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Optimum Design of Shell Structures with Stiffening Beams

Nikolaos D. Lagaros,* Michalis Fragiadakis,” and Manolis Papadrakakis*
National Technical University of Athens, Athens 157 80, Greece

The optimumdesign of stiffened shell structures is investigated using a robust and efficient optimizationalgorithm
where the total weight of the structure is to be minimized subject to behavioral constraints imposed by structural
design codes. Evolutionary algorithms and more specifically the evolution strategies (ES) method specially tailored
for this type of problems is implemented for the solution of the structural optimization problem. The discretization
of the stiffened shell is performed by means of cost-effective and reliable shell and beam elements that incorporate
the natural mode concept. Three types of design variables are considered: sizing, shape, and topology. A benchmark
test example is examined where the efficiency and robustness of ES over other optimization methodsis investigated.
Two case studies of stiffened shells are subsequently presented, where a parametric study is undertaken to obtain the
most efficient design compatible with the regulations suggested by design codes such as Eurocode. The important
role of the stiffeners and how they can be optimally chosen to improve the performance of shell structures in terms

of carrying capacity and economy is demonstrated.

I. Introduction

NALYSIS of shell structures presentsa challengebecause their
formulation may become cumbersome and their behavior can
be unpredictable with regard to the geometry or support conditions.
Although shell structures reinforced with beams exhibit enhanced
structuralbehavioras opposedto nonstiffened shells, comparatively
little attention has been given to this type of structure. The research
work dealing with the optimum design of shell structures is rather
limited,!~” and the optimum configurationof stiffened shellsis an is-
sue thathas not yet been addressed adequatelyby the scientific com-
munity. Maute and Ramm' solved a material topology optimization
problem where the design model is adapted during the optimization
process. Lee et al.2 presented a general methodology for topology
optimization using an artificial material model to take into account
the irregular distribution of material density of isotropic multilayer
shell structures. Magnucki® proposed a design process for circular
tanks, where the optimal geometric characteristics of such struc-
tures are investigated under the objective of minimal mass. Afonso
et al.* presented a two-step procedure, where the optimal stiffening
zones of plate structures are first identified followed by a sizing op-
timization to determine the dimensionsof the stiffeners to minimize
the strain energy under constant total volume. AKI et al.> presented
a process for the design of underwater stiffened shell structures,
where a multicriteria optimization approach is utilized to select the
optimal dimensions and spacing of the stiffeners to minimize the
shell vibration, the associated sound vibration, and the weight of
the rings, as well as the cost of the structure. Farkas and Jarmai®
introduced an analytical method of minimizing the cost of stiffened
plates under hydrostatic pressure, whereas experimental results on
the behavior and the failure modes of these structures are presented
by Butler et al.” Note that all of the cited studies were based on
gradient-based optimization algorithms.
The objective of paper is to present a reliable tool for the opti-
mum design of realistic stiffened shell structures. When it comes to
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structural systems such as shells with stiffening beams, the designer
must be able to estimate the position and the cross section of the
stiffening beams in conjunction with the thickness and the geome-
try of the shell to obtain the best performance under given loading
conditions. Rules imposed by design codes must also be taken into
consideration by the optimization procedure to reach realistic opti-
mum designs. On the other hand, the optimization algorithm must
be robust, efficient, and as versatile as possible, neither dependent
on the type of problem nor on the finite element formulation or the
constraints of the design codes. The optimization method employed
in this study is based on the evolutionstrategies (ES) method, which
belongsto the evolutionarytype of algorithms, and has been tailored
to meet the specific characteristics of the problem at hand.

The test cases considered are combined optimization problems
with three types of design variables: sizing, shape, and topology.
The combined optimization problemis defined by the type of active
design variables resulting to a sizing, a sizing-shape or a sizing—
shape—topology optimization problem. A design variable is consid-
ered to be active when it is permitted to change its value, whereas in
the case of a nonactive design variable, its value remains constant
during the optimization process.

For the finite element (FE) discretization of stiffened shells, the
natural mode triangular composites (TRIC)® shell element and the
beam composites (BEC)® elements are used. Both elements, in-
troduced by Argyris et al.° have some desired features, such
as robustness, accuracy, and computational efficiency, as shown
elsewhere.!!! Because the optimization of shell structures is a
computationally demanding task, it is imperative to use reliable
and cost-efficient FE analysis to be able to optimize realistic shell
structures.

The rest of the paper is organizedas follows: A short presentation
of the FE employed for the discretization of the shell and the stift-
eners is given in Sec. II. Subsequently, the optimization problem is
describedin Sec. III, followed by an outline of the ES algorithmin
Sec.IV.In Sec.V, the optimization problem of stiffenedshells is de-
scribed.In Sec. VI, abenchmark test, where the efficiency of ES over
other optimization methods is examined, and two test examples are
presented, to demonstrate the potential of the proposed approach in
solving realistic optimization problems of stiffened shell structures.

