main objective of this scheme is

to reduce the size of the population compared to the

basic one. This corresponds, in the case of structural

optimization problems discretized with finite elements,

to less finite element analyses per generation. It is a

known fact that GA generally exhibit poor performance

with very small population due to insufficient informa-

tion processed and premature convergence to non-opti-

mal results. A remedy to this problem, suggested by

Goldberg [12], could be to restart the evolution process

in case of nominal convergence with a new initial pop-

ulation which will include the best solution already

achieved. Based on this suggestion Krishnakumar pro-

posed the lGA which can be described by the following
steps:

Step 0 initialization: The first step generates a popu-

lation of size five either randomly or by generating four

strings randomly and by selecting one good string from

any previous search, or according to the experience of

the designer.

Step 1 fitness evaluation: In this step the fitness of

each individual is evaluated and the best string is de-

termined. The best string is labeled as string five and it

is carried to the next generation (elitist strategy). In this

way there is a guarantee that the information about

good strings are not lost.

Step 2 generation: According to the previous step the

best individual of the current generation is carried out to

the next one. The remaining four members of the next

generation are chosen according to the tournament se-

lection operator. After the selection operator is termi-

nated the crossover operator is applied.

Step 3 convergence check: If the termination criteria is

satisfied the process ends, otherwise check for nominal

convergence which is measured by bit wise convergence

in case of binary coding or by comparing the design

variables in case of real valued strings. If converged go

to step 0, else return to Step 1.

A modified version of lGA is tested in this study,

where only feasible designs are accepted for the evolu-

tion process. This version, which resembles the death

penalty treatment of the constraints adopted by ES, is

abbreviated to m lGA.

3. Methods for handling the constraints

Although genetic algorithms were initially developed

to solve unconstrained optimization problems, during

the last decade several methods have been proposed

for handling constrained optimization problems as well.

The methods based on the use of penalty functions are

employed in the majority of cases for treating constraint

optimization problems with GA. In this study methods

belonging to this category have been implemented and

will be briefly described in the following section.

3.1. Method of static penalties

In the method of static penalties the objective func-

tion is modified as follows:

F 0ðsÞ ¼ F ðnÞðsÞ; if s 2 F

F ðnÞðsÞ þ p � violðnÞðsÞ; otherwise

�
ð2Þ

where p is the static penalty parameter, violðnÞðsÞ is the
sum of the violated constraints and F ðnÞðsÞ is the objec-
tive function to be minimized, both normalized in [0,1],

while F is the feasible region of the design space.

violðsÞ ¼
Xm
j¼1

hjðsÞ ð3Þ

The sum of the violated constraints is normalized before

it is used for the calculation of the modified objective

function. The main advantage of this method is its sim-

plicity. However, there is no guidance on how to choose

the single penalty parameter p. If it is chosen too small

the search will converge to an infeasible solution, oth-

erwise, if it is chosen too large, a feasible solution may

be located but it would be far from the global optimum.

A large penalty parameter will force the search proce-

dure to work away from the boundary where the global

optimum is usually located and divides the feasible re-

gion from the infeasible one.

3.2. Method of dynamic penalties

The method of dynamic penalties was proposed by

Joines and Houck [13] and applied to mathematical test

functions. As opposed to the previous method, dynamic

penalties are implemented in this case. Individuals are

evaluated (at the generation g) by the following formula

F 0ðsÞ ¼ F ðnÞðsÞ þ ðc � gÞaviolðnÞðsÞ ð4Þ

violðsÞ ¼
Xm
j¼1

hb
j ðsÞ ð5Þ

where c, a and b are constants. A reasonable choice for
these parameters was proposed as follows: c ¼ 0:5–2:0,
a ¼ b ¼ 1 or 2. For high generation number, however,
the ðc � gÞa component of the penalty term takes ex-

tremely large values which makes even the slightly

violated designs not to be selected in subsequent

generations. Thus, the system has little chances to escape

from local optima. In most experiments reported by
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Michalewicz [14] the best individual was found in early

generations.

3.3. Augmented Lagrangian method

The Augmented Lagrangian method (AL-GA) was

proposed by Adeli and Cheng [15,16]. According to

this method the constrained problem is transformed

to an unconstrained problem, by introducing two sets

of penalty coefficients c½ðc1; c2; . . . ; cMþN Þ	 and l½ðl1;
l2; . . . ; lMþN Þ	. The modified objective function, for the
generation g, is defined as follows:

F 0ðs; c; lÞ ¼ 1

Lf
F ðsÞ þ 1

2

XN
j¼1

cðgÞj ½ðqj

8<
: 
 1þ lðgÞ

j Þþ	2

þ
XM
j¼1

cðgÞjþN

dj
�� ��
daj
�� ��

 

 1þ lðgÞ

jþN

!þ" #29=
; ð6Þ

where Lf is a factor for normalizing the objective func-
tion; qj is a non-dimensional ratio related to the stress
constraints of the jth element group (see Eqs. (18) and

(19)); dj is the displacement in the direction of the jth

examined degree of freedom, while daj is the corre-

sponding allowable displacement; N, M correspond to

the number of stress and displacement constraint func-

tions, respectively. Furthermore

ðqj 
 1þ lðgÞ
j Þþ ¼ maxðqj 
 1þ lðgÞ

j ; 0Þ ð7Þ

dj
�� ��
daj
�� ��
 1þ lðgÞ

jþN

 !þ

¼ max
dj
�� ��
daj
�� ��
 1þ lðgÞ

jþN ; 0

 !
ð8Þ

The penalty coefficients are updated at each generation

according to the expressions cðgþ1Þj ¼ b � cðgÞj and lðgÞ
j ¼

lðgÞ
j =b, where lðgþ1Þ

j ¼ lðgÞ
j þmax½conðgÞj;ave;
lðgÞ

j 	 and

con
ðgÞ
j;ave is the average value of the jth constraint function

for the gth generation, while the initial values of c’s and
l’s are set equal to three and zero, respectively. Coeffi-
cient b is taken equal to ten as recommended by Be-
legundu and Arora [17].

