
Learning improvement of neural networks used in structural optimization

Nikolaos D. Lagaros, Manolis Papadrakakis*

Institute of Structural Analysis and Seismic Research, National Technical University Athens, Zografou Campus, Athens 15780, Greece

Received 12 June 2002; accepted 22 July 2003

Abstract

The performance of feed-forward neural networks can be substantially impaired by the ill-conditioning of the corresponding Jacobian

matrix. Ill-conditioning appearing in feed-forward learning process is related to the properties of the activation function used. It will be

shown that the performance of the network training can be improved using an adaptive activation function with a properly updated gain

parameter during the learning process. The efficiency of the proposed adaptive procedure is examined in structural optimization problems

where a trained neural network is used to replace the structural analysis phase and capture the necessary data for the optimizer. The optimizer

used in this study is an algorithm based on evolution strategies.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Neural networks; Ill-conditioning; Structural optimization; Evolution strategies

1. Introduction

Over the last 10 years, artificial intelligence techniques

have emerged as a powerful tool that could be used to

replace time consuming procedures in many scientific or

engineering applications. The use of artificial Neural

Networks (NN) to predict finite element analysis outputs

has been studied previously in the context of optimal design

of structural systems [1–7] and also in some other areas of

structural engineering applications, such as structural

damage assessment, structural reliability analysis, finite

element mesh generation or fracture mechanics [8–13]. NN

have been recently applied to the solution of the equilibrium

equations resulting from the application of the finite element

method in connection to reanalysis type of problems, where

a large number of finite element analyses are required.

Reanalysis type of problems are encountered, among others,

in the reliability analysis of structural systems using Monte

Carlo simulation and in structural optimization using

evolutionary algorithms such as Evolution Strategies (ES)

and Genetic Algorithms (GA). In these problems, NN have

proved to work very satisfactory [2,9].

The principal advantage of a properly trained NN is that

it requires a trivial computational effort to produce an

approximate solution. Such approximations, if acceptable,

appear to be valuable in situations where the actual response

computations are intensive in terms of computing time and a

quick estimation is required. For each problem a NN is

trained utilizing information generated from a number of

properly selected analyses. The data from these analyses are

processed in order to obtain the necessary input and output

pairs, which are subsequently used to produce a trained NN.

The training of a NN is an unconstrained minimization

problem where the objective is to minimize the prediction

error. In the case of structural optimization, the analysis

corresponds to a finite element solution of the resulting

equilibrium equations and the trained NN is then used to

predict the response of the structure in terms of constraint

function values due to different sets of design variables.

According to Saarinen et al. [14] the most widely used

architecture, that of feed-forward NN, is likely to produce ill-

conditioned Jacobian matrices due to the bad properties of

the activation function used and that this type of ill-

conditioning is encountered in many applications. This

work is concerned with the implementation of a proper

activation function that results to the improvement of the

condition of the Jacobian matrices of the network. Theoreti-

cal analysis and experimental results presented in subsequent

sections lead to the conclusion that the bad influence of ill-

conditioning in the training phase of NN can be alleviated

using an adaptive sigmoid activation function per layer.

0965-9978/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0965-9978(03)00112-1

Advances in Engineering Software 35 (2004) 9–25

www.elsevier.com/locate/advengsoft

* Corresponding author. Tel.: þ30-1-7721694; fax: þ30-1-7721693.

E-mail addresses: mpapadra@central.ntua.gr (M. Papadrakakis),

nlagaros@central.ntua.gr (N.D. Lagaros).

http://www.elsevier.com/locate/advengsoft

2. Unconstrained optimization algorithms in NN training

Let us consider the following unconstrained optimization

problem: find the vector/matrix w that minimizes the

following real valued scalar function

E ¼ EðwÞ; ð1Þ

which is called the cost, objective or energy function. Since

the case of maximization of a function is the same as the

minimization of its negative value there is no loss of

generality in this consideration.