II. Formulation of the Structural

Optimization Problem

Structural optimization problems are characterized by various
objective and constraint functions that are generally nonlinearfunc-
tions of the design variables. These functions are usually im-
plicit, discontinuous, and nonconvex. The mathematical formula-
tion of structural optimization problems with respect to the design
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Initial Design

Upper bounds

“olume : 60.41 m3

angle : 20°

thickness : 30 ram

trans. stiffeners : Wix152m
long. stiffeners : WBx152m
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angle : 15°
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trans. stiffeners : Wax15/10m
long. stiffeners : WEx10/10m

“olume : 1093 m3

angle : 15°

thickness : 5 mm

trans. stiffaners : Whx3/2 m
long. stiffeners : ¥¥8x13/30 m

“olume : 24 09 m3

angle : 15°

thickness : 125 mm

trans. stiffeners: W10x158 m
long. stiffeners : YWBx15/2 m

Fig. 1 Cylindrical roof: optimization process.

variables, the objective, and the constraint functions depend on the
type of the application. However, most optimization problems can
be expressed in standard mathematical terms as a nonlinear pro-
gramming problem. A discrete structural optimization problem can
be formulated in the following form:

minimize F(s)
subjectto g;(s) <O, j=1,....m
s; € R?, i=1,...,n (D)

where F(s) and g;(s) are the objective and constraints functions,
respectively, and R? is a given set of discrete values, whereas the
design variabless;, i =1, ..., n, can take values only from this set.

There are three main classes of structural optimization problems
depending on the type of the design variables used: sizing, shape,
and topology. In sizing optimization problems, the aim is usually
to minimize the weight of the structure under certain behavioral
constraints on stresses and displacements. The design variables are
most frequently chosento be dimensions of the cross-sectionalareas
of the members of the structure. In structural shape optimization
problems, the aim is to improve the performance of the structure
by modifying its shape. The design variables are either some of
the coordinates of the key points in the boundary of the structure
or some other parameters that influence the shape of the structure.
Structural topology optimization assists the designer to define the
type of structurethat is best suited to satisfy the operating conditions
for the problem at hand. In the current study, topology optimization
assists the designer to define the number and the position of the
stiffening beams.

In addition to the three main classes of optimization problem,
any combination of them can be implemented. In the present study,
all three types of design variables have been combined. The aim
is to minimize the weight of the structure under certain behavioral
constraints. Sizing design variables are related to the definition of
the cross section of the stiffeners and the thickness of the shell.
The shape design variables control the inclination of the curved
surface at the supports, whereas the topology design variables are
related to the number and the position of the stiffeners in both the

longitudinal and the transverse directions. These design variables
may be active or nonactive, leading to a combined sizing—shape—
topology optimization problem, when all design variables are active
or to a sizing—shape optimization problem when only the sizing and
shape design variables are active, etc. In Fig. 1, the optimization
process corresponding to the second test example of Sec. VI for
different initial designs is shown.

III. Solving the Optimization Problem

During the past three decades, many numerical methods have
been developed to meet the demands of structural design optimiza-
tion. These methods can be classified in two general categories:
deterministic and probabilistic. Mathematical programming meth-
ods, and in particular the gradient-based optimizers that have been
basically used for solving structural optimization problems in the
past, belong to the first category of optimization algorithms. These
methods make use of local curvature information, derived from lin-
earization of the original functions by using their derivatives with
respect to the design variables at points obtained in the process
of optimization to construct an approximate model of the initial
problem. Evolutionary algorithms (EA) are the most widely used
class of methods of the second category. In particular, genetic al-
gorithms (GA)'? and ES'* methods belong to EA class of methods
and have been used in the past for solving structural optimization
problems. These numerical algorithmsimitate natural processesand
are evolution-based systems maintaining a population of potential
solutions. These systems employ some selection processes based on
fitness of individuals and some recombination operators.

Gradient-based optimizers capture quickly the correct path to-
ward the nearest optimum, irrespective of if it is a local or a global
optimum, but it cannot assure that the global optimum can be found.
On the other hand EA, due to their random search, are considered
more robust in terms of global convergence; however, they may suf-
fer from a slow rate of convergence toward the global optimum.'
Anotherdifferencebetween EA and gradient-basedoptimizeris that
EA are easily adapted to handle continuous, discrete, and mixed
design variables.
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In structural optimization problems, where the objective func-
tion and the constraints are highly nonlinear functions of the design
variables, the computational effort spent in gradient calculations
required by the mathematical programming algorithms is usually
large. EA can be applied to any problem that can be formulated as a
function optimizationtask.'> In studies by Papadrakakiset al.'* and
Lagarosetal.,'® it was found that probabilisticsearch algorithms are
computationallyefficienteven if greaternumber of optimizationcy-
clesis needed to reach the optimum. These cycles are computation-
ally less expensive than the corresponding cycles of mathematical
programming algorithms because they do not need gradient eval-
uation. The selection of this optimization algorithm was based on
the authors’ as well as other researchers’ experience regarding the
relative superiority of ES over the rest of the methods in some spe-
cific problems.'*!7~!° The superiority of these methods, however,
cannot be generalized.

