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Optimum Design of Shell Structures with Stiffening Beams
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Theoptimumdesignof stiffened shell structures is investigatedusingarobustandef� cientoptimizationalgorithm
where the total weight of the structure is to be minimized subject to behavioral constraints imposed by structural
design codes. Evolutionaryalgorithmsand more speci� cally the evolution strategies (ES) method specially tailored
for this type of problems is implemented for the solution of the structural optimization problem. The discretization
of the stiffened shell is performed by means of cost-effective and reliable shell and beam elements that incorporate
the naturalmodeconcept. Three types of design variablesare considered: sizing, shape, and topology.A benchmark
test example is examinedwhere the ef� ciency and robustness of ES over other optimizationmethods is investigated.
Two case studies of stiffened shells are subsequently presented, where a parametric study is undertaken toobtain the
most ef� cient design compatible with the regulations suggested by design codes such as Eurocode. The important
role of the stiffeners and how they can be optimally chosen to improve the performance of shell structures in terms
of carrying capacity and economy is demonstrated.

I. Introduction

A NALYSIS of shell structurespresentsa challengebecausetheir
formulation may become cumbersome and their behavior can

be unpredictablewith regard to the geometry or support conditions.
Although shell structures reinforced with beams exhibit enhanced
structuralbehavioras opposedto nonstiffenedshells, comparatively
little attention has been given to this type of structure. The research
work dealing with the optimum design of shell structures is rather
limited,1¡7 and the optimumcon� gurationof stiffenedshells is an is-
sue that has not yet been addressedadequatelyby the scienti� c com-
munity. Maute and Ramm1 solved a material topology optimization
problem where the design model is adapted during the optimization
process. Lee et al.2 presented a general methodology for topology
optimization using an arti� cial material model to take into account
the irregular distribution of material density of isotropic multilayer
shell structures. Magnucki3 proposed a design process for circular
tanks, where the optimal geometric characteristics of such struc-
tures are investigated under the objective of minimal mass. Afonso
et al.4 presented a two-step procedure,where the optimal stiffening
zones of plate structures are � rst identi� ed followed by a sizing op-
timization to determine the dimensionsof the stiffeners to minimize
the strain energy under constant total volume. Akl et al.5 presented
a process for the design of underwater stiffened shell structures,
where a multicriteria optimization approach is utilized to select the
optimal dimensions and spacing of the stiffeners to minimize the
shell vibration, the associated sound vibration, and the weight of
the rings, as well as the cost of the structure. Farkas and Jarmai6

introducedan analyticalmethod of minimizing the cost of stiffened
plates under hydrostatic pressure, whereas experimental results on
the behavior and the failure modes of these structures are presented
by Butler et al.7 Note that all of the cited studies were based on
gradient-basedoptimization algorithms.

The objective of paper is to present a reliable tool for the opti-
mum design of realistic stiffened shell structures.When it comes to
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structural systems such as shells with stiffening beams, the designer
must be able to estimate the position and the cross section of the
stiffening beams in conjunction with the thickness and the geome-
try of the shell to obtain the best performance under given loading
conditions.Rules imposed by design codes must also be taken into
considerationby the optimization procedure to reach realistic opti-
mum designs. On the other hand, the optimization algorithm must
be robust, ef� cient, and as versatile as possible, neither dependent
on the type of problem nor on the � nite element formulation or the
constraintsof the design codes. The optimizationmethod employed
in this study is based on the evolutionstrategies (ES) method,which
belongsto the evolutionarytype of algorithms,and has been tailored
to meet the speci� c characteristicsof the problem at hand.

The test cases considered are combined optimization problems
with three types of design variables: sizing, shape, and topology.
The combined optimizationproblemis de� ned by the type of active
design variables resulting to a sizing, a sizing–shape or a sizing–
shape–topology optimizationproblem. A design variable is consid-
ered to be active when it is permitted to change its value, whereas in
the case of a nonactive design variable, its value remains constant
during the optimization process.

For the � nite element (FE) discretization of stiffened shells, the
natural mode triangular composites (TRIC)8 shell element and the
beam composites (BEC)9 elements are used. Both elements, in-
troduced by Argyris et al.,8;9 have some desired features, such
as robustness, accuracy, and computational ef� ciency, as shown
elsewhere.10;11 Because the optimization of shell structures is a
computationally demanding task, it is imperative to use reliable
and cost-ef�cient FE analysis to be able to optimize realistic shell
structures.

The rest of the paper is organizedas follows: A short presentation
of the FE employed for the discretization of the shell and the stiff-
eners is given in Sec. II. Subsequently, the optimization problem is
described in Sec. III, followed by an outline of the ES algorithm in
Sec. IV. In Sec. V, the optimizationproblemof stiffenedshells is de-
scribed.In Sec. VI, a benchmarktest,where theef� ciencyof ES over
other optimizationmethods is examined, and two test examples are
presented, to demonstrate the potential of the proposed approach in
solving realistic optimizationproblems of stiffenedshell structures.