The NN attempts to create a desired relation for an

input/output set of m learning patterns. This set which is

called training set and consists of a finite number of m pairs

ðinp; tarÞ [Rk £ R‘; where the first coordinate is a position

in k-dimensional space corresponding to the input space and

the second coordinate is a position in ‘-dimensional space

corresponding to the desired or target space. The algorithm

that is usually used in order to form the relation Rk ! R‘

between those two spaces is the back propagation (BP)

algorithm [15]. This algorithm tries to determine a set of

parameters called weights, in order to achieve the right

response for each input vector applied to the network. If

the training is successful, application of a set of inputs to the

network produces the desired set of outputs. Thus, in the

case of NN training, w corresponds to the weight matrix

defining the parameters to be determined, while the

objective function can be defined as follows

EðwÞ ¼ 1
2
kEðwÞk2; ð2Þ

where the terms of the vector EðwÞ ¼ ½E1ðwÞ;E2ðwÞ;…;

EmðwÞ�T have to minimized. Ei denotes the residual

between the value of the approximating function and the

desired value, determined by the following expression

EiðwÞ ¼
X‘
j¼1

½outjðinpi;wÞ2 tarij�; ð3Þ

where inpi is a k-dimensional input vector, tari is the

desired response corresponding to the ith input, tarij is the

desire response of the jth node of the output vector for

the ith input pattern, while out is the response of the

network for the current values of the weight parameters.

There are two categories of methods proposed for the

solution of the minimization problem of Eq. (2): determi-

nistic and statistical. A deterministic training method follows

a step-by-step procedure to adjust the network weights. On

the other hand, statistical training methods make pseudo-

random changes in the weight values retaining only those

changes that result in improvement of the objective function.

The latter training methods, however, appeared to be slow

compared to the deterministic ones [16]. In this study, we will

discuss only deterministic methods.

The numerical minimization algorithms used for the

solution of the problem of Eq. (2) generate a sequence of

weight matrices through an iterative procedure. To apply an

algorithmic operator A we need a starting weight matrix

w (0), while the iteration formula can be written as follows:

wðtþ1Þ ¼ AðwðtÞÞ ¼ wðtÞ þ DwðtÞ
: ð4Þ

All numerical methods applied are based on the above

formula. The changing part of the algorithm DwðtÞ is further

decomposed into two parts as

DwðtÞ ¼ atd
ðtÞ
; ð5Þ

where dðtÞ is a desired search direction of the move and at

the step size in that direction. Theoretically, we would like

the sequence of weight matrices to converge to at least a

local minimizer wp. The algorithm should generate the

sequence of iterant matrices wðtÞ so that away from wp a

steady progress toward wp is achieved and once near wp a

rapid convergence to wp itself occurs [17]. The convergence

of an algorithm can be either global or local.

Global convergence refers to the ability of the algorithm

to reach the neighborhood of wp from an arbitrary initial

weight matrix w (0), which is not close to w p. The

convergence of a globally convergent algorithm should

not be affected by the choice of the initial point. Local

convergence refers to the ability of the algorithm to

approach wp rapidly from a starting weight matrix (or

iterant wðtÞ) in the neighborhood of wp.

The algorithms most frequently used in the NN training

are the steepest descent, the conjugate gradient, the Newton

and the Levenberg–Marquard methods with the following

direction vectors

Steepest descent method

dðtÞ ¼ 27EðwðtÞÞ:

Conjugate gradient method

dðtÞ ¼ 27EðwðtÞÞ þ bt21dðt21Þ
;

where bt is defined as follows

bt21 ¼

7Etð7Et 2 7Et21Þ=d
ðt21Þð7Et21 2 7EtÞ

Hestenes–Stiefel

7Et·ð7Et 2 7Et21Þ=7Et21·7Et21

Polak–Ribiere

7Et·7Et=7Et21·7Et21

Fletcher–Reeves

8>>>>>>>>>>><
>>>>>>>>>>>:

:

Newton method

dðtÞ ¼ 2½HðwðtÞÞ�217EðwðtÞÞ:

Levenberg–Marquard method

dðtÞ ¼ 2½HðwðtÞÞ þ ltI�
217EðwðtÞÞ;

where lt is a positive constant and 7EðwðtÞÞ is the gradient

of the function E.

7EðwÞ ¼ JðwÞTEðwÞ; ð6Þ

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2510

where H(w) is the Hessian matrix of the function E

72EðwÞ ¼ HðwÞ ¼ JðwÞTJðwÞ þ
Xm
i¼1

EiðwÞHiðwÞ; ð7Þ

where J(w) is the Jacobian matrix of vector function E(w)

and HiðwÞ is the Hessian matrix of the component

function EiðwÞ:

The convergence properties of optimization algorithms

for differentiable functions depend on properties of the first

and/or second derivatives of the function to be optimized. For

example, steepest descent and conjugate gradient methods

require explicitly the first derivative to define their search

direction, and implicitly relies on the second derivative

whose properties govern the rate of convergence. Corres-

pondingly, Newton and Levenberg–Marquard methods

require explicitly the first derivative and the Hessian matrix

to define their search direction. When optimization algor-

ithms converge slowly for NN problems, this suggests that

the corresponding derivative matrices are numerically ill-

conditioned. It is proved that these algorithms converge

slowly when rank-deficiencies appear in the Jacobian matrix

of a NN, making the problem numerically ill-conditioned.