A. Evolution Strategies

The ES can be divided into the two-membered evolution strategy
(2-ES) and the multimembered evolutionstrategy (M-ES). The two-
membered scheme is the minimal concept for an imitationof organic
evolution. The two genetic operators of mutation and selection are
taken as rules for variation of the parameters and for recursion of
the iteration sequence, respectively. The 2-ES can be implemented
in two steps:

Step 1 is mutation. The parents(,,g) of the gth generation produces
an offspringsf,g), whose genotypeis slightly differentfrom thatof the
parent. Both parent and offspring vectors represent two-candidate
optimum design vectors

Sf)g) - s(;!) +z(g) (2)

where z(® is a random vector.
Step 2 is selection. In this step, the best individual between the
parent and the offspring is chosen to survive:

@+D
sP

s if g (si) <0,i=1,2,....0, and f(si) < f(s})

s(,,g) otherwise 3)
The question of how to choose the random vector z® in step 1
is very important. This choice has the role of mutation, which is
understood to be random, purposeless events that occur very rarely.
In continuous optimization problems, the so-called (0, o;) normal
distributionis used to generate the vectors z¢¢) (Ref. 13).

The M-ES differ from the two-membered strategiesin the size of
the populationand the additional genetic operator of recombination
used. The two steps are defined as follows:

Step 1 is recombination and mutation. The population of u par-
ents of the gth generation produces A offspring. For every offspring
vector, a temporary parentvectors = [§,, §,, ..., §,]7 is first builtby
means of recombination. From the temporary parents, an offspring
is being created in the same way as in the 2-ES [Eq. (2)].

Step 2 is selection. There are two different types of selection
schemes employed by the M-ES:

1) The best p individuals are selected from the population of
(u + A) individuals, (« + 1)-ES.

2) The best p individuals are selected from the population of
A(pn < A) individuals, (u, A)-ES.

B. ES for Discrete Optimization Problems

In engineering practice, the design variables are not always con-
tinuous because the structural parts are usually constructed with a
certain variation of their dimensions. Thus, design variables can
only take values from a predefined discrete set. For the solution of
discrete optimization problems, Cai and Thierauf* have proposeda
modified ES algorithm. The basic differences between discrete and
continuous ES are focused on the mutation and the recombination
operators. New modified operators have to be engaged to assure that
the generated design variables belong to the discrete design set. For

discrete problems the following recombination scheme is used in
the current study:

Si =S4,; or s§,; randomly 4)

where §; is the ith component of the temporary parent vector § and
s,; and s, ; are the ith components of the vectors s, and s,, which
are two parent vectors randomly chosen from the population.

In the discrete version of ES the random vector z® is properly
generated to force the offspring vector to move to another set of
discrete values. These random vectors should follow the rule that
large changes should rarely happen, whereas small changes occur
more frequently. The variance of the random vector should be small,
the difference between any two adjacent values, though, can be
relatively large. For this reason, it is suggested that not all of the
components of a parent vector, but only a few of them, for example,
¢, should be randomly changed in every generation. In other words,
the terms of vectorz®® are derived as follows:

{(K +1)8s;, for {£randomly chosencomponents

0, for n — £ other components (&)

where ds; is the difference between two adjacent values in the dis-
crete set and « is a random integer number that follows the Poisson
distribution

plc) = [(¥) /x!le™ (6)

where y is the standard deviation, as well as the mean value of
the random number k. The choice of ¢ depends on the size of the
problem, and it is usually taken as one-fifth of the total number of
design variables. The £ components of the temporary parent vector
are selected using uniform random distribution.

C. Evolution Strategies for Structural Optimization Problems

The ES optimizationalgorithm starts with a set of parent vectors;
if any of these parent vectors corresponds to an infeasible design,
then this parent vector is modified until it becomes feasible. Subse-
quently, the offsprings are generated and checked if they are in the
feasible region. The ES algorithm for structural optimization appli-
cations is an iterative process consisting of the following steps:

1) The selection step is selectionof s;, j=1,2,..., 1, parent
vectors of the design variables.

2) For the analysis step, solve K (s Ju; = f, j=1,2,..., .

3) For the constraints check, all parent vectors become feasible.