II. Formulation of the Structural
Optimization Problem

Structural optimization problems are characterized by various
objectiveand constraint functions that are generallynonlinearfunc-
tions of the design variables. These functions are usually im-
plicit, discontinuous, and nonconvex. The mathematical formula-
tion of structural optimization problems with respect to the design
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Fig. 1 Cylindrical roof: optimization process.

variables, the objective, and the constraint functions depend on the
type of the application. However, most optimization problems can
be expressed in standard mathematical terms as a nonlinear pro-
gramming problem. A discrete structural optimization problem can
be formulated in the following form:

minimize F.s/

subject to g j .s/ · 0; j D 1; : : : ; m

si 2 Rd ; i D 1; : : : ; n (1)

where F.s/ and g j .s/ are the objective and constraints functions,
respectively, and Rd is a given set of discrete values, whereas the
design variables si , i D 1; : : : ; n, can take values only from this set.

There are three main classes of structural optimizationproblems
depending on the type of the design variables used: sizing, shape,
and topology. In sizing optimization problems, the aim is usually
to minimize the weight of the structure under certain behavioral
constraints on stresses and displacements.The design variables are
most frequentlychosen to be dimensionsof thecross-sectionalareas
of the members of the structure. In structural shape optimization
problems, the aim is to improve the performance of the structure
by modifying its shape. The design variables are either some of
the coordinates of the key points in the boundary of the structure
or some other parameters that in� uence the shape of the structure.
Structural topology optimization assists the designer to de� ne the
type of structurethat is best suited to satisfy the operatingconditions
for the problem at hand. In the current study, topology optimization
assists the designer to de� ne the number and the position of the
stiffening beams.

In addition to the three main classes of optimization problem,
any combination of them can be implemented. In the present study,
all three types of design variables have been combined. The aim
is to minimize the weight of the structure under certain behavioral
constraints. Sizing design variables are related to the de� nition of
the cross section of the stiffeners and the thickness of the shell.
The shape design variables control the inclination of the curved
surface at the supports, whereas the topology design variables are
related to the number and the position of the stiffeners in both the

longitudinal and the transverse directions. These design variables
may be active or nonactive, leading to a combined sizing–shape–
topologyoptimizationproblem,when all design variablesare active
or to a sizing–shape optimizationproblemwhen only the sizing and
shape design variables are active, etc. In Fig. 1, the optimization
process corresponding to the second test example of Sec. VI for
different initial designs is shown.

III. Solving the Optimization Problem
During the past three decades, many numerical methods have

been developed to meet the demands of structural design optimiza-
tion. These methods can be classi� ed in two general categories:
deterministic and probabilistic. Mathematical programming meth-
ods, and in particular the gradient-based optimizers that have been
basically used for solving structural optimization problems in the
past, belong to the � rst category of optimization algorithms. These
methods make use of local curvature information, derived from lin-
earization of the original functions by using their derivatives with
respect to the design variables at points obtained in the process
of optimization to construct an approximate model of the initial
problem. Evolutionary algorithms (EA) are the most widely used
class of methods of the second category. In particular, genetic al-
gorithms (GA)12 and ES13 methods belong to EA class of methods
and have been used in the past for solving structural optimization
problems.These numericalalgorithmsimitate naturalprocessesand
are evolution-based systems maintaining a population of potential
solutions.These systems employ some selectionprocessesbased on
� tness of individuals and some recombination operators.

Gradient-based optimizers capture quickly the correct path to-
ward the nearest optimum, irrespective of if it is a local or a global
optimum,but it cannot assure that the global optimum can be found.
On the other hand EA, due to their random search, are considered
more robust in terms of global convergence;however, they may suf-
fer from a slow rate of convergence toward the global optimum.14

AnotherdifferencebetweenEA and gradient-basedoptimizer is that
EA are easily adapted to handle continuous, discrete, and mixed
design variables.
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In structural optimization problems, where the objective func-
tion and the constraintsare highly nonlinear functions of the design
variables, the computational effort spent in gradient calculations
required by the mathematical programming algorithms is usually
large. EA can be applied to any problem that can be formulated as a
function optimizationtask.15 In studies by Papadrakakiset al.14 and
Lagaros et al.,16 it was found that probabilisticsearchalgorithmsare
computationallyef� cient even if greaternumberof optimizationcy-
cles is needed to reach the optimum. These cycles are computation-
ally less expensive than the corresponding cycles of mathematical
programming algorithms because they do not need gradient eval-
uation. The selection of this optimization algorithm was based on
the authors’ as well as other researchers’ experience regarding the
relative superiority of ES over the rest of the methods in some spe-
ci� c problems.14;17¡19 The superiority of these methods, however,
cannot be generalized.