It has been reported in a benchmark test study [18] that,

the learning algorithm ‘Rprop’ achieves training in fewer

number of training cycles compared to other learning

algorithms. It was found, however, that normalizing the

training data makes the BP algorithm to perform equally

well, if not better with respect to ‘Rprop’ [19,20]. In the

present study, the Levenberg–Marquard method is used,

since it was found that this method is much more efficient

than the other methods particularly when the network

contains less than a few hundred weights [21].

3. The back propagation learning algorithm

In the BP algorithm, learning is carried out when a set of

input training patterns is propagated through a network

consisting of an input layer, one or more hidden layers and an

output layer. Each layer has its corresponding units

(processing elements, neurons or nodes) and weight connec-

tions. A hidden or output layer node forms its output signal

outj; by first forming the weighted sum of its input inp

sumj ¼
Xn

i¼1

wj;iinpi þ bj; ð8Þ

where the wj;i is the connecting weight between the ith neuron

in the source layer and the jth neuron in the target layer and bj

is a bias parameter which acts as a function shifting term.

In the biological system, a typical neuron may only

produce an output signal if the incoming signal builds up to

a certain level. This output is expressed in NN by

outðkÞj ¼ f ½sumj�; ð9Þ

where f is an activation function, which produces the output

at the jth neuron, k denotes that this output corresponds to

the kth training data point. The type of activation function

that was used in the present study is the sigmoid function,

given by the expression

f ðsumÞ ¼
1

1 þ e2sum
: ð10Þ

The principal advantage of the sigmoid function is its ability

to handle both large and small input signals. The

determination of the proper weight coefficients and bias

parameters is embodied in the network learning process.

The nodes are initialized arbitrarily with random weight and

bias parameters.

A network labeled as n1 –n2 –n3 requires n ¼ n1 £ n2 þ

n2 þ n2 £ n3 þ n3 total number of weight and bias par-

ameters where n1 is the number of input nodes, n2 is the

number of the hidden layer nodes and n3 is the number of

the output layer nodes. The output of the jth hidden layer

node for the training data point k is computed as follows

outhðkÞ
j ¼ f

Xn1

i¼1

whj;i·inpðkÞ
i þ bhj

" #
; ð11Þ

where 1 # i # n1; 1 # j # n2; whj;i are the weights

associated with the hidden layer nodes and bhj are the

corresponding biases. Similarly, for the output layer nodes,

the output of the jth output layer node for training data point

k is computed as follows

outðkÞj ¼ f
Xn2

i¼1

wj;i·outhðkÞ
i þ bj

" #
; ð12Þ

where 1 # i # n2; 1 # j # n3; wj;i are the weights associ-

ated with the output layer nodes and bj are the biases

associated with the output layer nodes.

The output of the sigmoid function used lies between 0

and 1. Thus, in order to produce meaningful results using

Eq. (3), the output values of the training patterns should be

normalized within this range. During the training phase, the

weights can be adjusted to obtain very large values, which

can force all or most of the neurons to operate with large

output values in a region where the derivative of the

activation function is very small. Since the correction of the

weights depends on the derivative of the sigmoid function,

the network in this case may become virtually standstill.

Initializing the weights to small random values could help to

avoid this situation, although a more appropriate one is to

normalize the input patterns to lie between 0 and 1.

4. The adaptive sigmoid activation function

The Jacobian matrix of a NN is composed by rows

corresponding to different input training patterns and

columns corresponding to the weights and biases of the

hidden or output layers of the network. Thus, the Jacobian

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 11

matrix for the 2–3–2 test case network, shown in Fig. 1, can

be written as follows

J ¼

J1;1 · · · J1;17

..

. ..
.

Jk;1 · · · Jk;17

..

. ..
.