3.4. Segregated genetic algorithm

The basic idea of the segregated GA (S-GA) [18] is

to use, as in the method of static penalties, two static

penalty parameters instead of one. The two values of the

penalty parameters are associated with two populations

that have a different level of satisfaction of the con-

straints. Each of the groups corresponds to the best

performing individuals with respect to the associated

penalty parameter. The S-GA can be described as fol-

lows:

Step 0 initialization: Random generation of 2N de-

signs. The objective functions of the designs 1; 2; . . . ;N

are evaluated using the ph penalty parameter, while the
remaining designs N þ 1; . . . ; 2N are evaluated using the
p‘ penalty parameter.

Step 1 selection: An intermediate population of size

N is created by selecting the best individuals from the

two populations.

Step 2 generation: Generate N offsprings using the

basic operators mutation and crossover. The parents are

evaluated using the ph penalty parameter while the off-
springs using the p‘. The process is then repeated by
returning to Step 1.

This version was used in [18] for the minimal weight

design problem of a composite laminated plate.

4. Evolution strategies

4.1. Basic evolution strategies

In the majority of cases ES were applied to contin-

uous optimization problems. In engineering practice the

design variables are not continuous because usually the

structural parts are constructed with certain variation of

their dimensions. Thus design variables can only take

values from a predefined discrete set. For the solution of

discrete optimization problems Thierauf and Cai [19]

have proposed a modified ES algorithm. The basic dif-

ferences between discrete and continuous ES are focused

on the mutation and the recombination operators. The

multi-membered ES adopted in the current study uses

three operators: recombination, mutation and selection

operators that can be included in the algorithm as fol-

lows:

Step 1 (recombination and mutation): The population

of l parents at gth generation produces k offsprings. The
genotype of any descendant differs only slightly from

that of its parents. For every offspring vector a tempo-

rary parent vector ~ss ¼ ½~ss1; ~ss2; . . . ; ~ssn	T is first built by
means of recombination. For discrete problems the

following recombination cases can be used

~ssi ¼

sa;i or sb;i randomly ðAÞ
sm;i or sb;i randomly ðBÞ
sbj;i ðCÞ
sa;i or sbj;i randomly ðDÞ
sm;i or sbj;i randomly ðEÞ

8>>>><
>>>>:

ð9Þ

~ssi is the ith component of the temporary parent vector ~ss,
sa;i and sb;i are the ith components of the vectors sa and
sb which are two parent vectors randomly chosen from
the population. The vector sm is not randomly chosen
but is the best of the l parent vectors in the current
generation. In case C of Eq. (9), ~ssi ¼ sbj;i means that the
ith component of ~ss is chosen randomly from the ith

components of all l parent vectors. From the temporary
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parent ~ss an offspring can be created following the mu-
tation operator.

Let as consider the temporary parent sðgÞp of the

generation g that produces an offspring sðgÞo through the

mutation operator as follows

sðgÞo ¼ sðgÞp þ zðgÞ ð10Þ

where zðgÞ ¼ ½zðgÞ1 ; zðgÞ2 ; . . . ; zðgÞn 	T is a random vector. Mu-

tation is understood to be random, purposeless events,

which occur very rarely. The fact that the difference

between any two adjacent values can be relatively large

is against the requirement that the variance r2i should be
small. For this reason it is suggested [19] that not all the

components of a parent vector, but only a few of them

(e.g. ‘), should be randomly changed in every genera-
tion. This means that n
 ‘, components of the ran-
domly changed vector zðgÞ will have zero value. In other
words, the terms of vector zðgÞ are derived from

zðgÞi ¼ ðj þ 1Þdsi for ‘ randomly chosen components
0 for n
 ‘ other components

�
ð11Þ

where dsi is the difference between two adjacent values in
the discrete set and j is a random integer number, which
follows the Poisson distribution

pðjÞ ¼ ðcÞj

c!
e
c ð12Þ

c is the standard deviation as well as the mean value of
the random number j. The choice of ‘ depends on the
size of the problem and it is usually taken as 1=5 of the
total number of design variables. The ‘ components are
selected using uniform random distribution in every

generation according to Eq. (11).

Step 2 (selection): There are two different types of

the multi-membered ES:

ðl þ kÞ-ES: The best l individuals are selected from a

temporary population of ðl þ kÞ individuals to form
the parents of the next generation.

ðl; kÞ-ES: The l individuals produce k offsprings

ðl6 kÞ and the selection process defines a new popula-
tion of l individuals from the set of k offsprings only.

For discrete optimization the procedure terminates

when one of the following termination criteria is satis-

fied: (i) when the best value of the objective function in

the last 4nl=k generations remains unchanged, (ii) when
the mean value of the objective values from all parent

vectors in the last 2nl=k generations has not been im-
proved by less than a given value ebð¼ 0:0001Þ, (iii) when
the relative difference between the best objective func-

tion value and the mean value of the objective function

values from all parent vectors in the current generation

is less than a given value ecð¼ 0:0001Þ, (iv) when the
ratio lb=l has reached a given value edð¼ 0:5–0:8Þ where
lb is the number of the parent vectors in the current

generation with the best objective function value.

4.2. Contemporary ES––the (l,k,h) evolution strategies

This is a more general ES version, which was pro-

posed by Schwefel and Rudolph [20] for application in

continuous problems but has not been applied either

to continuous or to discrete optimization problems [21].

The two schemes of the multi-membered evolution

strategy, namely the ðl þ kÞ-ES and the ðl; kÞ-ES, differ
in the way the parents of a new generation are selected.

So far, only empirical results have shown that the ‘plus’

version performs better in structural optimization

problems [7,19].