A. Evolution Strategies
The ES can be divided into the two-memberedevolution strategy

(2-ES) and the multimemberedevolutionstrategy(M-ES). The two-
membered scheme is theminimal conceptfor an imitationof organic
evolution. The two genetic operators of mutation and selection are
taken as rules for variation of the parameters and for recursion of
the iteration sequence, respectively.The 2-ES can be implemented
in two steps:

Step 1 is mutation. The parent s.g/
p of the gth generationproduces

anoffsprings.g/
o , whose genotypeis slightlydifferentfrom thatof the

parent. Both parent and offspring vectors represent two-candidate
optimum design vectors

s.g/
o D s.g/

p C z.g/ (2)

where z.g/ is a random vector.
Step 2 is selection. In this step, the best individual between the

parent and the offspring is chosen to survive:

s.g C 1/
p

D
s.g/

o if gi s.g/
o · 0; i D 1; 2; : : : ; l; and f s.g/

o · f s.g/
p

s.g/
p otherwise (3)

The question of how to choose the random vector z.g/ in step 1
is very important. This choice has the role of mutation, which is
understood to be random, purposelessevents that occur very rarely.
In continuous optimization problems, the so-called (0, ¾i ) normal
distribution is used to generate the vectors z.g/ (Ref. 13).

The M-ES differ from the two-membered strategies in the size of
the populationand the additional genetic operator of recombination
used. The two steps are de� ned as follows:

Step 1 is recombination and mutation. The population of ¹ par-
ents of the gth generationproduces ¸ offspring.For every offspring
vector, a temporaryparentvector Qs D [Qs1; Qs2; : : : ; Qsn ]T is � rst built by
means of recombination.From the temporary parent Qs, an offspring
is being created in the same way as in the 2-ES [Eq. (2)].

Step 2 is selection. There are two different types of selection
schemes employed by the M-ES:

1) The best ¹ individuals are selected from the population of
(¹ C ¸) individuals, .¹ C ¸/-ES.

2) The best ¹ individuals are selected from the population of
¸.¹ < ¸/ individuals, .¹; ¸/-ES.

B. ES for Discrete Optimization Problems
In engineering practice, the design variables are not always con-

tinuous because the structural parts are usually constructed with a
certain variation of their dimensions. Thus, design variables can
only take values from a prede�ned discrete set. For the solution of
discreteoptimizationproblems,Cai and Thierauf20 have proposeda
modi� ed ES algorithm. The basic differencesbetween discrete and
continuous ES are focused on the mutation and the recombination
operators.New modi� ed operatorshave to be engaged to assure that
the generated design variables belong to the discretedesign set. For

discrete problems the following recombination scheme is used in
the current study:

Qsi D sa;i or sb;i randomly (4)

where Qsi is the i th component of the temporary parent vector Qs and
sa;i and sb;i are the i th components of the vectors sa and sb , which
are two parent vectors randomly chosen from the population.

In the discrete version of ES the random vector z.g/ is properly
generated to force the offspring vector to move to another set of
discrete values. These random vectors should follow the rule that
large changes should rarely happen, whereas small changes occur
more frequently.The varianceof the randomvector shouldbe small,
the difference between any two adjacent values, though, can be
relatively large. For this reason, it is suggested that not all of the
componentsof a parent vector, but only a few of them, for example,
`, should be randomly changed in every generation. In other words,
the terms of vector z.g/ are derived as follows:

zi D
.· C 1/±si ; for ` randomly chosen components

0; for n ¡ ` other components (5)

where ±si is the difference between two adjacent values in the dis-
crete set and · is a random integer number that follows the Poisson
distribution

p.·/ D [.° /·=·!]e¡° (6)

where ° is the standard deviation, as well as the mean value of
the random number · . The choice of ` depends on the size of the
problem, and it is usually taken as one-� fth of the total number of
design variables. The ` components of the temporary parent vector
are selected using uniform random distribution.

C. Evolution Strategies for Structural Optimization Problems
The ES optimizationalgorithmstarts with a set of parent vectors;

if any of these parent vectors corresponds to an infeasible design,
then this parent vector is modi� ed until it becomes feasible. Subse-
quently, the offsprings are generated and checked if they are in the
feasible region. The ES algorithm for structural optimizationappli-
cations is an iterative process consisting of the following steps:

1) The selection step is selection of s j , j D 1; 2; : : : ; ¹, parent
vectors of the design variables.

2) For the analysis step, solve K .s j /u j D f , j D 1; 2; : : : ; ¹.
3) For the constraints check, all parent vectors become feasible.
4) Foroffspringgeneration,generates j , j D 1; 2; : : : ; ¸, offspring

vectors of the design variables [Eqs. (2), (4), and (5)].
5) For the analysis step, solve K .s j /u j D f , j D 1; 2; : : : ; ¸.
6) For the constraintscheck, if satis� ed continue,else go to step 4.
7) For the selection step, select the next generation parents ac-

cording to (¹ C ¸) or (¹, ¸) selection schemes.
8) For the convergence check, if satis� ed stop, else go to step 4.

