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Summary

The objective of this paper is to investigate the efficiency of various optimization methods based on mathe-
matical programming and evolutionary algorithms for solving structural optimization problems under static
and seismic loading conditions. Particular emphasis is given on modified versions of the basic evolutionary
algorithms aiming at improving the performance of the optimization procedure. Modified versions of both
genetic algorithms and evolution strategies combined with mathematical programming methods to form
hybrid methodologies are also tested and compared and proved particularly promising. Furthermore, the
structural analysis phase is replaced by a neural network prediction for the computation of the necessary data
required by the evolutionary algorithms. Advanced domain decomposition techniques particularly tailored
for parallel solution of large-scale sensitivity analysis problems are also implemented. The efficiency of a
rigorous approach for treating seismic loading is investigated and compared with a simplified dynamic anal-
ysis adopted by seismic codes in the framework of finding the optimum design of structures with minimum
weight. In this context a number of accelerograms are produced from the elastic design response spectrum
of the region. These accelerograms constitute the multiple loading conditions under which the structures
are optimally designed. The numerical tests presented demonstrate the computational advantages of the
discussed methods, which become more pronounced in large-scale optimization problems.

1 INTRODUCTION

Since 1970 structural optimization has been the subject of intensive research and several dif-
ferent approaches for optimal design of structures have been advocated [25,35,51,67,76,78,90].
Mathematical programming methods make use of local curvature information derived from
linearization of the original functions by using their derivatives with respect to the design
variables at points obtained in the process of optimization to construct an approximate
model of the initial problem. On the other hand the application of combinatorial opti-
mization methods based on probabilistic searching do not need gradient information and
therefore avoid to perform the computationally expensive sensitivity analysis step. Gradi-
ent based methods present a satisfactory local rate of convergence, but they cannot assure
that the global optimum can be found, while combinatorial optimization techniques, are
in general more robust and present a better global behaviour than the mathematical pro-
gramming methods. They may suffer, however, from a slow rate of convergence towards
the global optimum.

During the last three decades there has been a growing interest in problem solving
systems based on algorithms that rely on analogies to natural processes, called Evolution-
ary Algorithms (EA). The best-known algorithms in this class include Evolutionary Pro-
gramming (EP) [24], Genetic Algorithms (GA) [31,41], Evolution Strategies (ES) [69,75].
Evolution- based systems maintain a population of potential solutions. These systems have
some selection process based on fitness of individuals and some recombination operators.
Both GA and ES imitate biological evolution and combine the concept of artificial survival
of the fittest with evolutionary operators to form a robust search mechanism.

Over the last ten years artificial intelligence techniques [13,45] have emerged as a pow-
erful tool that could be used to replace time-consuming procedures in many scientific or
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engineering applications. The use of NN to predict finite element analysis outputs has been
studied previously in the context of optimal design of structural systems [4,5,7,14,34,59,77]
and also in some other areas of structural engineering applications, such as structural dam-
age assessment, structural reliability analysis, finite element mesh generation or fracture
mechanics [33,44,62,79,84,87].

In this work the efficiency of both mathematical programming and evolutionary algo-
rithms is investigated in sizing, shape and topology optimization problems. In order to
benefit from the advantages of both methodologies combinations of EA with mathematical
programming are also examined in an attempt to increase further the robustness as well
as the computational efficiency of the optimization procedure. Furthermore, combinations
of EA and Neural Networks (NN) are also implemented and tested in sizing optimization
problems.

Since a great deal of effort is spent for the solution of the finite element equilibrium
equations encountered during the optimization process specially tailored solution methods
have been applied and tested in this work in a variety of optimization problems. These
methods implemented in serial and parallel computing environments can have a paramount
effect on the computational performance of the whole optimization procedure.

Structural optimization is also performed under seismic loading. In this case the com-
putational effort for optimization can be orders of magnitude more than the corresponding
effort for static loading. A rigorous approach based on a number of artificial accelerograms
treated as multiple loading conditions is compared with a simplified response spectrum
modal analysis adopted by the seismic codes. The numerical tests presented demonstrate
the computational advantages of the discussed methods, which become more pronounced
in large- scale and computationally intensive optimization problems.

2 FORMULATION OF THE STRUCTURAL OPTIMIZATION PROBLEM

Structural optimization problems are characterized by various objective and constraint
functions that are generally non-linear functions of the design variables. These functions are
usually implicit, discontinuous and non-convex. The mathematical formulation of structural
optimization problems with respect to the design variables, the objective and constraint
functions depend on the type of the application. However, all optimization problems can
be expressed in standard mathematical terms as a non-linear programming problem (NLP),
which in general form can be stated as follows:

min F (s)

subject to gj(s) ≤ 0 j = 1, · · · ,m

s1i ≤ si ≤ sui i = 1, · · · , n

(1)

where, s is the vector of design variables, F (s) is the objective function to be minimized,
gj(s) are the behavioural constraints, s1i and s

u
i are the lower and the upper bounds on a

typical design variable si. Equality constraints are usually rarely imposed. Whenever they
are used they are treated for simplicity as a set of two inequality constraints.