The ðl; kÞ-ES version is in danger to diverge because
the so far best position is not preserved within the gen-

eration cycle (the so-called non-elitist strategy). The

‘comma’ version implies that each parent can have

children only once (duration of life: one generation or

one reproduction cycle), whereas in the ‘plus’ version

individuals may live eternally if no child achieves a

better or at least the same improvement in the objective

function value. The contemporary ES (C-ES) introduce

a maximal life span of hP 1 reproduction cycles which

gives the ‘comma’ scheme for h ¼ 1 and the ‘plus’ one
for h ¼ 1. If lP 1 is the number of parents, k > l is the
number of offspring, then q with 16 q6l is the number
of ancestors for each descendant. This ES version differs

in two points from the basic one: (i) free number of

parents are involved in reproduction ranging from 1 to

l, (ii) a finite number of reproduction cycles per indi-
vidual is performed, not one (1) or infinite (1) for the
‘comma’ and the ‘plus’ schemes, respectively. The se-

lection, mutation and recombination operators used in

the C-ES are the same as described in the section of the

basic evolution strategies.

4.3. Adaptive ES

The handling of the constraints by the basic ES is

based on the death penalty approach [22], where every

infeasible design point is discarded. Thus the process is

directed to search only in the feasible region of the de-

sign space. Due to this approach many designs that are

examined by the optimizer during the search process and

are close to the acceptable design space are rejected

leading to the loss of valuable information. The idea

introduced in this work is to use soft constraints dur-

ing the first stages of the search and as the search

approaches the region of the global optimum the
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constraints to become more severe until they reach their

real values.

The implementation of adaptive ES (A-ES) in a

structural optimization problem is straightforward and

follows the same steps described in the section of the

basic ES. The ES optimization procedure starts with a

population of parent vectors, while a level of violation of

the constraints is determined. If any of these parents

corresponds to an infeasible design lying outside the

extended design space then this parent is modified until

it becomes ‘feasible’. Then the offsprings are generated

and they are also checked if they are in the ‘feasible’

region according the current level of violation. In every

generation the values of the objective function are

compared between the parent and the offspring vectors

and the worst vectors are rejected, while the remaining

ones are considered to be the parent vectors of the new

generation. This procedure is repeated until the chosen

termination criterion is satisfied.

In this adaptive scheme a nominal convergence check

is adopted for the determination of the level of violation

of constraints. Nominal convergence occurs when the

mean value of the objective function of the designs of the

current population is relatively close to the best design

achieved until the current generation, according to the

expression

F
ðgÞ 
 F ðgÞ

best

F
ðgÞ 6 ead ð13Þ

where F
ðgÞ
is the mean objective function value and F ðgÞ

best

is the best objective function value of all parents in the

gth generation, where ead ¼ 0:05.
The A-ES steps can be stated as follows:

1. Initialization step: Selection of si, (i ¼ 1; 2; . . . ; l) par-
ent vectors of the design variables and the percentage

of violation of the constraints v0 (usually taken be-
tween 20% and 50%).

2. Analysis step: Solve KðsiÞui ¼ f (i ¼ 1; 2; . . . ; l),
where K is the stiffness matrix of the structure and f

is the loading vector.

3. Constraints check: All parent vectors become ‘‘feasi-

ble’’, within the prescribed level of constraints viola-

tion v0.
4. Offspring generation: Generate sj, (j ¼ 1; 2; . . . ; k) off-
spring vectors of the design variables.

5. Analysis step: Solve KðsjÞuj ¼ f (j ¼ 1; 2; . . . ; k).
6. Nominal convergence check: If nominal convergence

has occurred the level of violation vg becomes more
severe by reducing its value by the quantity b (usually

0.1 or 0.2).

7. Constraints check: If satisfied according to the current

level of violation vg continue, else change sj and re-
turn to Step 4.

8. Selection step: Selection of the next generation par-

ents according to (l þ k) or (l; k) selection schemes.
9. Convergence check: If satisfied stop, else return to

Step 3.

4.4. An academic example

As an example for explaining the process of ES we

consider the three-bar truss shown in Fig. 1, where the

minimum volume is required to support a force P .
This structure has been used as a test bed in the lit-

erature of structural optimization [23] and must satisfy

various constraints, such as member crushing, member

buckling and failure by excessive deflection of node 4.

The final design of the structure must be symmetric.

Therefore, the following design variables are defined:

A1 ¼ cross-sectional area of material for members l and
3, and A2 ¼ cross-sectional area of material for member
2. The relative merit of any design for the problem is

measured in its material volume. Thus, the total material

volume for the structure serves as an objective function:

volume ¼ Lð2
ffiffiffi
2

p
A1 þ A2Þ

where L is defined in Fig. 1.

To define the constraint functions for the problem,

stresses and deflections for the structure are calculated.

Using analysis procedures for statically indeterminate

structures, horizontal and vertical displacements u and v,

respectively, of the node 4 are given by

u ¼
ffiffiffi
2

p
LPu

A1E

v ¼
ffiffiffi
2

p
LPv

ðA1 þ
ffiffiffi
2

p
A2ÞE

where E is the modulus of elasticity for the material,

while Pu and Pv are the horizontal and vertical compo-
nents of the load P, respectively: Pu ¼ P cos h, Pv ¼

Fig. 1. Symmetric three-bar truss.
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P sin h. Stresses r1, r2 and r3 in members 1–3 under the
load P are computed from member forces as follows:

r1 ¼
1ffiffiffi
2

p Pu
A1

"
þ Pv
ðA1 þ

ffiffiffi
2

p
A2Þ

#
ðaÞ

r2 ¼
ffiffiffi
2

p
Pv

ðA1 þ
ffiffiffi
2

p
A2Þ

ðbÞ

r3 ¼
1ffiffiffi
2

p Pv
ðA1 þ

ffiffiffi
2

p
A2Þ

"

 Pu
A1

#
ðcÞ

Note from Eqs. (a) and (c) that r1 is always greater
than r3. Therefore, we need to impose constraints only
on r1 and r2. If ra is an allowable stress for the material,
then

r16 ra and r26 ra

Horizontal and vertical deflections of the node 4 must be

within the specified limits Du and Dv, respectively. Thus
u6Du and v6Dv.
To impose buckling constraints for members under

compression, the dependence of moment of inertia I on

the cross-sectional area of the members must be speci-

fied. A form with quite general applicability is I ¼ bA2,
where A is the cross-sectional area and is a non-dimen-

sional constant. This relation follows if the shape of the

cross-section is fixed and all its dimensions are varied in

the same proportion. The axial force for the ith member

is Fi ¼ Airi, where i ¼ 1, 2, 3 with tensile force taken as
positive. Members of the truss are considered bars with

pin ends. Therefore, the buckling load for the ith

member is

Pb ¼
p2EiIi
‘2i

where ‘i is the length of the ith member. Buckling con-
straints are expressed as


Fi 6
p2EiIi
‘2i

The negative sign for Fi is used to make the left-hand
side of the constraints negative when the member is in

tension since there is no need to impose buckling con-

straints for members in tension. Substituting various

quantities, member buckling constraints take the form
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#
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We will describe now step by step the ES generation

of the first population from the initial one for the design

data shown in Table 1. The members of the truss are

taken to be tabular sections.