The procedure is terminated as soon as the mean value of the objec-
tive values from all parent vectors in the last 2 ¢ n ¢ ¹=¸ generations
has been improved by less than 0.01%.

IV. FE Formulation
An attempt to devise an ef� cient and robust shell � nite element

led Argyris et al. to the derivation of the TRIC shell element.8 The
formulationis based on the naturalmode method.21 TRIC is a shear-
deformablefacetshellelementsuitablefor linearandnonlinearanal-
ysis of thin and moderately thick isotropic, as well as composite,
plate and shell structures, and because of its natural formulation, it
does not suffer from the various lockingphenomena.10 In this work,
TRIC is used in the context of static analysis of isotropic shells,
but laminate anisotropic shells can be analyzed in a similar fashion
becausethe proposedmethodologydoes not dependon the formula-
tion of theFE problem. In conjunctionwith TRIC, theBEC9 element
is also used. BEC was originally proposed for laminate anisotropic
beams and also can be combined with TRIC in a neat way due to
the similarities on their formulations. It is shown elsewhere9 that
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because of its formulation BEC is rendered with all of the advan-
tages of TRIC. Both elements are consideredreliable, accurate, and
cost effective,as has been shown previously.10;11 The basic features
of TRIC and BEC elements are given in the Appendix.

V. Optimizing the Performance of Stiffened Shells
Shell structures, stiffened or nonstiffened, are very common in

engineering practice because they combine high stiffening charac-
teristics with low material volume. They are very common in civil,
mechanical,naval,and aeronauticalindustriesbecausethey canspan
long and wide column-free spaces.

Cylindrical shells are perhaps the most useful shell structures be-
cause they lend themselves to relatively easy construction, while
they can span large areas with a minimum of material. They are also
very ef� cient because they use their shape to reduce stresses and
thicknessesin the transversedirection.The proceduredescribedcan
be easilyexpandedto covera varietyof applicationswherecrosssec-
tionsof differentshapes,suchas ellipse,parabola,or funicularcurve,
apart from the arced cross sectionof Figs. 2a and 2b, can be utilized.

To ensure that the performanceof the shell meets the targets sug-
gested by design code limit states, for example, serviceability limit
state and ultimate limit state, the optimization process should con-
sider the provisions set by the design code. For the purpose of this
work, Eurocode standards are employed, although any design code
can be implementedin a similarway.The loadsusedfor thedesignof
the case studies examined refer to the ultimate limit state according
to Eurocode 1 (EC1).22 Design code requirements are considered
through the constraintsof the optimization problem. Different con-

Fig. 2a Stiffened cylindrical roof.

Fig. 2b Shell cross section.

Fig. 2c Cylindrical roof FE mesh.

straint functions are used for the shell part of the structure and for
the stiffening beams.

A. Shell
The von Mises yield criterion is employed to assess the value

of an equivalent stress that will be compared with the yield stress
f y . Therefore, the following expression has to be satis� ed for each
triangular shell element:

¾ 2
1 C ¾ 2

2 ¡ 3¾1¾2 C 3¿ 2 · fy =°M0 (7)

where ¾1 , ¾2, and ¿ are the stresses in the middle surface x–y
(Fig. 2c) of the triangle and °M0 is a safety factor equal to 1.10.

B. Stiffening Beams
The constraint functions for beams subjected to biaxial bending

under compression are given by the following formula of EC323:

Nsd =.A fy =°M1/ C Msd;y=.Wpl;y fy =°M1/

C Msd;z=.Wpl;z fy =°M1/ · 1:0 (8)

where Nsd , Msd;y , Msd ;z are the computed stress resultants, Wpl;y

and Wpl;z are the plastic � rst moments of inertia, f y is the yield
stress, and °M1 is a safety factor equal to 1.10. The upper � ange
of the beam cross section is assumed to be rigidly connected to the
shell part of the structure,and therefore,longitudinalbuckling is not
developed in the stiffeners.
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Table 1 Benchmark example, performance of various optimization algorithms

Method Weight, kN X1 , cm2 X2, cm2 X3, cm2 X4 , cm2 X5 , cm2 X6, cm2 X7 , cm2 X8 , cm2 X9, cm2 X10 , cm2