There are mainly three classes of structural optimization problems: sizing, shape and
topology or layout. Initially structural optimization was focused on sizing optimization,
such as optimizing cross sectional areas of truss and frame structures, or the thickness of
plates and shells. The next step was to consider finding optimum boundaries of a structure,
and therefore to optimize its shape. In the former case the structural domain is fixed, while
in the latter case it is not fixed but it has a predefined topology. In both cases a non-optimal
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starting topology can lead to sub-optimal results. To overcome this deficiency structural
topology optimization needs to be employed, which allows the designer to optimize the
layout or the topology of a structure by detecting and removing the low-stressed material
in the structure which is not used effectively.

2.1 Sizing Optimization

In sizing optimization problems the aim is usually to minimize the weight of the structure
under certain behavioural constraints on stresses and displacements. The design variables
are most frequently chosen to be dimensions of the cross-sectional areas of the members of
the structure. Due to engineering practice demands the members are divided into groups
having the same design variables. This linking of elements results in a trade-off between the
use of more material and the need of symmetry and uniformity of structures due to practical
considerations. Furthermore, it has to be to taken into account that due to fabrication
limitations the design variables are not continuous but discrete since cross-sections belong
to a certain set.

A discrete structural optimization problem can be formulated in the following form

min F (s)

subject to gj(s) ≤ 0 j = 1, · · · ,m

si ∈ Rd i = 1, · · · , n

(2)

where Rd is a given set of discrete values representing the available structural member
cross-sections and design variables si (i = 1, · · · , n) can take values only from this set.

The sizing optimization methodology proceeds with the following steps: (i) At the
outset of the optimization the geometry, the boundaries and the loads of the structure
under investigation have to be defined. (ii) The design variables, which may or may not be
independent to each other, are also properly selected. Furthermore, the constraints are also
defined in this stage in order to formulate the optimization problem as in eq. (2). (iii) A
finite element analysis, is then carried out and the displacements and stresses are evaluated.
(iv) If a gradient-based optimizer is used then the sensitivities of the constraints and the
objective function to small changes of the design variables are computed. (v) The design
variables are being optimized. If the convergence criteria for the optimization algorithm
are satisfied, then the optimum solution has been found and the process is terminated, else
the optimizer updates the design variable values and the whole process is repeated from
step (iii).

2.2 Shape Optimization

In structural shape optimization problems the aim is to improve the performance of the
structure by modifying its boundaries. This can be numerically achieved by minimizing
an objective function subjected to certain constraints [37,68]. All functions are related to
the design variables, which are some of the coordinates of the key points in the boundary
of the structure. The shape optimization approach adopted in the present study is based
on a previous work by Hinton and Sienz [37] for treating two-dimensional problems. More
specifically the shape optimization methodology proceeds with the following steps: (i) At
the outset of the optimization, the geometry of the structure under investigation has to be
defined. The boundaries of the structure are modeled using cubic B-splines that, in turn,
are defined by a set of key points. Some of the coordinates of these key points will be the
design variables which may or may not be independent to each other. (ii) An automatic
mesh generator is used to create a valid and complete finite element model. A finite element
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analysis is then carried out and the displacements and stresses are evaluated. In order to
increase the accuracy of the analysis an h-type adaptivity analysis may be incorporated in
this stage. (iii) If a gradient- based optimizer is used then the sensitivities of the constraints
and the objective function to small changes of the design variables are computed either with
the finite difference, or with the semi-analytical method. (iv) The optimization problem
is solved; the design variables are being optimized and the new shape of the structure is
defined. If the convergence criteria for the optimization algorithm are satisfied, then the
optimum solution has been found and the process is terminated, else a new geometry is
defined and the whole process is repeated from step (ii).

2.3 Topology Optimization

Structural topology optimization assists the designer to define the type of structure, which
is best suited to satisfy the operating conditions for the problem in question. It can be seen
as a procedure of optimizing the rational arrangement of the available material in the design
space and eliminating the material that is not needed. Topology optimization is usually
employed in order to achieve an acceptable initial layout of the structure, which is then
refined with a shape optimization tool. The topology optimization procedure proceeds step-
by-step with a gradual ”removal” of small portions of low stressed material, which are being
used inefficiently. This approach is treated in this study as a typical case of a structural
reanalysis problem with small variations of the stiffness matrix between two subsequent
optimization steps.

Many researchers have presented solutions for structural topology optimization prob-
lems. Topological or layout optimization can be undertaken by employing one of the fol-
lowing main approaches, which have evolved during the last few years [38]: (i) Ground
structure approach [66,77], (ii) homogenization method [12,36,80], (iii) bubble method [19]
and (iv) fully stressed design technique [88,92]. The first three approaches have several
things in common. They are optimization techniques with an objective function, design
variables, constraints and they solve the optimization problem by using an algorithm based
on sequential quadratic programming (approach (i)), or on an optimality criterion concept
(approaches (ii) and (iii)). However, inherently linked with the solution of the optimization
problem is the complexity of these approaches. The fully stressed design technique on the
other hand, although not an optimization algorithm in the conventional sense, proceeds by
removing inefficient material, and therefore optimizes the use of the remaining material in
the structure, in an evolutionary process.