4)Foroffspringgeneration,generates;, j = 1,2, ..., A, offspring
vectors of the design variables [Egs. (2), (4), and (5)].

5) For the analysis step, solve K (s Ju; = f, j=1,2,...,A.

6) For the constraintscheck, if satisfied continue, else go to step 4.

7) For the selection step, select the next generation parents ac-
cording to (i + A) or (i, A) selection schemes.

8) For the convergence check, if satisfied stop, else go to step 4.
The procedureis terminated as soon as the mean value of the objec-
tive values from all parent vectors in the last 2 - n - ;1 /A generations
has been improved by less than 0.01%.

IV. FE Formulation

An attempt to devise an efficient and robust shell finite element
led Argyris et al. to the derivation of the TRIC shell element.® The
formulationis based on the natural mode method 2! TRIC is a shear-
deformablefacetshell elementsuitable forlinearand nonlinearanal-
ysis of thin and moderately thick isotropic, as well as composite,
plate and shell structures, and because of its natural formulation, it
does not suffer from the various locking phenomena.” In this work,
TRIC is used in the context of static analysis of isotropic shells,
but laminate anisotropic shells can be analyzed in a similar fashion
becausethe proposedmethodologydoes not depend on the formula-
tion of the FE problem. In conjunctionwith TRIC, the BEC® element
is also used. BEC was originally proposed for laminate anisotropic
beams and also can be combined with TRIC in a neat way due to
the similarities on their formulations. It is shown elsewhere’ that
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because of its formulation BEC is rendered with all of the advan-
tages of TRIC. Both elements are consideredreliable, accurate, and
cost effective, as has been shown previously.!%!! The basic features
of TRIC and BEC elements are given in the Appendix.

V. Optimizing the Performance of Stiffened Shells

Shell structures, stiffened or nonstiffened, are very common in
engineering practice because they combine high stiffening charac-
teristics with low material volume. They are very common in civil,
mechanical,naval, and aeronauticalindustriesbecausethey can span
long and wide column-free spaces.

Cylindrical shells are perhaps the most useful shell structures be-
cause they lend themselves to relatively easy construction, while
they can span large areas with a minimum of material. They are also
very efficient because they use their shape to reduce stresses and
thicknessesin the transverse direction. The proceduredescribed can
beeasily expandedto covera variety of applicationswhere cross sec-
tions of differentshapes, suchas ellipse, parabola,or funicularcurve,
apart from the arced cross section of Figs. 2a and 2b, can be utilized.

To ensure that the performance of the shell meets the targets sug-
gested by design code limit states, for example, serviceability limit
state and ultimate limit state, the optimization process should con-
sider the provisions set by the design code. For the purpose of this
work, Eurocode standards are employed, although any design code
can beimplementedin a similar way. The loads used for the designof
the case studies examined refer to the ultimate limit state according
to Eurocode 1 (EC1).22 Design code requirements are considered
through the constraints of the optimization problem. Different con-

straint functions are used for the shell part of the structure and for
the stiffening beams.

A. Shell

The von Mises yield criterion is employed to assess the value
of an equivalent stress that will be compared with the yield stress
fy. Therefore, the following expression has to be satisfied for each
triangular shell element:

Vol + 02 — 30105 + 312 < f,/ymo @)

where o1, 0,, and 7 are the stresses in the middle surface x—y
(Fig. 2¢) of the triangle and y, is a safety factor equal to 1.10.

B. Stiffening Beams
The constraint functions for beams subjected to biaxial bending
under compression are given by the following formula of EC3%*:

N&'d/(Afy/yMl) + de.y/(Wpl.y fy/yMl)

+ Mvd.:/(Wpl.:fy/VMl) =< 10 (8)

where Ny, My, ,, My, . are the computed stress resultants, W, ,
and W, . are the plastic first moments of inertia, f, is the yield
stress, and y,, is a safety factor equal to 1.10. The upper flange
of the beam cross section is assumed to be rigidly connected to the
shell part of the structure,and therefore,longitudinal bucklingis not
developed in the stiffeners.

Fig. 2a Stiffened cylindrical roof.