CONMIN25 24.75 145.16 12.19 160.45 102.13 0.65 11.29 108.13 127.29 135.35 16.19
OPTDYN25 24.34 165.81 0.65 162.00 125.10 0.65 0.65 99.35 131.10 133.81 7.35
LINRM25 27.80 139.16 70.84 142.45 96.45 0.65 70.84 122.00 118.84 118.71 87.16
SUMT25 26.39 198.00 15.29 204.00 75.23 0.65 23.94 140.06 134.84 90.13 21.03
M-325 25.44 166.71 19.81 170.45 82.39 0.65 22.13 124.77 123.68 121.03 28.52
M-525 25.47 166.64 18.58 170.64 82.26 0.65 24.32 124.97 123.74 121.10 28.26
GRP-UI25 25.47 159.87 26.90 159.87 93.23 0.65 26.90 112.64 124.26 124.32 33.94
GA24 24.97 216.13 10.45 141.94 100.00 10.45 10.45 91.61 128.39 128.39 16.90
GA25 24.28 216.13 10.45 141.94 91.61 10.45 10.45 51.42 147.74 141.94 10.45
GA26 24.23 216.13 10.45 141.94 89.68 10.45 10.45 51.42 147.74 147.74 10.45
ES (this work) 24.14 216.13 11.61 141.94 91.61 10.45 10.45 46.58 147.74 141.94 10.45

Fig. 3 Benchmark test example.

VI. Numerical Case Studies
In this study three numerical tests are examined. The � rst is a

benchmark test example, where the ef� ciency of the optimization
algorithm adopted is compared with a number of algorithms re-
portedin the literature.To demonstratetheef� ciencyof theproposed
methodology,two characteristic test examples are subsequentlyex-
amined: a cylindricalshell and a storage silo. For each test example,
a parametric study is performed, where different combinations of
the active design variables are considered.

A. Benchmark Optimization Test
The � rst test example is the 10-bar truss24¡26 benchmark op-

timization problem shown in Fig. 3. Each member of the truss
structure is considered as an independent design variable, and ver-
tical downward loads of 444.8 kN at joints 2 and 4 are applied.
A displacement constraint of 5.08 cm is enforced to nodes 2 and
4, and stress constraints are also enforced at each member of
the structure with maximum tensile and compress stress equal to
172.4 MPa. The material used is aluminum, with modulus of elas-
ticity of 68.9 GPa. The database of the discrete design variable is
taken from the American Institute of Steel Construction (AISC).
Thus, the double-angle pro� les used are A D (10.45 11.61 12.84
13.7415.35 16.90 16.97 18.58 18.9019.94 20.19 21.81 22.3922.90
23.4224.77 24.97 25.03 26.97 27.2328.97 29.61 30.97 32.0633.03
37.03 46.58 51.42 74.19 87.10 89.68 91.61 100.00 103.23 109.03
121.29 128.39 141.94 147.74 170.97 193.55 216.13) (cm2/. Table 1
gives the optimum results obtained. It can be seen that the weight of
5426.63 lb achieved by the ES outperforms all other optimization
algorithms.

B. Cylindrical Shell
The case of a long (span/radius ratio greater than 5) stiffened

and nonstiffened shell structure, shown in Fig. 2, spanning an area
of 30 £ 60 m2 is considered. Shape optimization refers to the se-
lection of the optimum curvature of the shell, which is de� ned by
the angle µ as shown in Fig. 2b. Five discrete values, 0, 5, 10, 15,
and 20 deg, of µ are considered. Topology optimization refers to

the selection of the layout (position and number) of the stiffeners,
which could be arranged every 2, 5, 10 and 30 m. Sizing optimiza-
tion refers to the selection of the stiffener cross section and shell
thickness. The sections are to be selected from the AISC tables of
wide-� angesections,whereasthe thicknessof the shell is considered
to be a continuous design variable taking values in the 2.5–30 mm
range. To satisfy fabrication requirements, the stiffeners are set in
one group with the same cross sections. In the transversedirection,
the stiffeners are of arch shape, whereas in the longitudinal direc-
tion, they are straight lines. The shell discretizationcomprises 3422
TRIC elements with 10,080 degrees of freedom (DOF), whereas
the beams are discretized with 116–1696 BEC elements, depend-
ing on the number of stiffeners used. The loads imposed are that of
EC1 1) snow load S of magnitude 0.75 kN/m2 , 2) wind load W of
magnitude 0.60 kN/m2 acting upward, and 3) gravity load G , in-
dicating the self-weight of the structure. Three ultimate limit-state
combinations are considered:

1:35 £ G C 1:50 £ S

1:35 £ G C 1:50 £ W

1:35 £ .G C S C W / (9)