At present only a limited number of studies is devoted to 3-D optimal topology design of
structures. For this type of problems the main difficulty when a homogenization method is
used is the orientation of the material voids which is more complicated than in the 2-D case.
This difficulty is not present in the case of the fully stressed design technique. The work
presented in this study is based on the implementation of the evolutionary fully stressed
design technique (FSD) proposed by Hinton and Sienz [38] and the improved implementa-
tion presented by Papadrakakis et al. [65] for 2-D topology optimization problems. This
methodology is extended to 3-D topology optimization problems using solid finite elements.
Furthermore an investigation is performed on the impact of using effective domain decom-
position solution techniques on the overall performance of the FSD topology optimization
approach.

The algorithm for topology optimization adopted in this study is based on the simple
principle that material which has small stress levels is used inefficiently and therefore it
can be removed. Thus, by removing small amounts of material at each optimization step
the layout of the structure evolves gradually. In order to achieve convergence of the whole
optimization procedure, it is important the amount of material removed at each stage to
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be small and to maintain a smooth transition from one layout of the structure to the
subsequent one.

The domain of the structure, which is called the reference domain, can be divided into
the design domain and the non-design domain. The non-design domain covers regions with
stress concentrations, such as supports and areas where loads are applied, and therefore it
cannot be modified throughout the whole topology optimization process. After the gener-
ation of the finite element mesh, the evolutionary fully stressed design cycle is activated,
where a linear elastic finite element analysis is carried out. The maximum principal stress
σpr for each element can be computed which for convenience is called stress level and is
denoted as σevo. The maximum stress level σmax of the elements in the structure at the
current optimization step is defined, and all elements that fulfill the condition

σevo < ratre× σmax (3)

are removed, or switched-off, where ratre is the rejection rate parameter [93]. The elements
are removed by assigning them a relatively small elastic modulus which is typically

Eoff = 10−5 ×Eon (4)

In this way the elements switched-off virtually do not carry any load and their stress
levels are accordingly small in subsequent analyses. This strategy is called “hard kill”, since
the low stressed elements are immediately removed, in contrast with the “soft kill” method
where the elastic modulus varies linearly and the elements are removed more gradually. The
remaining elements are considered active and they are sorted in ascending order according
to their stress levels before a subsequent analysis is performed.

The iterative process of element removal and addition, if element growth is allowed, is
continued until one of several specified convergence criteria are met: (i) All stress levels are
larger than a certain percentage value of the maximum stress. This criterion assumes that a
fully stressed design has been achieved and the material is used efficiently. (ii) The number
of active elements is smaller than a specified percentage of the total number of elements.
For uniform meshes, which are commonly used in topology optimization problems, this
criterion is equivalent to an area or volume fraction of the initial design, which will be in
use in the final layout. (iii) When element growth is allowed the evolutionary process is
completed when more elements are switched-on than they are switched-off.

3 MATHEMATICAL PROGRAMMING OPTIMIZATION ALGORITHMS

Mathematical programming algorithms such as the successive quadratic programming me-
thod [83], the generalized reduced gradient method [47], the method of moving asymptotes
[81], the method of feasible directions [89] have been used for structural optimization pro-
blems. Successive Quadratic Programming (SQP) methods are regarded as the standard
general purpose mathematical programming algorithms for solving non-linear programming
optimization problems [28]. They are also considered to be the most suitable methods for
solving structural optimization problems [6,73,83]. Such methods make use of local curva-
ture information derived from linearization of the original functions, by using their deriva-
tives with respect to the design variables at points obtained in the process of optimization.
Thus, a quadratic programming model (or subproblem) is constructed from the initial NLP
problem. A local minimizer is found by solving a sequence of these QP subproblems using
a quadratic approximation of the objective function. Each subproblem has the form

minimize
1
2
pTHp+ gT p
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subject to Ap+ h(s) ≤ 0

s1 ≤ p ≤ su
(5)

where p is the search direction subjected to upper and lower bounds, g is the gradient of
the objective function, A is the Jacobian of the constraints, usually the active ones only
(i.e. those that are either violated, or not far from being violated), s1 = s1− s, su = su− s
and H is an approximation of the Hessian matrix of the Lagrangian function

L(s, λ) = F (s) + λh(s) (6)

in which λ are the Lagrange multipliers under the non-negativity restriction (λ ≥ 0) for
the inequality constraints. In order to construct the Jacobian and the Hessian matrices of
the QP subproblem the derivatives of the objective and constraint functions are required.
These derivatives are computed during the sensitivity analysis phase.

There are two ways to solve this QP subproblem, either with a primal [29], or a dual
[23] formulation. The primal algorithm adopted in this study is divided into three phases:
(i) the solution of the QP subproblem to obtain the search direction, (ii) the line search
along the search direction p, (iii) the update of the Hessian matrix H. Once the direction
vector p is found a line search is performed, involving only the nonlinear constraints, in
order to produce a “sufficient decrease” to the merit function ϕ. This merit function is an
augmented Lagrangian function of the form [29]

ϕ = F (s)−
∑
i

λi(gi(s)− γi) + 1
2

∑
i

ρi(gi(s)− γi)2 (7)

where γi are the non-negative slack variables of the inequality constraints derived from the
solution of the QP subproblem. These slack variables allow the active inequality constraints
to be treated as equalities and avoid possible discontinuities. Finally, ρi are the penalty
parameters which are initially set to zero and in subsequent iterations are increased when-
ever this is necessary in order to control the violation of the constraints and to ensure that
merit function follows a descent path.