Jm;1 · · · Jm;17

2
6666666666664

3
7777777777775
; ð13Þ

where the kth row corresponds to the kth input pattern, with

Jk;1 ¼ ðw1;1out01ðkÞ þ w2;1out02ðkÞÞouth0
1ðkÞ;

Jk;2 ¼ ðw1;1out01ðkÞ þ w2;1out02ðkÞÞouth0
1ðkÞinpðkÞ

1 ;

Jk;3 ¼ ðw1;1out01ðkÞ þ w2;1out02ðkÞÞouth0
1ðkÞinpðkÞ

2 ;

Jk;4 ¼ ðw1;2out01ðkÞ þ w2;2out02ðkÞÞouth0
2ðkÞ;

Jk;5 ¼ ðw1;2out01ðkÞ þ w2;2out02ðkÞÞouth0
2ðkÞinpðkÞ

1 ;

Jk;6 ¼ ðw1;2out01ðkÞ þ w2;2out02ðkÞÞouth0
2ðkÞinpðkÞ

2 ;

Jk;7 ¼ ðw1;3out01ðkÞ þ w2;3out02ðkÞÞouth0
3ðkÞ;

Jk;8 ¼ ðw1;3out01ðkÞ þ w2;3out02ðkÞÞouth0
3ðkÞinpðkÞ

1 ;

Jk;9 ¼ ðw1;3out01ðkÞ þ w2;3out02ðkÞÞouth0
3ðkÞinpðkÞ

2 ;

Jk;10 ¼ out01ðkÞ;

Jk;11 ¼ out01ðkÞouthðkÞ
1 ;

Jk;12 ¼ out01ðkÞouthðkÞ
2 ;

Jk;13 ¼ out01ðkÞouthðkÞ
3 ;

Jk;14 ¼ out02ðkÞ;

Jk;15 ¼ out02ðkÞouthðkÞ
1 ;

Jk;16 ¼ out02ðkÞouthðkÞ
2 ;

Jk;17 ¼ out02ðkÞouthðkÞ
3 :

The terms of the columns of the Jacobian matrix of Eq. (13)

are of the form f 0ðxÞ; f 0ðxÞ·f ðyÞ and f 0ðxÞ·f 0ðyÞ and in cases

of networks with one output node of the form f ðxÞ; since

outj ¼ f ðsumjÞ and out0j ¼ f 0ðsumjÞ: The derivative of the

sigmoid function is given by

f 0ðsumÞ ¼
e2sum

ð1 þ e2sumÞ2
: ð14Þ

Fig. 1. The 2–3–2 network.

Fig. 2. Graphical representation of functions (a) Aðx; yÞ; (b) Bðx; yÞ; (c) Cðx; yÞ; (d) Dðx; yÞ:

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2512

To explain the near linear dependence between columns of

the matrix J we look into the variation of the following

quantities

Aðx; yÞ ¼ f ðx þ yÞ2 f ðxÞ; ð15Þ

Bðx; yÞ ¼ f 0ðx þ yÞ2 f 0ðxÞ;

Cðx; yÞ ¼ f 0ðx þ yÞ·f 0ðxÞ;

Dðx; yÞ ¼ f ðx þ yÞ·f 0ðxÞ;

where x [½2p; p� and y [½2d; d�: For the 2–3–2 test

network, if Bðx; yÞ function do not vary for a large range of

values of x and y; the columns 10 and 14 are linear

dependent for this range of values of x and y: In the case of

Dðx; yÞ function, the columns 11–13 and 15–17 are linear

dependent when Dðx; yÞ does not vary for a large range of

values of x and y:

Fig. 2 depict the graphs of functions A; B; C and D for the

test case network and show the reason why the Jacobian

matrix is rank deficient. x þ y and x are considered to be the

weighted sums of the hidden and output nodes of the

network. Fig. 2a gives the graph of function Aðx; yÞ for

various values of x [½210; 10� and y [½220; 20�: It can

be seen that for large values of lxl $ 5 there is no difference

between the graphs. This coalescence of the curves leads to

ill-conditioning. Similar observation can be made for the

remaining graphs. Thus, the graphs of Bðx; yÞ for x [
½210; 10� and y [½220; 20�; are practically the same for

lxl $ 5 and lyl $ 14 and ;y [½24; 4�: This means that the

columns 10 and 14 of the Jacobian matrix of the test

network are identical for the above range of values of x

and y; since the difference between the two columns is

equal to zero. In the graphical representation of Cðx; yÞ

there is no difference between the graphs when lyl $ 7:

Similarly, in the case of Fig. 2d depicting the func-

tion Dðx; yÞ there is no difference between the graphs

when y # 27 or ;y [½220; 20� when lxl $ 7:

Fig. 3. The activation function for different values of the gain parameter.