A .5 C 5/ES optimization scheme is adopted for this test case,
whereas two different initial populations of the design variables
correspondingto the upper design values of the set and to randomly
selected values are considered. A parametric study is carried out
where four different combinations of active design variables of the
cylindrical shell are examined: 1) without stiffeners (sizing–shape
problem), 2) with stiffeners in the transverse direction only, free
to move (sizing–shape–topology problem), 3) with stiffeners in the
transversedirectiononly, � xed (sizing–shape problem), and 4) with
stiffeners in both directions, free to move (sizing–shape–topology
problem). In the � rst case, each design vector has two design vari-
ables corresponding to the angle µ (Fig. 2b) and the thickness of
the shell. In the second case, each design vector has four design
variables, those of the � rst case and also the stiffeners position and
their cross section in the transverse direction. In the third case, the
design variables are angle µ and the thickness and the cross sec-
tion of the stiffeners. Finally, in the fourth case, each design vector
has six design variables, those of the � rst two cases and two oth-
ers corresponding to the stiffeners position and their cross section
in the longitudinal direction. The four design cases examined and
the corresponding design variables are summarized in Table 2. In
Table 3, the initial randomly selected designs used, and their upper
values are provided,whereas the iteration history of the value of the
objective functionat each FE analysis for the case of � xed stiffeners
in the transverse direction is shown in Fig. 4.

The optimum design achieved for each case is summarized in
Table 4. It can be seen that the optimum design obtained for each
of the four cases does not depend on the values of the initial popu-
lation. A substantial reduction on the total weight is observed when
transverse stiffenersare considered,whereas longitudinalstiffeners
contributed to a small additional reduction of the material volume.
More speci� cally, a reduction of the volume of the order of 75%
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Table 2 Design variables for each design case considered

Design variables

Design Shell Shell Stiffener position Stiffener cross Stiffener position Stiffener cross
case curvature thickness (transversally) section (transversally) (longitudinally) section (longitudinally)

Without stiffeners
p p

Stiffeners free to move
p p p p

in transverse direction
Stiffeners � xed

p p p

in transverse direction
Stiffeners free to move

p p p p p p

in both directions

Table 3 Cylindrical shell: initial designs

Initial design Design variable Volume, m3

Without stiffeners, deg, mm
Upper 20, 30 55.11
Random 20, 30 55.11

15, 30 54.07
15, 27.5 50.81
20, 27.5 51.11
20, 27.5 51.11

Stiffeners move in the transverse direction, deg, mm, m
Upper 20, 30, W8 £ 15=2 57.83
Random 20, 30, W8 £ 15=2 57.83

20, 30, W6 £ 15=2 57.32
20, 30, W6 £ 15=2 57.32
15, 30, W6 £ 15=2 48.22
15, 30, W6 £ 15=2 48.22

Stiffeners � xed in the transverse direction, deg, mm, m
Upper 20, 30, W8 £ 15=4 57.83
Random 20, 30, W8 £ 15=4 57.83

20, 10, W6 £ 15=4 21.08
15, 7.5, W4 £ 13=4 16.01
15, 7.5, W4 £ 13=4 16.01
15, 22.5, W8 £ 10=4 42.76

Stiffeners move in both directions, deg, mm, m, m
Upper 20, 30, W8 £ 15=2, W8 £ 15=2 60.41
Random 20, 30, W8 £ 15=2, W8 £ 15=2 60.41

15, 25, W8 £ 15=10, W8 £ 15=2 48.71
15, 25, W8 £ 15=10, W8 £ 15=2 48.71
15, 20, W10 £ 15=2, W8 £ 15=10 39.60

20, 17.5, W8 £ 15=10, W8 £ 13=10 33.28

Fig. 4 Stiffened cylindrical roof: optimization history.
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Table 4 Cylindrical shell: performance of discrete ES for the four test cases

No. of Optimum CPU
Initial design Optimum design Generations FE analyses volume, m3 time, s

Without stiffeners, deg, mm
Upper 20, 25 2 31 45.92 203
Random 20, 25 7 23 45.92 149

Stiffeners move in the transverse direction, deg, mm, m
Upper 15, 5, W10 £ 12=2 59 203 11.35 1317
Random 15, 5, W10 £ 12=2 38 131 11.35 849

Stiffeners � xed in the transverse direction, deg, mm, m
Upper 20, 7.5, W6 £ 9=4 42 127 14.62 825
Random 20, 7.5, W6 £ 9=4 17 62 14.62 403

Stiffeners move in both directions, deg, mm, m, m
Upper 15, 5, W6 £ 9=2, W8 £ 13=30 68 197 10.93 1278
Random 15, 5, W6 £ 9=2, W8 £ 13=30 24 86 10.93 560

Fig. 5a Storage silo cross section.

Fig. 5b Silo FE mesh.