The update of the Hessian matrix of the Lagrangian function is performed with a BFGS
quasi-Newton update [28] where attention is given to keep the Hessian matrix positive
definite. In order to incorporate the new curvature information obtained through the last
optimization step, the updated Hessian H̃ is defined as a rank-two modification of H

H̃ = H − 1
wTHw

HwwTH +
1
yTw

yyT (8)

where w and y denote the change in the design variable vector s and the gradient vector of
the Lagrangian function of eq. (6), respectively. If the quadratic function is convex then
the Hessian is positive definite, or positive semi-definite and the solution obtained will be a
global optimum, else if the quadratic function is non-convex then the Hessian is indefinite
and if a solution exists it is only a local optimum.

3.1 Sensitivity Analysis

The most time-consuming part of any optimization algorithm based on mathematical pro-
gramming methods is devoted to the sensitivity analysis phase [65], which is an important
ingredient of all mathematical programming optimization methods. Although, sensitivity
analysis is mostly mentioned in the context of structural optimization, it has evolved into a
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research topic of its own. The calculation of the sensitivity coefficients follows the applica-
tion of a relatively small perturbation to each primary design variable. Several techniques
have been developed which can be mainly distinguished by their numerical efficiency and
their implementation aspects [16].

A classification of the discrete methods for sensitivity analysis is the following. (i) Global
finite difference method: A full finite element analysis has to be performed for each design
variable and the accuracy of the method depends strongly on the value of the perturbation
of the design variables. (ii) Semi-analytical method: The stiffness matrix of the initial fi-
nite element solution is retained during the computation of the sensitivities. This provides
an improved efficiency over the finite difference method by a relatively small increase in
the algorithmic complexity. The accuracy problem involved with the numerical differen-
tiation can be overcome by using the “exact” semi-analytical method which needs more
programming effort than the simple method but it is computationally more efficient. (iii)
Analytical method: The finite element equations, the objective and constraint functions are
differentiated analytically.

The semi-analytical and the finite difference approaches are the two most widely used
types of sensitivity analysis techniques. From the algorithmic point of view the semi-
analytical technique results in a typical linear solution problem with multiple right-hand
sides in which the stiffness matrix remains unchanged, while the finite difference technique
results in a typical reanalysis problem in which the stiffness matrix is modified due to the
perturbations of the design variables. In both shape and sizing optimization problems 60%
to 90% of the computations are spent for the solution of equilibrium equations required for
the finite element analysis and sensitivity analysis.

3.1.1 The semi-analytical (SA) method

The SA method is based on the chain rule differentiation of the finite element equations
Ku = f

K
∂u

∂sk
+
∂K

∂sk
u =

∂f

∂sk
(9)

which when rearranged results in

K
∂u

∂sk
= f∗k (10)

where

f∗k =
∂f

∂sk
− ∂K

∂sk
u (11)

f∗k represents a pseudo-load vector. The derivatives of ∂K/∂sk and ∂f/∂sk are computed
for each design variable by recalculating the new values of K(sk+∆sk) and f(sk+∆sk) for
a small perturbation ∆sk of the design variable sk. The derivatives of ∂f/∂sk are computed
using a forward finite difference scheme. With respect to the differentiation of K the semi-
analytical approach is implemented in two versions: The conventional SA and the “exact”
SA. In the conventional sensitivity analysis (CSA), the values of the derivatives in eq.(9)
are calculated by applying the forward difference approximation scheme

∂K

∂sk
≈ ∆K

∆sk
=
K(sk +∆sk)−K(sk)

∆sk
(12)
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In the “exact” semi-analytical method (ESA) [54] the derivatives ∂K/∂sk are computed on
the element level as follows

∂k

∂sk
=

n∑
j=1

∂k

∂αj

∂αj
∂sk

(13)

where n is the number of elemental nodal coordinates affected by the perturbation of the
design variable sk and αj are the nodal coordinates of the element. The ESA method is
more accurate and leads the mathematical optimizer to a faster convergence [39]. This
approach is used in the present study.

Stress gradients can be calculated by differentiating σ = DBu as follows

∂σ

∂sk
=
∂D

∂sk
Bu+D

∂B

∂sk
u+DB

∂u

∂sk
(14)

Since the elasticity matrix D is not a function of the design variables then eq.(14) reduces
to

∂σ

∂sk
= D

∂B

∂sk
u+DB

∂u

∂sk
(15)

In eq. (15), ∂u/∂sk and ∂B/∂sk may be computed using a forward finite difference scheme.
Using the values of ∂σ/∂sk the sensitivities of different types of stresses (e.g. the principal
stresses or the equivalent stresses) can be readily calculated by analytically differentiating
their expressions with respect to the shape variables.