Fig. 4. Graphical representation of function Bðx; yÞ for g ¼ 2:

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 13

In order to overcome the co-linearity of the columns of J
a modified sigmoid function is implemented in this study

according to the following expression

f ðsumÞ ¼
1

1 þ e2gsum
; ð16Þ

which also has range ð0; 1Þ: The parameter g is called the

gain parameter and defines the steepness (slope) of the

activation function. The effect of changing the gain

parameter of an activation function is shown in Fig. 3.

The gain parameter moves the activation function in the

direction of the horizontal axis. The modified graphs for

g ¼ 2; 0.5, 0.25, 0.2 and 0.1 are depicted in Figs. 4–8,

respectively.

In the case of g ¼ 0:25; for example, the graphical

representations of the functions A; B; C and D; shown in

Fig. 6, reveal that the graphs of Fig. 6a and b, depicting the

functions Aðx; yÞ and Bðx; yÞ; are quite distinct compared to

the corresponding graphs of Fig. 2a and b. One can also

observe from Fig. 6c and d, depicting the graphs of Cðx; yÞ

and Dðx; yÞ; that the curves remain distinct for a larger range

of y values than the corresponding curves of Fig. 2c and d.

Similar observation can be made for the other values of g

considered. The trend for the particular test case examined

is that the curves for g . 1 become more coincident

compared to the corresponding graphs for g , 1 and that

when g decreases ðg , 0:25Þ the range in which the curves

remain distinct becomes smaller (Figs. 4, 5, 7 and 8).

As can be seen from these figures, the graphs

corresponding to g ¼ 0:25 are more distinct in the range

x [½210; 10� and y [½220; 20� than the graphs for the

other values of g: This value of the gain parameter can be

Fig. 5. Graphical representation of function Bðx; yÞ for g ¼ 0:5:

Fig. 6. Graphical representation ðg ¼ 0:25Þ of functions (a) Aðx; yÞ (b) Bðx; yÞ (c) Cðx; yÞ (d) Dðx; yÞ:

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2514

considered the optimum one for the particular test case in

order to improve the conditioning of the network with the

above characteristics. This value will be the basis for the

proper selection of the gain parameter for the test examples

that will be considered later. This improved performance of

the modified sigmoid function motivated us to study in

detail the characteristics of NN in structural optimization

problems by considering either a common gain parameter

for all layers of the network or by using different sigmoid

functions per layer.

4.1. The basic idea of adaptation

The idea of an adaptively updated value for the gain

parameter g in Eq. (16) is motivated by the observation that

the Epoch steps needed for training are affected by the

values of the gain parameter g: Epoch is called a full step of

the training process comprising a forward and a backward

propagation. The optimum value of the parameter g;

however, is not known a priori. Only by a trial and error

procedure it is possible to find a value of the parameter g

that would perform properly. In order to overcome any trial

and error procedure, that will increase substantially the cost

of training, the following adaptive procedure is proposed for

selecting the value of the parameter g:

First, the size of the input signals during the learning

process are monitored so as to have similar performance to

the generic one shown in Fig. 6. In order to achieve better

performance of the adaptive activation function, it was

found that the weight parameters, which may vary

considerably during the training phase, should be bound

between two prespecified values. In the examples con-

sidered, the lower and upper bounds of the weight

parameters were set to 210 and þ10, respectively. The

suggested adaptive scheme of the gain parameter is based on

the minimum and maximum input signals for the layer

nodes examined. During the training phase for each Epoch it

is possible to calculate, for each layer of the network, the

maximum and the minimum weighted sums. In order to

maintain the condition of the Jacobian matrices similar to

the generic test case we use the following procedure by

projecting the generic test case to the current one:

† Calculate the maximum and the minimum weighted

sums of the layer examined for the kth input pattern.