=————————= shell midsurrace

E = 200000 MPa
fy = 250 MPa

Fig. 2b  Shell cross section.
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Table1 Benchmark example, performance of various optimization algorithms

Method Weight, KN X, cm? X», cm? X3, cm? X4, cm? X5, cm? X6, cm? X7, cm? Xg, cm? Xo, cm? X9, cm?
CONMIN?3 24.75 145.16 12.19 160.45 102.13 0.65 11.29 108.13 127.29 135.35 16.19
OPTDYN? 24.34 165.81 0.65 162.00 125.10 0.65 0.65 99.35 131.10 133.81 7.35
LINRM?% 27.80 139.16 70.84 142.45 96.45 0.65 70.84 122.00 118.84 118.71 87.16
SUMT? 26.39 198.00 15.29 204.00 75.23 0.65 23.94 140.06 134.84 90.13 21.03
M-3% 25.44 166.71 19.81 170.45 82.39 0.65 22.13 124.77 123.68 121.03 28.52
M-5% 25.47 166.64 18.58 170.64 82.26 0.65 24.32 124.97 123.74 121.10 28.26
GRP-UI» 25.47 159.87 26.90 159.87 93.23 0.65 26.90 112.64 124.26 124.32 33.94
GA% 24.97 216.13 10.45 141.94 100.00 10.45 10.45 91.61 128.39 128.39 16.90
GA% 24.28 216.13 10.45 141.94 91.61 10.45 10.45 51.42 147.74 141.94 10.45
GA?% 24.23 216.13 10.45 141.94 89.68 10.45 10.45 51.42 147.74 147.74 10.45
ES (this work) 24.14 216.13 11.61 141.94 91.61 10.45 10.45 46.58 147.74 141.94 10.45

%>5 : J 2 ! AN

7 8 s} 9 10 =)
9,15m
%> ~
3 3 4 4 2
P=444.8KN P=444.8KN
Va 9,15m 7 9,15m 7

Fig. 3 Benchmark test example.

VI. Numerical Case Studies

In this study three numerical tests are examined. The first is a
benchmark test example, where the efficiency of the optimization
algorithm adopted is compared with a number of algorithms re-
portedin the literature. To demonstratethe efficiency of the proposed
methodology,two characteristic test examples are subsequently ex-
amined: a cylindricalshell and a storage silo. For each test example,
a parametric study is performed, where different combinations of
the active design variables are considered.

A. Benchmark Optimization Test

The first test example is the 10-bar truss**~2® benchmark op-
timization problem shown in Fig. 3. Each member of the truss
structure is considered as an independentdesign variable, and ver-
tical downward loads of 444.8 kN at joints 2 and 4 are applied.
A displacement constraint of 5.08 cm is enforced to nodes 2 and
4, and stress constraints are also enforced at each member of
the structure with maximum tensile and compress stress equal to
172.4 MPa. The material used is aluminum, with modulus of elas-
ticity of 68.9 GPa. The database of the discrete design variable is
taken from the American Institute of Steel Construction (AISC).
Thus, the double-angle profiles used are A=(10.4511.61 12.84
13.7415.3516.9016.9718.58 18.9019.9420.1921.8122.3922.90
23.4224.7724.9725.0326.9727.2328.9729.6130.9732.0633.03
37.0346.58 51.4274.19 87.10 89.68 91.61 100.00 103.23 109.03
121.29128.39141.94147.74170.97 193.55216.13) (cm?). Table 1
gives the optimum results obtained. It can be seen that the weight of
5426.63 Ib achieved by the ES outperforms all other optimization
algorithms.

B. Cylindrical Shell

The case of a long (span/radius ratio greater than 5) stiffened
and nonstiffened shell structure, shown in Fig. 2, spanning an area
of 30 x 60 m? is considered. Shape optimization refers to the se-
lection of the optimum curvature of the shell, which is defined by
the angle 6 as shown in Fig. 2b. Five discrete values, 0, 5, 10, 15,
and 20 deg, of 6 are considered. Topology optimization refers to

the selection of the layout (position and number) of the stiffeners,
which could be arranged every 2, 5, 10 and 30 m. Sizing optimiza-
tion refers to the selection of the stiffener cross section and shell
thickness. The sections are to be selected from the AISC tables of
wide-flange sections, whereas the thicknessof the shell is considered
to be a continuous design variable taking values in the 2.5-30 mm
range. To satisfy fabrication requirements, the stiffeners are set in
one group with the same cross sections. In the transverse direction,
the stiffeners are of arch shape, whereas in the longitudinal direc-
tion, they are straight lines. The shell discretizationcomprises 3422
TRIC elements with 10,080 degrees of freedom (DOF), whereas
the beams are discretized with 116-1696 BEC elements, depend-
ing on the number of stiffeners used. The loads imposed are that of
EC1 1) snow load S of magnitude 0.75 kN/m?, 2) wind load W of
magnitude 0.60 kN/m?> acting upward, and 3) gravity load G, in-
dicating the self-weight of the structure. Three ultimate limit-state
combinations are considered:

1.35xG+150x%x S
1.35xG+150x W

135 (G+ S+ W) )