3.1.2 The global finite difference (GFD) method

In this method the design sensitivities for the displacements ∂u/∂sk and the stresses ∂σ/∂sk,
which are needed for the gradients of the constraints, are computed using a forward differ-
ence scheme

∂u

∂sk
≈ ∆u

∆sk
=
u(sk +∆sk)− u(sk)

∆sk
(16)

∂σ

∂sk
≈ ∆σ

∆sk
=
σ(sk +∆sk)− σ(sk)

∆sk
(17)

The perturbed displacement vector u(sk+∆sk) of the finite element equations is evaluated
by

K(sk +∆sk)u(sk +∆sk) = f(sk +∆sk) (18)

and the perturbed stresses σ(sk +∆sk) are computed from

σ(sk +∆sk) = DB(sk +∆sk)u(sk +∆sk) (19)

where D and B are the elasticity and the deformation matrices, respectively. The GFD
scheme is usually sensitive to the accuracy of the computed perturbed displacement vectors
which is dependent on the magnitude of the perturbation of the design variables. The
magnitude of this perturbation is usually taken between 10−3 and 10−5.
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3.2 Solving The Sensitivity Analysis And Topology Optimization Problem

Usually, a real world structural optimization problem, whether it is topology, shape, sizing
or an integrated structural optimization problem, is a computationally intensive task, where
60% to 90% of the computations are spent for the solution of the finite element equilibrium
equations required for the analysis steps within the optimization procedure. Thus, the
computational efficiency of the finite element solver has a paramount effect on the efficiency
of the optimization algorithm.

The numerical problem encountered in the sensitivity analysis phase can be seen as
an algebraic problem with multiple right-hand sides of the type Kui = fi (i = 1, · · · , q),
when the exact semi-analytical (ESA) approach is used, or as a nearby problem of the type
(K+∆Ki)ui = fi (i = 1, · · · , q), when the global finite difference approach is implemented.
In the case of topology optimization with the fully stressed design concept adopted in this
study, a nearby problem has to be solved in each optimization step.

The solution methods implemented and tested in this work can be distinguished in
single- and multi-domain methods. Single-domain methods perform operation on the global
structural level, while in multi-domain methods the operations are performed in subdomains
or substructures in a successive or simultaneous fashion. The second case corresponds to
the implementation of the solution algorithms in parallel computing environment.

3.2.1 Single-domain methods

Single-domain hybrid solution schemes based on a combination of direct and preconditioned
iterative methods are applied in the context of both sensitivity analysis and topology opti-
mization. These schemes combine direct skyline algorithms with preconditioned conjugate
gradient and Lanczos methods and are properly modified to address the special features of
the particular optimization problem at hand.

The Incomplete Cholesky Preconditioned Conjugate Gradient (ICCG) Method

The PCG method has become very popular for the solution of large-scale finite element
problems. An efficient preconditioning matrix makes PCG very attractive even for ill-
conditioned problems without destroying the characteristic features of the method. Several
global preconditioners have been used in the past for solving finite element linear problems
[56]. Preconditioning techniques based on incomplete Cholesky factorization are capable in
increasing the convergence rate of the basic iterative method, at the expense of more storage
requirements. In the present study the incomplete procedure by magnitude proposed by
Bitoulas and Papadrakakis [15], is implemented in a mixed precision arithmetic mode, and a
compact storage scheme is used to store both the stiffness and the preconditioning matrices
row-by-row.

The reason for performing an incomplete factorization is to obtain a reasonably accurate
factorization of the stiffness matrix without generating too many fill-ins, whereas a com-
plete factorization produces the strongest possible preconditioner, which in exact precision
arithmetic is actually the inverse of K. In sensitivity analysis the incomplete factorization
of the stiffness matrix K can be written: LDLT = K0 + ∆K − E, where E is an error
matrix which does not have to be formed. For this class of methods, E is defined by the
computed positions of “small” elements in L, which do not satisfy a specified magnitude
criterion and therefore are discarded. If we have to deal with a nearby problem, such as
the case of GFD sensitivity analysis and topology optimization problems, the matrix E is
taken as the ∆K matrix, whereas in the case of SA sensitivity analysis both E and ∆K
are taken as null matrices. The complete Cholesky factorization of the “initial” stiffness
matrix K0 is used as the preconditioning matrix in its original skyline form and is stored
in single precision arithmetic.
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Another important factor affecting the performance of the PCG iterative procedure for
solving Kx = b is the determination of the residual vector. The accuracy achieved and the
computational labor of the method is largely determined by how this is calculated. A study
performed in [56] revealed that the computation of the residual vector of the equilibrium
equations Kx = b from its defining formula r(m) = Kx(m)−b with an explicit or a first order
differences matrix-vector multiplication Ku(m) offers no improvement in the accuracy of the
computed results. In fact, it was found that, contrary to previous recommendations, the
calculation of the residuals by the recursive expression r(m+1) = r(m) + αmKd(m), where
d is the direction vector, produces a more stable and well-behaved iterative procedure.
Based on this observation a mixed precision arithmetic PCG implementation is proposed
in which all computations are performed in single precision arithmetic, except for double
precision arithmetic computation of the matrix-vector multiplication involved in the recur-
sive evaluation of the residual vector. This implementation is a robust and reliable solution
procedure even for handling large and ill-conditioned problems, while it is also computer
storage-effective. It was also demonstrated to be more cost-effective, for the same storage
demands, than double precision arithmetic calculations [56].