Table 5 Storage silo: initial designs

Volume,
Initial design Design variable m3

Without stiffeners, mm
Upper 30 12.80
Random 30 12.80

27.5 11.73
27.5 11.73
25 10.67
25 10.67

Stiffeners move in the vertical
direction, mm, m
Upper 30, W8 £ 15=1 13.87
Random 30, W8 £ 15=1 13.87

27.5, W6 £ 15=1 12.80
25, W6 £ 12=5 10.84
15, W6 £ 9=1 7.04
15, W4 £ 13=2 6.86

Stiffeners � xed every
5 m, mm, m
Upper 30, W8 £ 15=5 13.01
Random 30, W8 £ 15=5 13.01

27.5, W6 £ 15=5 12.20
25, W8 £ 15=5 11.07

27.5, W6 £ 15=5 12.20
27.5, W10 £ 15=5 12.05

Stiffeners in both
directions, mm, m
Upper 30, W8 £ 15=1, 16[W8 £ 15] 14.56
Random 30, W8 £ 15=1, 16[W8 £ 15] 14.56

20, W8 £ 13=1, 16[W8 £ 15] 10.05
20, W8 £ 13=1, 16[W8 £ 15] 10.05
15, W6 £ 15=1, 8[W12 £ 14] 7.81
15, W6 £ 15=1, 8[W12 £ 14] 7.81

is achieved when stiffeners in both directions are consideredas op-
posed to the nonstiffenedcase.

In Table 4, the CPU time required by the optimizationprocedure
to reach the optimum design is also given. It can be seen that the
required time is a few hundreds of seconds on a Pentium III 900-
MHz processor, which is considered very satisfactory for this type
of problem.This computationalperformancecan be attributedto the
optimization algorithm used, which allowed reaching the optimum
design in a few tens of optimization steps.

C. Storage Silo
The storage silo of Fig. 5 with 20-m height and 6-m diam is

examined. Material properties, cross section, and topology of the
stiffenersare similar to those of the earlier example. The discretiza-
tion of the shell structure comprises 480 TRIC elements with 1332
DOF, whereasthebeamsare discretizedwith 24–468 BEC elements,
depending on the number of stiffeners used.

The loadingson the structureare the following:1) snow load S of
magnitude0.75 kN/m2 , 2) wind load W of magnitudeof 0.60 kN/m2

acting downward, 3) gravity load Gsilo consistingof the self-weight
of the silo, 4) gravity load Gmater consisting of the weight of a
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Table 6 Storage silo: performance of discrete ES for the four test cases

No. of FE Optimum CPU
Initial design Optimum design Generations analyses volume, m3 time, s

Without stiffeners, mm
Upper 22.5 12 30 9.60 12
Random 22.5 8 24 9.60 9

Stiffeners move in the vertical direction, mm, m
Upper 12.5, W6 £ 9=10 43 112 5.39 42
Random 12.5, W6 £ 9=10 16 37 5.39 14

Stiffeners � xed every 5 m, mm, m
Upper 12.5, W6 £ 9=10 40 110 5.48 42
Random 12.5, W6 £ 9=10 12 36 5.48 14

Stiffeners move in both directions, mm, m
Upper 12.5, W6 £ 9=10, 4[W8 £ 13] 37 99 5.55 37
Random 12.5, W6 £ 9=10, 4[W8 £ 13] 32 79 5.55 30

Fig. 6 Storage silo: optimization history.

contained material of speci� c weight equal to ° D 16 kN/m3, and
5) pressure imposed during the evacuationof the silo, where a mate-
rial magni� cation factor Ch D 1:40 is assumed (EC1, Part 4). Seven
load combinations are considered for the design of the structure
according to the provisions of EC1:

1:35 £ .G silo C U / C 0:6 £ 1:5 £ .S/

1:35 £ .G silo C U / C 0:6 £ 1:5 £ .W /

1:35 £ .G silo C Gmater/ C 0:6 £ 1:5 £ .S/

1:35 £ .G silo C Gmater/ C 0:6 £ 1:5 £ .W /

1:35 £ .G silo/ C 1:5 £ .S/

1:35 £ .G silo/ C 1:5 £ .W /

1:35 £ .G silo/ C .S/ C .W / (10)

The last three combinations correspond to an empty silo. All com-
binationsde� ne loading schemes for which the stress constraintsof
Eurocode are to be satis� ed.

A (5 C 5)ES optimization scheme is adopted, and two different
initial populations are used as before. Four design cases of the silo
are examined: 1) without stiffeners (sizing problem), 2) with stiff-
eners along the vertical direction, free to move (sizing–topology
problem), 3) with � xed stiffeners in the vertical direction every 5 m
� xed, and 4) with stiffeners along both directions, free to move

(sizing–topology problem) having one, three, and � ve design vari-
ables, respectively.The initial randomly selected designs and their
upper values are listed in Table 5, whereas the iteration history of
the value of the objective function at each FE analysis for the case
of stiffeners varying in both directions is shown in Fig. 6.

Table 6 presents the performance of the optimization procedure
for each case examined. The results obtained follow the same trend
as in the earlier example. It can be seen that a reduction of the
volume of the order of 40% was achieved when stiffeners in both
directions are considered, as opposed to the nonstiffenedcase. The
computationalperformanceis related in a straightforwardmanner to
the number of optimization steps and the size of the FE simulation.
The optimization steps are more or less similar to those required in
the preceding example, whereas, due to the coarser FE mesh, the
total computing time required is about one order of magnitude less
than the corresponding times required for the cylindrical shell.