The selection scheme used in this application is the

ð5þ 5Þ which means l ¼ 5 parents produce k ¼ 5 off-
springs selected according to the ðl þ kÞ scheme. The
current difference between two adjacent values dsi of
Eq. (11) is taken 2.535 cm2 and ‘ ¼ 1 (Eq. (11)). The
recombination type D of Eq. (9) is used according to

which the best member of the parent population is re-

combined with a randomly chosen member of the parent

population. Termination criterion (ii) of ES is imple-

mented according to which the procedure is terminated

when the mean value of the objective values from all

parent vectors in the last four generation has not been

improved by less than the given value eb ¼ 0:001.

• Recombine member 5 with member 1 to obtain the

first temporary offspring vector (40.6, 50.7). The mu-

tation operator is performed in one of the two design

variable since ‘ ¼ 1.
To randomly select which one of the two design

variable is to be mutated the following procedure

Initial population

Member of the

population

Design (A1, A2)
(cm2)

Volume (l)

1 (50.7, 50.7) 24.0

2 (71.0, 65.9) 33.0

3 (71.0, 71.0) 33.7

4 (40.6, 60.8) 21.7

5 (40.6, 35.5) 18.6

Table 1

Design data for the three-bar structure

Allowable stress Members 1 and 3:

r1a ¼ r3a ¼ 34:5 MPa
Member 2: r2a ¼ 137:9 MPa

Allowable displacements Du¼ 0.0127 cm
Dv¼ 0.0127 cm

Modulus of elasticity E ¼ 69:0E þ 03 MPa
Constant (assuming the sec-

tions to be thin)

b ¼ 1:0

No. of design variables n ¼ 2
Lower limits of the design

variables

(5.07, 5.07) cm2

Upper limits of the design

variables

(101.4, 101.4) cm2

Parameter L ¼ 2:54 cm
Load P ¼ 178 kN
Angle h ¼ 45�
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is followed: Generate a random number that fol-

lows the Gauss distribution in the (0,1):

r ¼ 0:71471.
Transform of the random variable r to an integer

one:

i1 ¼ intðr 
 ðnþ 1ÞÞ þ 1 ¼ 3
if ði1:ge:ðnþ 1ÞÞi1 ¼ nþ 1
i1 ¼ i1
 ðnþ 2Þ=2 ¼ 1 if ði1:gt:0Þxi ¼ xi þ zi else
xi ¼ xi 
 zi
i2 ¼ absði1Þ ¼ 1 which means that the first design
variable is to be mutated.

Mutate the design variable A1 with j ¼ 0 [24]
(Eq. (12)) to produce the first feasible offspring

(43.1, 50.7) with objective function value equal

to 21.4 l.

• Recombine member 5 with member 5 to obtain the

second temporary offspring vector (40.6, 35.5). Mu-

tate the design variable A2 with j ¼ 0 to produce
the corresponding feasible offspring (40.6, 38.0) with

objective function value equal to 18.9 l.

• Recombine member 5 with member 4 to obtain the

third temporary offspring vector (40.6, 60.8). Mutate

the design variable A1 with j ¼ 0 to produce the cor-
responding feasible offspring (38.0, 60.8) with objec-

tive function value equal to 20.9 l.

• Recombine member 5 with member 3 to obtain the

fourth temporary offspring vector (71.0, 35.5). Mu-

tate the design variable A1 with j ¼ 0 to produce
the corresponding feasible offspring (68.4, 35.5) with

objective function value equal to 28.4 l.

• Recombine member 5 with member 1 to obtain the

fifth temporary offspring vector (50.7, 35.5). Mutate

the design variable A2 with j ¼ 1 to produce the cor-
responding feasible offspring (50.7, 30.4) with objec-

tive function value equal to 21.5 l.

If an offspring happens to be infeasible then the re-

combination of the best member with a randomly cho-

sen member is performed followed by the mutation step

until a feasible design is achieved.

We then select among the (l þ k) population pool the
best l individuals. Thus, the second population is as
follows:

The procedure is repeated until the termination criteria

is satisfied, for the current test example this is achieved

for the total number of generations 14 and 86 total

number of FE analyses. The best design achieved is

the (30.4, 22.8) with objective function value equal to

13.5 l.

5. Gradient-based sizing optimization

5.1. Sensitivity analysis

Sensitivity analysis is the most important and time-

consuming part of a gradient-based sizing optimization

procedure. The methods for sensitivity analysis can be

divided into discrete and variational methods [25]. In the

discrete approach the derivatives or the sensitivities of

the objective and constraint functions are evaluated

using the finite element equations of the discretized

structure. Generally the effort required for the computer

implementation of the discrete methods is less than the

effort required for the implementation of the variational

methods.

A further classification of the discrete methods is the

following [26]:

(i) Global finite difference method: A full finite element

analysis has to be performed for each design variable

and the accuracy of the method depends strongly on

the value of the perturbation of the design variables.

The global finite difference method (GFD) scheme is

usually sensitive to the accuracy of the computed per-

turbed displacement vectors which is dependent on

the magnitude of the perturbation of the design vari-

ables. The magnitude of this perturbation is usually

taken between 10
3 and 10
5.