The Neumann Series-CG Method (NSCG)

The approximation of the inverse of the stiffness matrix using a Neumann series expansion
has been used in the framework of stochastic finite element analysis, structural reanalysis
and damage analysis problems. In all these cases the method was implemented on an
“as is” basis, without any corrections to improve the quality of the solution, thus the
results were satisfactory only in the vicinity of the initial design and unacceptable for large
modifications of the stiffness matrix. In a recent study by Papadrakakis and Papadopoulos
[61] the method was successfully combined with the conjugate gradient algorithm resulting
in an improvement on the accuracies achieved with low additional computational cost. It
can also handle cases with significant changes of the stiffness matrix.

The solution of a typical reanalysis problem

(K0 +∆K)u = f (20)

yields

u = (I +K−1
0 ∆K)−1K−1

0 f (21)

The term in parenthesis can be expressed in a Neumann expansion giving

u = (I − P + P 2 − P 3 + · · · )K−1
0 f (22)

with P = K−1
0 ∆K. The response vector can now be represented by the following series

u = u0 − Pu0 + P 2u0 − P 2u0 + · · · (23)

or

u = u0 − u1 + u2 − u3 + · · · (24)
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The series solution can also be expressed by the following recursive equation

K0ui = ∆Kui−1 i = 1, 2, · · · (25)

The advantage of this expression is that the stiffness matrix has to be factorized once while
the additive terms ui to the solution of eq. (24) can be computed by successive backward
and forward substitutions.

In order to improve the quality of the preconditioning matrix C used in the PCGmethod,
a Neumann series expansion is implemented for the calculation of the preconditioned vector
z(m) = C−1r(m) of the PCG algorithm. The preconditioning matrix is now defined as
the complete global stiffness matrix K = K0 + ∆K, but the solution for z is performed
approximately using a truncated Neumann series expansion. Thus, the preconditioned
vector z of the PCG algorithm is obtained at each iteration by

z = z0 − z1 + z2 − z3 + · · · (26)

z0 is given by

z0 = K−1
0 r0 (27)

and

K0zi = ∆Kzi−1 i = 1, 2, · · · (28)

The incorporation of the Neumann series expansion in the preconditioned step of the
PCG algorithm can be seen from two different perspectives. From the PCG point of view
an improvement of the quality of the preconditioning matrix is achieved by computing a
better approximation to the solution of u = (K0 + ∆K)−1f than the one provided by
the preconditioning matrix K0. From the Neumann series expansion point of view, the
inaccuracy entailed by the truncated series is alleviated by the conjugate gradient iterative
procedure.

The Preconditioned Lanczos Method

When a sequence of right-hand sides has to be processed direct methods possess a clear
advantage over the conventional application of iterative methods. The major effort con-
cerned with the factorization of the stiffness matrix is not repeated and only a back and
forward substitution is required for each subsequent right-hand side. In the case of iterative
methods the whole work has to be repeated from the beginning for every right-hand side.

Papadrakakis and Smerou [63] presented an implementation of the Lanczos algorithm
for solving linear systems of equations with a sequence of right-hand sides. This algorithm
handles all approximations to the solution vectors simultaneously without the necessity
for keeping in fast or secondary storage the tridiagonal matrix or the orthonormal basis
produced by the Lanczos method. Thus, when the first solution vector has converged to a
required accuracy, good approximations to the remaining solution vectors have simultane-
ously been obtained. It then takes fewer iterations to reach the final accuracy by working
separately on each of the remaining vectors.

The equilibrium equations for multiple right-hand sides can be stated as follows:

K[u1 · · · uk] = [f1 · · · fk] (29)

or

KU = F (30)
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and the characteristic equations of the Lanczos algorithm become

TjYj = QT
j R0 (31)

and

Uj = QjYj (32)

where Yj = [y1, · · · , yk]j , Uj = [u1, · · · , uk]j consist of the jth approximation to the k
auxiliary and solution vectors y and u respectively, and R0 = [r10, · · · , rk0 ] with ri0 = f i−Kuj0
consists of the residual vectors. By using a Cholesky root-free decomposition of Tj we get

LjDjZj = QT
j R0 (33)

Uj = BjZj (34)

with Zj = [z1, · · · , zk]j and LjBT
j = QT

j . The last components of matrix Zj are now given
by

ζji = (qTj r
i
0 − δjdj−1ζj−1,i)/dj (35)

with δj = βj/dj−1, βj = (rTj C
−1rj)1/2 and C is the preconditioning matrix. The new

approximation to the solution vectors by

[x1 · · · xk]j = [x1 · · · xk]j−1 + bj [ζj1 · · · ζjk] (36)

If converge is achieved for the first right hand side

‖r(1)j ‖
‖r(1)1 ‖

< ε⇒ |ζj1| ‖r(1)j+1‖
‖r(1)1 ‖

< ε (37)

then continue iterations (separately) for the remaining f (i) (i = 2, · · · , k) with the PCG
algorithm [63].