A (5+5)ES optimization scheme is adopted for this test case,
whereas two different initial populations of the design variables
correspondingto the upper design values of the set and to randomly
selected values are considered. A parametric study is carried out
where four different combinations of active design variables of the
cylindrical shell are examined: 1) without stiffeners (sizing—shape
problem), 2) with stiffeners in the transverse direction only, free
to move (sizing-shape-topology problem), 3) with stiffeners in the
transverse directiononly, fixed (sizing—shape problem), and 4) with
stiffeners in both directions, free to move (sizing—shape—topology
problem). In the first case, each design vector has two design vari-
ables corresponding to the angle 6 (Fig. 2b) and the thickness of
the shell. In the second case, each design vector has four design
variables, those of the first case and also the stiffeners position and
their cross section in the transverse direction. In the third case, the
design variables are angle 6 and the thickness and the cross sec-
tion of the stiffeners. Finally, in the fourth case, each design vector
has six design variables, those of the first two cases and two oth-
ers corresponding to the stiffeners position and their cross section
in the longitudinal direction. The four design cases examined and
the corresponding design variables are summarized in Table 2. In
Table 3, the initial randomly selected designs used, and their upper
values are provided, whereas the iteration history of the value of the
objective function at each FE analysis for the case of fixed stiffeners
in the transverse direction is shown in Fig. 4.

The optimum design achieved for each case is summarized in
Table 4. It can be seen that the optimum design obtained for each
of the four cases does not depend on the values of the initial popu-
lation. A substantial reduction on the total weight is observed when
transverse stiffeners are considered, whereas longitudinalsstiffeners
contributed to a small additional reduction of the material volume.
More specifically, a reduction of the volume of the order of 75%
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Table 2 Design variables for each design case considered

Design variables

Design Shell Shell Stiffener position Stiffener cross Stiffener position Stiffener cross
case curvature  thickness (transversally) section (transversally) (longitudinally) section (longitudinally)
Without stiffeners Vv Vv
Stiffeners free to move J J J J

in transverse direction
Stiffeners fixed J Vv J

in transverse direction
Stiffeners free to move v v v v v v

in both directions

Table3 Cylindrical shell: initial designs

Initial design Design variable Volume, m?
Without stiffeners, deg, mm
Upper 20, 30 55.11
Random 20, 30 55.11
15,30 54.07
15,27.5 50.81
20,27.5 51.11
20,27.5 51.11
Stiffeners move in the transverse direction, deg, mm, m
Upper 20,30, Wg « 15/2 57.83
Random 20,30, Wg « 15/2 57.83
20,30, We x 15/2 57.32
20,30, We x 15/2 57.32
15,30, We x 15/2 48.22
15,30, We x 15/2 48.22
Stiffeners fixed in the transverse direction, deg, mm, m
Upper 20,30, Wg « 15/4 57.83
Random 20,30, Wg « 15/4 57.83
20, 10, We « 15/4 21.08
15,7.5, Wy 13/4 16.01
15,7.5, Wy 13/4 16.01
15,22.5, Wg x 10/4 42.76
Stiffeners move in both directions, deg, mm, m, m
Upper 20,30, Wg « 15/2, Wg « 15/2 60.41
Random 20,30, Wg « 15/2, Wg « 15/2 60.41
15,25, Wg  15/10, W « 15/2 48.71
15,25, Wg  15/10, Ws « 15/2 48.71
15,20, Wi x 15/2, Wg x 15/10 39.60
20, 17.5, Wg 5 15/10, W 13/10 33.28
60
50 4
40 4
E
[
<
2
30 4
20 4
10 T T T T T T
0 10 20 30 40 50 60

FE analyses

Fig. 4 Stiffened cylindrical roof: optimization history.
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Table 4 Cylindrical shell: performance of discrete ES for the four test cases

No. of Optimum CPU

Initial design Optimum design Generations ~ FE analyses ~ volume, m®  time, s
Without stiffeners, deg, mm

Upper 20,25 2 31 45.92 203

Random 20, 25 7 23 45.92 149
Stiffeners move in the transverse direction, deg, mm, m

Upper 15,5, Wiox 12/2 59 203 11.35 1317

Random 15,5, Wiox 12/2 38 131 11.35 849
Stiffeners fixed in the transverse direction, deg, mm, m

Upper 20,7.5, We x9/4 42 127 14.62 825

Random 20,7.5, Wex9/4 17 62 14.62 403
Stiffeners move in both directions, deg, mm, m, m