(ii) Semi-analytical method: The stiffness matrix of

the initial finite element solution is retained during

the computation of the sensitivities. This provides

an improved efficiency over the finite difference meth-

od by a relatively small increase in the algorithmic

complexity. The accuracy problem involved in the

numerical differentiation can be overcome by using

the ‘‘exact’’ semi-analytical (ESA) method which

needs more programming effort than the simple

Offspring population

Member of the

population

Design (A1, A2)
(cm2)

Volume

(l)

1 (43.1, 50.7) 21.4

2 (40.6, 38.0) 18.9

3 (38.0, 60.8) 20.9

4 (68.4, 35.5) 28.4

5 (50.7, 30.4) 21.5

Second population

Member of the

population

Design (A1, A2)
(cm2)

Volume

(l)

1 (43.1, 50.7) 21.4

2 (40.6, 38.0) 18.9

3 (38.0, 60.8) 20.9

4 (68.4, 35.5) 28.4

5 (40.6, 35.5) 18.6
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semi-analytical one but it is computationally more ef-

ficient [27,28].

(iii) Analytical method: The finite element equations,

the objective and constraint functions are differenti-

ated analytically.

The decision on which method to implement depends

strongly on the type of problem, the structure of the

computer program and the access to the source code.

The implementation of analytical and semi-analytical

methods is more complex and requires access to the

source code, whereas when a finite difference method is

applied the formulation is much simpler and the sen-

sitivity coefficients can be easily evaluated even with

general purpose commercial codes. In the present in-

vestigation both the global finite difference method and

the semi-analytical method have been used.

5.2. Sequential quadratic programming

SQP methods are the standard general purpose

mathematical programming algorithms for solving NLP

optimization problems [29]. Such methods make use of

local curvature information derived from linearization

of the original functions, by using their derivatives with

respect to the design variables at points obtained in the

process of optimization. Thus a quadratic programming

(QP) model (or subproblem) is constructed from the

initial NLP problem. A local minimizer is found by

solving a sequence of these QP subproblems using a

quadratic approximation of the objective function. Each

subproblem has the following form

minimize 1
2
pTHp þ gTp

with Ap þ hðsÞ6 0
�ss‘ 6 p6�ssu

ð14Þ

wherep is thesearchdirectionsubjected toupperand lower

bounds, g is the gradient of the objective function,A is the

Jacobian of the constraints, usually the active ones

only (i.e. those that are either violated, or not far from

being violated), �ss‘ ¼ s‘ 
 s, �ssu ¼ su 
 s and H is an ap-

proximation of the Hessian matrix of the Lagrangian

function

Lðs; kÞ ¼ F ðsÞ þ khðsÞ ð15Þ

In Eq. (15) k are the Lagrange multipliers under the non-
negativity restriction (k P 0) for the inequality con-

straints. In order to construct the Jacobian and the

Hessian matrices of the QP subproblem the derivatives

of the objective and constraint functions are required.

These derivatives are computed during the sensitivity

analysis phase.

There are two ways to solve this QP subproblem,

either with a primal [30], or with a dual [31] formulation.

In the present study a primal algorithm is employed

based on an SQP algorithm from the NAG library [32].

The primal algorithm is divided into three phases: (i) the

solution of the QP subproblem to obtain the search di-

rection, (ii) the line search along the search direction,

(iii) the update of the Hessian matrix H.

Once the direction vector is found a line search is

performed, involving only the non-linear constraints,

in order to produce a ‘‘sufficient decrease’’ to the merit

function u. This merit function is an augmented La-
grangian function of the form [31]

u ¼ F ðsÞ 

X
i

kiðgiðsÞ 
 ciÞ þ
1

2

X
i

piðgiðsÞ 
 ciÞ
2

ð16Þ

where ci are the non-negative slack variables of the in-
equality constraints derived from the solution of the QP

subproblem. These slack variables allow the active in-

equality constraints to be treated as equalities and avoid

possible discontinuities. Finally, pi are the penalty pa-
rameters which are initially set to zero and in subsequent

iterations are increased whenever this is necessary in

order to control the violation of the constraints and to

ensure that the merit function follows a descent path

[30].

To implement SQP in discrete optimization prob-

lems, a continuous SQP step is performed first at each

step. Then the current continuous design reached is

projected to the nearest discrete values of the design

space. The current continuous design is considered as a

lower bound of the projected discrete one [33].

6. The hybrid approach

Hybrid methods which combine evolutionary com-

putation techniques with deterministic procedures for

numerical optimization problems have been recently

investigated. Papadrakakis et al. [34] used evolution

strategies with the SQP method, while Waagen et al. [35]

combined EP with the direction set method of Hooke

and Jeeves [36]. The hybrid implementation proposed in

[34] was found very successful on shape optimization

test examples, while the method proposed in [35] was

applied to unconstrained mathematical test functions.

Myung et al. [37] considered a similar to Waagen

et al. approach, but they experimented with constrained

mathematical test functions. Myung et al. combined a

floating-point EP technique, with a method-developed

by Maa and Shanblatt [38] applied to the best solution

found by the EP technique. The second method iterates

until the system defined by the combination of the ob-

jective function, the constraint functions and the design

variables reach equilibrium.

A characteristic property of the SQP based optimiz-

ers is that they capture very fast the right path to the
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nearest optimum, irrespective of its nature a local or

global optimum. However, after locating the area of this

optimum it might oscillate until all constraints are sat-

isfied since it is observed that even small constraint vi-

olations often slow down the convergence rate of the

method. On the other hand EA proceed with slower

rate, due to their random search, but the absence of

strict mathematical rules, which govern the convergence

rate of the mathematical programming methods, make

EA less vulnerable to local optima and therefore it is

much more likely to converge towards the global opti-

mum in non-convex optimization methods. These two

facts give the motivation to combine EA with MP

methodologies. Between the two EA examined in this

study the genetic algorithms seems to be faster than

evolution strategies since they do not always operate on

the feasible region of the design space as evolution al-

gorithms. However, they are most often found unable to

converge to feasible designs.

In order to benefit from the advantages of both

methodologies (EA and SQP) a hybrid approach is

proposed, which combines the two methods in an effort

to increase the robustness and the computational effi-

ciency of the optimization procedure. The optimization

process is divided into two separate phases. During the

first phase, the evolution algorithm optimizes the ob-

jective function. After the termination of this phase, the

second phase starts by applying the SQP to the best

solution found during the first phase.