3.2.2 Multi-domain methods

In computational structural mechanics there are basically three domain decomposition for-
mulations combined with the PCG method for solving linear finite element problems in
parallel computing environments. The first approach is the global subdomain implemen-
tation (GSI) in which a subdomain-by-subdomain PCG algorithm is implemented on the
global stiffness matrix. In the second approach the PCG algorithm is applied on the in-
terface problem after eliminating the internal degrees of freedom of each subdomain. This
Schur complement scheme is called the primal subdomain implementation (PSI) on the
interface to distinguish from the third approach which is called the dual subdomain imple-
mentation (DSI) on the interface. The most efficient DSI is the FETI method [21] which
incorporates a projection re-orthogonalization scheme for handling problems with multiple
or repeated right-hand sides.

The FETI method operates on totally disconnected subdomains, while the governing
equilibrium equations are derived by invoking stationarity of the energy functional subject
to displacement constraints which enforce the compatibility conditions on the subdomain
interface. The augmented equations are solved for the Lagrange multipliers after eliminating
the unknown displacements. The resulting interface problem is in general indefinite, due to
the presence of floating subdomains which do not have enough prescribed displacements to
eliminate the local rigid body modes. The solution of the indefinite problem is performed
by a preconditioned conjugate projected gradient (PCPG) algorithm.
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Solving Kui = fi(i = 1, 2, · · · , q)
The modified Lanczos method proposed in [63] can handle simultaneously with the first
right-hand side a sequence of right-hand sides. This means that all right-hand sides vectors
must be known in advance. When the multiple right-hand sides are not known in advance
a reorthogonalization procedure has been proposed by Farhat et al. [21], for extending
the PCG method to problems with repeated right-hand sides based on the K-conjugate
property of the search directions (dm = dTmKdi = 0 for m < i).

The implementation of the reorthogonalization technique is impractical when applied to
the full problemKu(i) = f (i) due to excessive storage requirements for keeping the direction
vectors dm. This methodology, however, has been efficiently combined with the DSI-FETI
method [22] where the size of the interface problem can be order(s) of magnitude less than
the size of the global problem. Thus, the cost of reorthogonalization is negligible compared
to the cost of the solution of the local problems associated with the matrix-vector products
of the FETI method, while the additional memory requirements are not excessive. The
modified search direction of the PCPG algorithm is given by

d′m+1 = dm+1 −
m∑
i=1

dTi FIdm+1

dTi FIdi
di (38)

which enforces explicitly the orthogonality condition d′m+1FIdi = 0, i = 1, · · · ,m. FI =∑s
j=1B

(j)K(j)B(j)
T
,K(j), B(j) are the subdomain matrices and the signed Boolean matrices

which localize the subdomain displacements on the interface, while “s” is the total number
of subdomains. The initial estimate λ(i+1)0 of the solution vector of the subsequent right-
hand side [f (i+1)λ f

(i+1)
γ ]T is given by

λ
(i+1)
0 = DT

k x+ x
′ (39)

whereDT
k FIDkx = DT

k (f
(i+1)
λ −FIx′) and x′ = GI (GT

I GI )−1f
(i+1)
γ . GI = [B(1)·R(1)· · ·B(sf )·

R(sf )] with R(j) being the rigid body modes and “sf” is the total number of floating
subdomains.

Solving (K0 +∆Ki)ui = f(i = 1, 2, · · · , q)
The hybrid solution schemes proposed in [65] for treating nearby problems, based on the
global formulation and solution of the problem of eq. (20), proved to be very efficient com-
pared with the standard direct skyline solver in sequential computing environment. Their
parallel implementation, however, is hindered by the inherent scalability difficulties encoun-
tered during the preconditioning step of single-domain methods which incorporates forward
and backward substitutions of a fully factorized stiffness matrix. In order to alleviate this
deficiency the GSI subdomain-by-subdomain PCG algorithm is implemented in this study
on the global stiffness matrix. The dominant matrix-vector operations of the stiffness and
the preconditioning matrices are performed in parallel on the basis of a multi-element group
partitioning of the entire domain.

In order to exploit the parallelizable features of the GSI-PCG method and to take
advantage of the efficiency of a fully factorized preconditioning matrix, the following two-
level methodology is proposed based on the combination of the GSI and the DSI approaches.
The GSI-PCG method is employed, using a multi-element group partitioning of the entire
finite element domain, in which the solution required during the preconditioning step is
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performed by the FETI method operating on the same mesh partitioning of the GSI-PCG
method. In the proposed methodology the preconditioning step of the GSI-PCG method

zm+1 = C−1
k rm+1 (40)

is performed by the FETI solution procedure. For the solution of this problem two method-
ologies, namely the GSI(ICCG)-FETI and the GSI(NSCG)-FETI are proposed. The second
approach is based on a Neumann series expansion of the preconditioning step.