Upper 15,5, Wex9/2, Wg » 13/30 68 197 10.93 1278

Random 15,5, Wex9/2, Wg »13/30 24 86 10.93 560

Table 5 Storage silo: initial designs

Volume,
Initial design Design variable m’
Without stiffeners, mm
Upper 30 12.80
Random 30 12.80
27.5 11.73
27.5 11.73
25 10.67
25 10.67
Stiffeners move in the vertical
direction, mm, m
Upper 30, Wg x15/1 13.87
Random 30, Wg x15/1 13.87
27.5, W x 15/1 12.80
25, We < 12/5 10.84
15, Wex9/1 7.04
15, Wy 13/2 6.86
Stiffeners fixed every
5 m, mm, m
Upper 30, Wg x 15/5 13.01
Random 30, Wg x 15/5 13.01
27.5, We x 15/5 12.20
25, Wg x 15/5 11.07
27.5, We x 15/5 12.20
27.5,Wiox15/5 12.05
Fig. 5a Storage silo cross section. Stiffeners in both
directions, mm, m
Upper 30, W8><15/17 16[W8x15] 14.56
Random 30, Wg x 15/1, 16[ W3 « 15] 14.56

20, Wg « 13/1, 16[ W3 « 15] 10.05
20, Wg « 13/1, 16[ W3 « 15] 10.05
15, We x15/1, 8[Wi2 x 14] 7.81
15, We x15/1, 8[Wi2 x 14] 7.81

is achieved when stiffeners in both directions are considered as op-
posed to the nonstiffened case.

In Table 4, the CPU time required by the optimization procedure
to reach the optimum design is also given. It can be seen that the
required time is a few hundreds of seconds on a Pentium III 900-
MHz processor, which is considered very satisfactory for this type
of problem. This computational performancecan be attributedto the
optimization algorithm used, which allowed reaching the optimum
design in a few tens of optimization steps.

C. Storage Silo

The storage silo of Fig. 5 with 20-m height and 6-m diam is
examined. Material properties, cross section, and topology of the
stiffeners are similar to those of the earlier example. The discretiza-
tion of the shell structure comprises 480 TRIC elements with 1332
DOF, whereasthe beams are discretizedwith 24-468 BEC elements,
¥ . .
k depending on the number of stiffeners used.

7,

X The loadings on the structure are the following: 1) snow load S of
magnitude0.75 kN/m?, 2) wind load W of magnitude of 0.60 kN/m?
acting downward, 3) gravity load Gy, consisting of the self-weight
Fig. 5b  Silo FE mesh. of the silo, 4) gravity load G consisting of the weight of a
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Table 6 Storage silo: performance of discrete ES for the four test cases

No. of FE Optimum CPU
Initial design Optimum design Generations analyses volume, m®  time, s
Without stiffeners, mm
Upper 22.5 12 30 9.60 12
Random 22.5 8 24 9.60 9
Stiffeners move in the vertical direction, mm, m
Upper 12.5, We x 9/10 43 112 5.39 42
Random 12.5, We x 9/10 16 37 5.39 14
Stiffeners fixed every 5 m, mm, m
Upper 12.5, Ws . 9/10 40 110 5.48 42
Random 12.5, We x 9/10 12 36 5.48 14
Stiffeners move in both directions, mm, m
Upper 12.5, We < 9/10, 4[Ws « 13] 37 99 5.55 37
Random 12.5, We < 9/10, 4[Ws « 13] 32 79 5.55 30
15
10
€
[
5
2
54
0 T : T T : : T
0 10 20 30 40 50 60 70 80
FE analyses

Fig. 6 Storage silo: optimization history.

contained material of specific weight equal to ¥ = 16 kN/m?, and
5) pressure imposed during the evacuationof the silo, where a mate-
rial magnification factor C;, = 1.40 is assumed (EC1, Part 4). Seven
load combinations are considered for the design of the structure
according to the provisions of EC1:

1.35 x (Ggo +U) + 0.6 x 1.5 x (S)
1.35 X (Ggo + U) + 0.6 X 1.5 x (W)
1.35 X (Ggito + Gmater) + 0.6 x 1.5 x (S)
1.35 X (Ggio + Gmater) + 0.6 X 1.5 x (W)
1.35 x (Ggpo) + 1.5 x (S)

1.35 x (Ggp) + 1.5 x (W)

1.35 x (Ggio) + () + (W) (10)
The last three combinations correspond to an empty silo. All com-
binations define loading schemes for which the stress constraints of
Eurocode are to be satisfied.

A (5+5)ES optimization scheme is adopted, and two different
initial populations are used as before. Four design cases of the silo
are examined: 1) without stiffeners (sizing problem), 2) with stiff-
eners along the vertical direction, free to move (sizing-topology
problem), 3) with fixed stiffenersin the vertical directionevery 5 m
fixed, and 4) with stiffeners along both directions, free to move

(sizing-topology problem) having one, three, and five design vari-
ables, respectively. The initial randomly selected designs and their
upper values are listed in Table 5, whereas the iteration history of
the value of the objective function at each FE analysis for the case
of stiffeners varying in both directions is shown in Fig. 6.