The procedure of EA is first used in order to locate

the region where the global optimum lies, then the SQP

is activated in order to exploit its higher rate of con-

vergence in the neighborhood of the optimum. The

switch from EA to SQP is performed when EA reaches

the vicinity of an optimum that is considered a good

one. This approach appears to be more rational in the

general case when more complex and non-convex design

problems are to be solved with many local optima. In

the case of GA-SQP the final design achieved by GA can

be tolerated to be infeasible since the SQP will eventually

locate a feasible design.

In the present study two hybrid methodologies are

examined which are based on the combination of GA

and ES with the SQP algorithm. The transition from one

algorithm to the other is performed when there is a small

difference between the best designs of two consecutive

generations

fjþ1 
 fj
fj

����
����6 e ð17Þ

It was found in the test cases performed in this study and

in shape optimization problems [34] that a reasonable

value for e could be taken in the vicinity of 10%.

7. Numerical tests

The optimization of two space frame structures is

selected to illustrate the efficiency of the presented

methodologies in structural design problems. In both

test examples the modulus of elasticity E is taken 200

GPa and the yield stress ry is 250 MPa. The cross-sec-
tion of each member is assumed to be a I-shape and for

each member two design variables are considered as

shown in Fig. 2. The values of b and h are selected from

an integer design space, while t and w are given as fol-

lows: f ¼ 0:06hþ 0:10ðb
 10Þ, w ¼ 0:625f . Those two
expressions make sure that the web thickness is less than

b, the opposite of which would have been not accept-

able. The objective function of the problems is the

weight of the structure. The constraints are the member

stresses and the inter-storey drifts. For rigid frames in

rolled I-shapes, under allowable stress design require-

ments specified by Eurocode 3 [39], the stress constraints

are defined by the non-dimensional ratio q of interaction

formulas

q ¼ fa
Fa

þ f y
b

F y
b

þ f z
b

F z
b

6 1:0 if
fa
Fa

6 0:15 ð18Þ

and

q ¼ fa
0:60ry

þ f y
b

F y
b

þ f z
b

F z
b

6 1:0 if
fa
Fa

> 0:15 ð19Þ

where fa is the computed compressive axial stress, f
y
b , f

z
b

are the computed bending stresses for y- and z-axis, re-

spectively. Fa is the allowable compressive axial stress,

Fig. 2. I-shaped cross-section design variables.
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F y
b , F

z
b are the allowable bending stresses for y- and z-

axis, respectively, and ry is the yield stress of the steel.
The allowable inter-storey drift is limited to 1.5% of the

height of each storey. One load case is considered in all

examples.

The termination criterion adopted for both GA and

ES is the same for comparison reasons. If no improve-

ment of the best value of the objective function has oc-

curred in the last six generations, then the optimization

procedure is terminated.

Example 1: The first example is a six-storey space

frame, first studied by Orbinson et al. [40], with 63 ele-

ments and 180 degrees of freedom. The beams length is

L1 ¼ 7:32 m and the columns height is L2 ¼ 3:66 m. The
loads consisting of 17 kPa gravity load on all floor levels

and a lateral load of 100 kN applied at each node in the

front elevation in the z direction. The element members

are divided into five groups shown in Fig. 3 and the total

number of design variables is 10. The initial design used

in this example was chosen away from the optimum

corresponding to the weight of 2846 kN for every test.

Table 2 shows the performance of the two types of the

basic multi-membered ES, namely (l þ k)-ES and (l; k)-
ES for l ¼ k ¼ 5 and l ¼ k ¼ 10. The best design
achieved by these tests is used as the basis for compar-

ison in subsequent applications of the optimization

methods examined.

In Figs. 4–7 various techniques for handling the

constraints of the genetic algorithms are presented. The

performance of the methods for handling the constraints

is measured with two parameters: the weight achieved

and the average level of violation of the constraint

functions. The average percentage violation of the con-

straint functions is abbreviated to Avg. Const. Violation

(%). Fig. 4 depicts the performance of GA with the

method of static penalties for handling the constraints.

It can be seen that the performance of the method is very

sensitive to the value of the penalty parameter, while

there is not a rule of thumb on how to choose this single

penalty parameter. If it is chosen too small the search

will converge to an infeasible solution otherwise if it is

chosen too large a feasible solution may be located but it

would be far from the global optimum. Fig. 5 presents

the performance of GA with the method of dynamic

penalties for handling the constraints. It appears that the

constraint violation percentage in this case is equal to

zero for all cases considered, since for high generation

number the ðc � gÞa component of the penalty term takes

Fig. 3. Six storey space frame.

Table 2

Test example 1––performance of the two selection schemes

(l þ k)-ES and (l, k)-ES

Optimizer Weight (kN) FE analyses Time (s)

(5þ 5)-ES 675 416 177

(5,5)-ES 677 430 183

(10þ 10)-ES 668 847 363

(10,10)-ES 661 834 357
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large values, which makes even the slightly violated de-

signs not to be selected in subsequent generations. Thus,

the system has little chances to escape from local op-

tima.

Fig. 6 presents the performance of the segregated GA

(S-GA) method for handling the constraints for different

values of penalty parameters ph, p‘. The results indicate

Fig. 4. Test example 1––performance of GA with static pen-

alties.

Fig. 5. Test example 1––performance of GA with dynamic

penalties (a ¼ 2, zero constr. violation).

Fig. 6. Test example 1––performance of S-GA with ph, p‘
scheme.

Fig. 7. Test example 1––performance of S-GA with p‘, ph
scheme.
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that the optimum designs achieved are much closer to

the global one, compared to the other constraint han-

dling techniques, but are still in many cases local optima.

A general comment that can be deduced from Figs. 4–6

for micro GA is that l-GA show premature convergence
to worse local optima compared to the corresponding

basic GA. Fig. 7 depicts the performance of the S-GA

method when the parents are evaluated using the p‘
penalty parameter and the offsprings using the ph.
Tables 3 and 4 contain the results of the Augmented

Lagrangian GA method (AL-GA). The constraint vio-

lation percentage is equal to zero for all tests considered.