The GSI(ICCG)-FETI method

In the GSI(PCG)-FETI method the iterations are performed on the global level with the
GSI-PCG method, using a complete Cholesky factorization of a nearby stiffness matrix as
preconditioner. Thus, the incomplete factorization of the stiffness matrix K0 +∆K can be
written as LDLT = K0 +∆K −E, where E is an error matrix which does not have to be
formed. Matrix E is usually defined by the computed positions of “small” elements in L
which do not satisfy a specified magnitude criterion and therefore are discarded [15]. For
the typical reanalysis problem

(K0 +∆Ki)ui = f (i = 1, · · · , q) (41)

matrix E is taken as ∆K, so that the preconditioning matrix becomes the complete factor-
ized initial stiffness matrix Ck = K0. Therefore, the solution of the preconditioning step of
the GSI-ICCG algorithm, which has to be performed at each GSI-ICCG iteration, can be
effortlessly executed, once K0 is factorized, by a forward and backward substitution.

With the parallel implementation of the two-level GSI(ICCG)-FETI method the pre-
conditioning step can be solved in parallel by the interface FETI method for treating the
repeated solutions required in eq. (40), using the same decomposition of the domain em-
ployed by the external GSI-PCG method. The procedure continues this way for every
reanalysis problem, while the FETI direction vectors are being reorthogonalized in order to
further decrease the number of FETI iterations within the preconditioning step. The solu-
tion of eq.(40) is performed ni ·nr times via the FETI method, where ni and nr correspond
to the number of GSI-PCG iterations and the number of reanalysis steps, respectively.

The GSI(NSCG)-FETI method

The quality of the preconditioning step of eq.(40) can be improved by computing the in-
verse approximation of the preconditioning matrix via a Neumann series expansion. The
preconditioning matrix is defined in this case as the complete stiffness matrix (K0 +∆K),
but the solution for zm+1 of eq. (40), which can be written as

zm+1 = (I +K−1
0 ∆K)−1K−1

0 rm+1 (42)

is performed approximately using a truncated Neumann series expansion

zm+1 = z′0 − z′1 + z′2 − z′3 + · · · (43)

with

z′0 = K
−1
0 rm+1 (44)

z′i = K
−1
0 (∆Kz′i−1), i = 1, 2 · · · (45)
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Figure 1. Square plate: (a) initial shape. (b) final shape

3.3 Numerical Tests

For the test examples considered in this section, isotropic material properties are assumed
(elastic modulus E = 210, 000 N/mm2 and Poison’s ratio ν = 0.3). The performance of
the parallel solution methods was examined using an SGI Power Challenge XL computer
with 14 R4000 processors. The convergence tolerance for all solution methods was taken
as 10−3.

3.3.1 Shape optimization with gradient-based optimizers

The performance of the optimization methods discussed is investigated in one characteristic
plane stress test example with isotropic material properties. The SQP method used for the
mathematical programming based optimization is taken from the NAG library [53]. The
problem definition of this example is given in Figure 1 where, due to symmetry, only a
quarter of the plate is modeled. The plate is under biaxial tension with one side loaded
with a distributed loading p = 0.65 N/mm2 and the other side loaded only with half of
this value, as shown in Figure 1. The objective is to minimize the volume of the structure
subject to an equivalent stress limit of σmax = 7.0 N/mm2. The design model consists of 8
key points and 5 primary design variables (2, 3, 4, 5, 6) which can move along radial lines.
The movement directions are indicated by the dashed arrows. The stress constraints are
imposed as a global constraint for all the Gauss points and as key point constraints for the
key points 2, 3, 4, 5, 6 and 8. The problem is analyzed with a fine mesh of 38,800 d.o.f.
giving a sparse global stiffness matrix with relatively large bandwidth. The characteristic
d.o.f. for 4 and 8 subdomains, as depicted in Figure 2a and 2b, are given in Table 1. The
ESA and the GFD methods are used to compute the sensitivities with ∆s = 10−5.

The performance of the solution methods presented in section 3.2 is investigated first in
serial computing mode with the conventional direct skyline and ICCG, NSCG and Lanczos
solvers. Furthermore, the parallel performance of the standard FETI (S-FETI) and a mod-
ified version (M-FETI) is investigated in both types of sensitivity analysis problems [55],
while the two-level PCG method is applied for the GFD sensitivity analysis test cases. In
M-FETI the rigid body modes are computed explicitly and are not obtained as a by-product
of the factorization procedure as in the S-FETI, while the local problem is solved via the
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(a)

(b)

Figure 2. Square plate: (a) finite element mesh in 4 subdomains. (b) finite ele-
ment mesh in 8 subdomains

subdomains 4 8
Total d.o.f. 38,800 38,800
Internal d.o.f.* 9,738 5,122
Ineterface d.o.f. 998 2,290

*of the larger subdomain

Table 1. Square plate: Characteristic d.o.f. for 4 and 8 subdomains

PCG algorithm with preconditioner the complete factorized stiffness matrix stored in single
precision arithmetic. In all test cases FETI methods are applied with re-orthogonalization
unless otherwise stated, while the lumped type preconditioner is used for the PCPG algo-
rithm for the solution of the constrained problem.