VII. Conclusions
A design methodology of stiffened shells that combines stiffen-

ing topology with shape and sizing optimizationhas been proposed
in this paper. The optimization procedure implemented, combined
with cost-effective and accurate FE simulation of shell and stiffen-
ing beams, resulted in a robust and ef� cient optimization tool that
can be used for the optimum design of real-world stiffened shell
structures of any size, type, and con� guration. The bene� cial effect
of transverse stiffeners on the performance of shell structures and
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the substantial reductionon material volume achievedwere demon-
strated and assessed quantitatively. The optimization of stiffened
shells was carried out by using evolution strategies and, in partic-
ular, their mixed-discrete version. With relatively few FE analyses,
the ES algorithm implemented can reach the optimum design re-
gardlessof the type of the optimizationproblem. The FE simulation
adopted with the combination of TRIC–BEC elements for the sim-
ulation of shell and beam stiffeners can contribute further in the
reduction of the computational cost.

Appendix: Natural Elements TRIC and BEC
The formulation of the beam and the shell FE is presented. It

is assumed that the centroidal axis of the beam elements coincides
with the correspondingmidsurface axis of the shell elements.

A. TRIC Shell Element
TRIC is a multilayered triangular shell element. Four coordinate

systems are adopted, namely, the material, the natural, the local,
and the global coordinate system. The stiffness is contributed by
deformations only and not by the associated rigid-body motions.
The element has 18 DOF (6 per node), and hence, 12 natural strain-
ing modes are de� ned. Three natural axial strains °t and natural
transverse shear strains °s are measured parallel to the edges of the
triangle. The axial strains °t are related to the three in-plane local
Cartesian strains ° 0 according to

°t D BT ° 0 ,
°t®

°t¯

°t°

D
c2

®x 0 s2
®x 0

p
2s®x 0c®x 0

c2
¯ x 0 s2

¯ x 0

p
2s¯x 0c¯x 0

c2
° x 0 s2

° x 0

p
2s° x 0c° x 0

°x 0 x 0

°y0 y0
p

2°x 0 y0

(A1)

where ci x 0 and si x 0 are the cosine and the sine of the angle between
the i sideof the triangleand the local x axis.A similar expressioncan
be derivedfor the transverseshear strains.The constitutiverelations
are established through the following transformations:

material system ! local system ! natural system

The corresponding natural stresses ¾c and the natural transverse
shear stresses ¾s are obtained following a series of calculations9:

¾c

¾s r

D
·ct ¢
¢ Âs r

°t

°s r

(A2)

for each layer r . Matrices ·ct and Âs are constitutive matrices. The
natural stiffness matrix can be produced from the statement of vari-
ation of the strain energy with respect to the natural coordinates:

±U D
V

¾ T
c ±°t dV

.A2/¡! ±U D
V

° T
t ·ct ±°t dV

°t D ®N ½N

! ±U D ½T
N

V

®T
N ·ct ®N dV d½N (A3)

where ½N is the vector of the natural straining modes. Transforma-
tions are subsequently initiated to obtain the natural matrix � rst to
the localand then to the global coordinatesystem,where ½ D N®N ½N ,

±U D ½T T T
06 N®T

N
V

®T
N ·ct ®N dV

stiffness natural coord: .12 £ 12/

N®N

stiffness local coord: .18 £ 18/

T06

stiffness global coord: .18 £ 18/

½ (A4)

½ is the vector of Cartesian displacements in the global system,
whereas T06 , NaN , and aN are transformation matrices. More details
on the formulation of TRIC may be found in Ref. 8.

B. BEC Element
The four coordinatesystems describedfor the TRIC element also

apply for BEC. Each node has six DOF, whereas the derivation of
the stiffnessmatrix is basedon similar conceptsas TRIC. Six natural
strainingmodes are employed,whereas an explicit relationbetween
them and the strain vector is established:

° D ®N ½N ,
°x xp
2°x yp
2°x z

D 1
1

1 z ¡3z³ y ¡3y³ ¢

¢ ¢ ¢ ¢ ¢
1

p
2

@9.y; z/

@y
¡ z
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1

p
2

@9.y; z/

@z
C y

½N 1

½N 2

½N 3

½N 4

½N 5

½N 6

(A5)

where ³ is the nondimensionalnatural coordinatealong the element
and 9.y; z/ is the warping function. The stiffness matrix for each
element in the global system is formulated through the expression,
where ½ D N®N ½N ,

±U D ½T T T
04 N®T

N
V

®T
N ·®N dV

stiffness natural coord: .6 £ 6/

N®N

stiffness local coord: .12 £ 12/

T04

stiffness global coord: .12 £ 12/

½ (A6)

NaN is a transformation matrix, · is the constitutive matrix, and T04

is the matrix of direction cosines. More details on the formulation
may be found in Ref. 9.
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