Table 3 depicts the results of the method with the ter-

mination criteria suggested by Adeli and Cheng in Ref.

[15], while Table 4 includes the results obtained for the

termination criteria used for the rest of the methods. For

the adopted termination criterion we have examined

four different cases, according to the allowable number

of generations with no improvement of the objective

function. It can be seen that both termination criteria

converge to the same result which appears to be a local

minima compared to the minimum achieved by the ES

as shown in Table 2. It can also be seen that the Aug-

mented Lagrangian GA method is not affected by the

value of normalization parameter Lf .
Figs. 8 and 9 show the performance of the two

modified versions of the evolution strategies, namely the

contemporary ES (C-ES) and the adaptive ES (A-ES),

respectively. For this test example the reduction pa-

rameter b used in the A-ES method is equal to 0.1, while

the parameters ai and af denote the initial and final level

Fig. 8. Test example 1––performance of the C-ES.

Fig. 9. Test example 1––performance of the A-ES (b ¼ 0:1).

Table 3

Test example 1––performance of the AL-GA

Lf Weight (kN) FE analyses Time (s)

100 1010 145 62

500 1010 145 62

1000 1010 145 62

Termination criterion of Ref. [15].

Table 4

Test example 1––performance of the AL-GA with the termi-

nation criterion adopted in this work

Lf Weight (kN) FE analyses Time (s)

Case a: 6l=k
100 1060 110 48

500 1060 110 48

1000 1060 110 48

Case b: 12l=k
100 1042 140 60

500 1042 140 60

1000 1042 140 60

Case c: 18l=k
100 1010 145 62

500 1010 145 62

1000 1010 145 62

Case d: 24l=k
100 1010 145 62

500 1010 145 62

1000 1010 145 62
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of violation of the constraints. The initial parameter ai
for the normalized constraint functions (Eqs. (18) and

(19)) is taken between 1.2 and 1.6, which correspond to a

percentage violation of the constraints between 20% and

60%. In the case of Fig. 8 all designs achieved are fea-

sible, while in the case of Fig. 9 the designs achieved by

the optimizers 2 and 5 are not feasible. The results of

Figs. 8 and 9 indicate that the two new versions of ES

manage to converge to better designs than the basic ES

for a number of different parameters used at a marginal

increase of computational effort. The C-ES method

appears to be slightly more robust than the adaptive

one, which may converge to infeasible designs when the

parameter af is not equal to one. The A-ES, however,
manage to converge to the best optimum design of 620

kN in 470 FE analyses for ead ¼ 0:005 and ai ¼ 1:6.
The performance of the hybrid approaches is depicted

in Table 5. The results indicate that despite the fact that

all GA methods, except of AL-GA, converge to infeasi-

ble designs (the letter ‘v’ denotes constraint violation) the

SQP optimizer which follows manages to reach a feasible

one at a competitive time. The best design found by A-

ES-SQP and AL-GA-SQP optimizer is 20% better than

the design achieved by SQP requiring 35% and 25% less

computational effort, respectively. We also examined two

EA hybrid methods by combining AL-GA with ES and

vice versa. Both perform well in terms of the design

achieved and the required computing time. Furthermore,

the modified version of the lGA, which excludes all the
infeasible designs gave the same solution as the (l; k)-ES
with 25% less computational effort, while the modified

micro GA (m lGA) achieves better performance in terms
of computing time compared to the (l þ k)-ES method.

Comparing the performance of the two sensitivity anal-

ysis methods it can be seen that the ESA sensitivity

analysis method is faster than GFDmethod. For this test

example the ESA and GFD sensitivity analysis methods

are used to compute the sensitivities and magnitude of

perturbation is equal to 10
5.

Example 2: The second example is the 20-storey

space frame, studied by Papadrakakis and Papadopou-

los [41], with 1020 members and 2400 degrees of free-

dom. The loads considered here are uniform vertical

forces applied at joints equivalent to uniform load of 4.8

kPa and horizontal forces equivalent to uniform forces

of 1.0 kPa on the largest surface. The element members

are divided into 11 groups shown in Fig. 10 and the total

number of design variables is 22. The initial design used

in this example was chosen away from the optimum

corresponding to the weight of 42,248 kN for every test.

Table 6 shows the performance of the two types of

the multi-membered ES, namely (l þ k)-ES and (l; k)-
ES for l ¼ k ¼ 5 and l ¼ k ¼ 10. The (10þ 10) version
of ES manages to converge to the best design, which is

used as reference design. In Figs. 11 and 12 various

techniques for handling the constraints by the GA are

presented. The average percentage violation of the

constraint functions is abbreviated as previously to Avg.

Const. Violation (%). It can be seen that all feasible so-

lutions achieved appear to be local optima although for

this example the GA with dynamic penalties showed a

rather more robust behaviour.

Tables 7 and 8 contain the results of the Augmented

Lagrangian GA method (AL-GA). The constraint vio-

lation percentage is equal to zero for all tests considered.

Table 7 depicts the results of the method with the ter-

Table 5

Test example 1––combination GA-SQP and ES-SQP

Optimizer Initial design for

second optimizer

Final design

(kN)

Sensitivity

analysis

FE analyses Time (s)

EA SQP EA SQP Total

SQP – 795 GFD – 272 – 340 340

SQP – 795 ESA – 271 – 204 204

S-GA-SQP 708v 672 GFD 110 86 47 107 154

S-GA-SQP 708v 672 ESA 110 86 47 66 113

S-GA-SQP 635v 675 GFD 120 155 51 191 242

S-GA-SQP 635v 675 ESA 120 156 51 113 164

AL-GA-SQP 1010 663 GFD 145 121 62 155 217

AL-GA-SQP 1010 663 ESA 145 121 62 95 157

C-ES-SQP 912 681 GFD 212 114 90 142 232

C-ES-SQP 912 681 ESA 212 114 90 88 178

A-ES-SQP 829 663 GFD 136 96 58 120 178

A-ES-SQP 829 663 ESA 136 96 58 74 132

AL-GA-ES 1010 663 – 145þ 207 – 151 – 151

ES-AL-GA 829 675 – 136þ 257 – 177 – 177

m lGA – 677 – 319 – 154 – 154
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mination criteria suggested by Adeli and Cheng in Ref.