Table 6 presents the performance of the optimization procedure
for each case examined. The results obtained follow the same trend
as in the earlier example. It can be seen that a reduction of the
volume of the order of 40% was achieved when stiffeners in both
directions are considered, as opposed to the nonstiffened case. The
computational performanceis related in a straightforwardmanner to
the number of optimization steps and the size of the FE simulation.
The optimization steps are more or less similar to those required in
the preceding example, whereas, due to the coarser FE mesh, the
total computing time required is about one order of magnitude less
than the corresponding times required for the cylindrical shell.

VIL

A design methodology of stiffened shells that combines stiffen-
ing topology with shape and sizing optimization has been proposed
in this paper. The optimization procedure implemented, combined
with cost-effective and accurate FE simulation of shell and stiffen-
ing beams, resulted in a robust and efficient optimization tool that
can be used for the optimum design of real-world stiffened shell
structures of any size, type, and configuration. The beneficial effect
of transverse stiffeners on the performance of shell structures and

Conclusions



LAGAROS, FRAGIADAKIS, AND PAPADRAKAKIS 183

the substantialreduction on material volume achieved were demon-
strated and assessed quantitatively. The optimization of stiffened
shells was carried out by using evolution strategies and, in partic-
ular, their mixed-discrete version. With relatively few FE analyses,
the ES algorithm implemented can reach the optimum design re-
gardless of the type of the optimization problem. The FE simulation
adopted with the combination of TRIC-BEC elements for the sim-
ulation of shell and beam stiffeners can contribute further in the
reduction of the computational cost.

Appendix: Natural Elements TRIC and BEC

The formulation of the beam and the shell FE is presented. It
is assumed that the centroidal axis of the beam elements coincides
with the corresponding midsurface axis of the shell elements.

A. TRIC Shell Element

TRIC is a multilayered triangular shell element. Four coordinate
systems are adopted, namely, the material, the natural, the local,
and the global coordinate system. The stiffness is contributed by
deformations only and not by the associated rigid-body motions.
The element has 18 DOF (6 per node), and hence, 12 natural strain-
ing modes are defined. Three natural axial strains y, and natural
transverse shear strains y, are measured parallel to the edges of the
triangle. The axial strains y; are related to the three in-plane local
Cartesian strains y’ according to

2 2
Via o Sou «/Es,“rc,“r Vel

— T, _ 2 2
Vi=BYy &1V =|Ch Spo «/Esﬁxrcﬂxr Vy'y
Viy cix, six, «/Esyxrcyxr «/zyx'yf

(A1)

where ¢;,» and s;,v are the cosine and the sine of the angle between
thei side of the triangleand the local x axis. A similar expressioncan
be derivedfor the transverse shear strains. The constitutiverelations
are established through the following transformations:

material system — local system — natural system

The corresponding natural stresses o, and the natural transverse
shear stresses o, are obtained following a series of calculations’:

c-lb e
Oy - : Xs , Vs -

for each layer r. Matrices k., and y; are constitutive matrices. The
natural stiffness matrix can be produced from the statement of vari-
ation of the strain energy with respect to the natural coordinates:

sU = / oy dv 2B su = / v ke8y, AV
14 14

Vi = NPy

— 38U = p,TV[/ b Ky dVi| dpy (A3)
14

where p,, is the vector of the natural straining modes. Transforma-
tions are subsequently initiated to obtain the natural matrix first to
the localand then to the global coordinate system, where p=ay py ,

sU=p" | TL | af / aliqaydV ay | Tos | p (A4)
14

e— e

stiffness natural coord. (12 x 12)

stiffness local coord. (18 x 18)

stiffness global coord. (18 x 18)

p is the vector of Cartesian displacements in the global system,
whereas Ty, ay, and ay are transformation matrices. More details
on the formulation of TRIC may be found in Ref. 8.

B. BEC Element

The four coordinate systems described for the TRIC element also
apply for BEC. Each node has six DOF, whereas the derivation of
the stiffness matrix is based on similar conceptsas TRIC. Six natural
straining modes are employed, whereas an explicitrelation between
them and the strain vector is established:

Vxx
y =aypy & «/nyy
«/nyz

1 z =3z y =3y¢ . Pn1
L (090,2) Pra
. . . . _
_ l NG dy PN3
1 | MW (. 2) Pn4
Y,z
— —+y> PNs
ﬁ< 0z Pne
(AS)

where ¢ is the nondimensionalnatural coordinate along the element
and W (y, z) is the warping function. The stiffness matrix for each
element in the global system is formulated through the expression,
where p=aypy,

sU=p" | TS | af /a;mNdv an |Tu | p (A6)
\%4

[ —

stiffness natural coord. (6 x 6)

stiffness local coord. (12 x 12)

stiffness global coord. (12 x 12)

ay is a transformation matrix, « is the constitutive matrix, and 7,
is the matrix of direction cosines. More details on the formulation
may be found in Ref. 9.
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