[15], while Table 8 includes the results obtained for the

termination criteria used for the rest of the methods. For

the adopted termination criterion we have examined

four different cases according to the allowable number

of generations with no improvement of the objective

function value. It can be seen that both termination

criteria converge to the same result which appears to be

a local minimal compared to the minimum achieved by

the ES as shown in Table 6. It can also be seen, as in the

previous example, that the Augmented Lagrangian GA

method is not affected by the value of normalization

parameter Lf .
Figs. 13 and 14 depict the performance of the two

versions of the evolution strategies, namely the con-

temporary ES (C-ES) and the adaptive ES (A-ES), re-

spectively, all designs depicted in those two figures are

feasible. A comparison of the results of Table 6 and

those depicted in Figs. 13 and 14 indicates that the two

new methodologies outperform in most cases the basic

Table 6

Test example 2––performance of the two selection schemes

(l þ k)-ES and (l; k)-ES

Optimizer Weight (kN) FE analyses Time (s)

(5þ 5)-ES 6028 240 3708

(5,5)-ES 6085 452 6984

(10þ 10)-ES 5819 422 6519

(10,10)-ES 5877 727 11,230

Fig. 10. Twenty storey space frame.

N.D. Lagaros et al. / Computers and Structures 80 (2002) 571–589 585



version of evolution strategies in terms of the achieved

optimum weight at the expense of more computing time.

The performance of the hybrid approaches is de-

picted in Tables 9–11. Three initial designs are consid-

Table 7

Test example 1––performance of the AL-GA

Lf Weight (kN) FE analyses Time (s)

100 7015 195 3097

500 7015 195 3097

1000 7015 195 3097

Termination criterion of Ref. [15].

Fig. 11. Test example 2––optimizer 1–3: GA with static pen-

alties; optimizer (4–7) GA and dynamic penalties (a ¼ b ¼ 2).

Fig. 12. Test example 2––performance of S-GA with p‘, ph
scheme.

Fig. 13. Test example 2––performance of the C-ES.

Table 8

Test example 1––performance of the AL-GA with the termi-

nation criterion adopted in this work

Lf Weight (kN) FE analyses Time (s)

Case a: 6l=k
100 8073 120 1917

500 8073 120 1917

1000 8073 120 1917

Case b: 12l=k
100 7397 140 2231

500 7397 140 2231

1000 7397 140 2231

Case c: 18l=k
100 7015 195 3097

500 7015 195 3097

1000 7015 195 3097

Case d: 24l=k
100 7015 195 3097

500 7015 195 3097

1000 7015 195 3097
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ered, one close, one medium and one away from the

optimum. It can be seen that the computing time spent

by the optimizers is affected by the initial design, espe-

cially in the case of the SQP approach. Furthermore,

GA-SQP, ES-SQP and AL-GA-SQP optimizers manage

to converge to final designs with 10% less weight than

the SQP optimizer with less computational effort. We

have also examined a EA hybrid method by combining

AL-GA with ES, which perform well in terms of the

design achieved and the required computing time. For

this test example the ESA and GFD sensitivity analysis

methods are used to compute the sensitivities and

magnitude of perturbation is equal to 10
5.

8. Conclusions

In this work two versions of evolution strategies as

well as various methods for handling the constraints in

GA have been discussed and compared in structural siz-

ing optimization problems with the standard mathemat-

ical programming approach of SQP. The techniques for

handling the constraints in GA are based on the use of

penalty functions, which transform the constraint opti-

mization problem into an unconstraint one. Techniques

for handling the constraints based on static and dynamic

penalties as well as the micro GA (lGA) and segregated
GA (S-GA) are examined and tested. It appears that the

efficiency of GA in structural sizing optimization prob-

lems is sensitive to the values of the characteristic pa-

rameters for handling the constraints. The computational

effort that is required byGA is less than the corresponding

effort by ES but they are hindered by premature conver-

gence either to non-optimal or to infeasible designs. The

contemporary ES (C-ES) and the adaptive ES (A-ES), did

manage to improve the final design achieved by the basic

ES for a number of values of the characteristic parameters

at almost no increase of the computational effort.

The proposed hybrid optimization approach proved

to be a robust and efficient method for structural opti-

mization. Both GA-SQP and ES-SQP manage to con-

verge to better designs than those achieved by ES or

SQP alone at a reduced computational effort compared

to the SQP procedure. The combination of GA with

SQP is particularly promising in bad initial designs due

Fig. 14. Test example 2––performance of the A-ES (b ¼ 0:1).

Table 9

Test example 2––hybrid methods

Optimizer Initial design for

second optimizer

Final de-

sign (kN)

Sensitivity

analysis

Time (s) Time (s)

EA SQP EA SQP Total

SQP – 6427 GFD – 435 – 21,932 21,932

SQP – 6427 ESA – 438 – 13,655 13,655

S-GA-SQP 7928v 5764 GFD 65 116 1100 5166 6266

S-GA-SQP 7928v 5764 ESA 65 117 1100 3608 4708

AL-GA-SQP 7015 6427 GFD 195 99 3301 4415 7716

AL-GA-SQP 7015 6427 ESA 195 99 3301 3077 6378

C-ES-SQP 7132 5834 GFD 193 152 3266 6770 10,036

C-ES-SQP 7132 5834 ESA 193 152 3266 4687 7953

A-ES-SQP 6531 5713 GFD 107 111 1811 4943 6754

A-ES-SQP 6531 5713 ESA 107 110 1811 3392 5202

AL-GA-ES 7015 5819 – 195þ 65 – 4401 – 4401

m lGA – 5772 – 395 – 6117 – 6117

Bad initial design.
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to the fast convergence of GA towards the neigh-

borhood of the optimum and the property of SQP

to compute quickly the nearest optimum once in the

neighborhood of the solution. However, the proposed

adaptive ES when coupled with SQP and the combina-

tion of the Augmented Lagrangian GA, as the first stage

optimizer followed by ES, proved to be the more effi-

cient optimization algorithms.
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