† Calculate the gain parameter for the weighted sum using

the equation

g ¼
0:25sum

60
sum 2 min

dif
2 30

; ð17Þ

Fig. 8. Graphical representation of function Bðx; yÞ for g ¼ 0:1:

Fig. 7. Graphical representation of function Bðx; yÞ for g ¼ 0:2:

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 15

since we want

0:25

sump

¼
g

sum
; ð18Þ

where sum is the current weighted sum at each node of a

layer; max, min are the maximum and minimum

weighted sums, respectively, among the nodes of a

layer for the kth input pattern; dif ¼ max 2 min and

sump is the projected value of the sum in the range

½230; 30�: This range is obtained from the values of x [
½210; 10� and y [½220; 20� giving the range of the

weighted sum x þ y ¼ ½230; 30�:

sump ¼ 60
sum 2 min

dif
2 30: ð19Þ

Eq. (17) is used to project the best gain parameter found

for the test case examined ðg ¼ 0:25Þ to the current one.

5. Rank-deficiency

In this section, the test case 2–3–2 network is further

examined in order to demonstrate the improvement

achieved by the implementation of the adaptive activation

function in some cases of ill-conditioned or rank-deficient

Jacobian matrices. These considerations can be extended to

networks with more hidden layers.

Let as consider the output vector

outi ¼ ½outð1Þi ; outð2Þi ;…; outðmÞ
i �T; ð20Þ

which corresponds to the ith output node of k ¼ 1;…;m

input training patterns. Similarly, we define the output

vectors out0i; outhi and outh0
i; corresponding to the

derivatives of the ith output node, the ith hidden node and

the derivative of the ith hidden node, respectively.

Case 1. If for some i; outhi is a multiple of the vector

I ¼ ½1; 1;…; 1�T; then any pair of columns in the Jacobian

matrix corresponding to a weight and a bias, which have

outhi as input, will produce on the output layer two identical

columns of J. This can be seen in Fig. 9, where for the

Epoch step No. 3, outh2 is an exact pattern of the vector I

while outh3 and outh1 differ in two ð4; 8Þ and three ð1; 4; 8Þ

input patterns, respectively. It can be seen in this figure the

variation achieved, in components of the corresponding

vectors, with the use of the adaptive activation function.

Case 2. If out0i1 and out0i2 are multiples of each other then

the block of columns in J corresponding to the parameters of

the nodes i1 and i2 of the output layer are identical,

producing a rank deficiency. For example, for i1 ¼ 1 and

i2 ¼ 2; the columns 11, 12 and 13 are linear dependent with

columns 15, 16 and 17, respectively. This can be seen in

Fig. 10, where for the Epoch step No. 1, out01 and out02 are

both equal to 0. Fig. 10 depicts the variation in the

components of the corresponding vectors with the use of the

adaptive activation function.

Case 3. If outh0
i1

and outh0
i2

are multiples of each other

then the block of columns corresponding to the first layer

node i1 of J (i.e. the weight and bias parameters) is a

multiple of the block of columns corresponding to the first

layer node i2: For the case i1 ¼ 1 and i2 ¼ 2; the columns 1,

2 and 3 are linear dependent with columns 4, 5 and 6,

respectively. This can be seen in Fig. 11, where for the

Epoch step No. 1, outh0
2 and outh0

3 are multiples of each

other. Fig. 11 depicts the variation in the components of the

corresponding vectors with the use of the adaptive

activation function.

Case 4. If outhi and outhj are multiples of each other, but

are not multiples of I (so that it does not belong to Case 1),

then the columns corresponding to the weights of the nodes i

Fig. 9. Train the 2–3–2 network: outh.

Fig. 10. Train the 2–3–2 network: out0.

Fig. 11. Train the 2–3–2 network: outh0.

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2516

and j are multiples of each other. Thus, for i ¼ 1 and j ¼ 2

the columns 11 and 15 are linear dependent with columns 12

and 16, respectively. This can be seen in Fig. 12, where for

the Epoch step No. 1, outh2 and outh3 are multiples of each

other. Fig. 12 depicts the variation in the components of the

corresponding vectors with the use of the adaptive

activation function.

Figs. 13–15 depict the graphs of functions B; C and D

for some randomly chosen Epochs of the training process of

the 2–3–2 test case network. The training set used to train

the NN contains 10 randomly chosen input patterns. In these

figures both simple and adaptive activation functions are

present, giving a visual representation of the rank deficiency

of the Jacobian matrix Fig. 13 shows the graphs of Bðx; yÞ for

three randomly chosen Epochs. As can be seen for the case

of the simple activation function the graphs are practically

the same since the difference between the 10th and the 14th

column of the Jacobian matrix is equal to zero. Form Fig. 14

it can be seen that for the case of the simple activation

function there is no difference between the graphs, so the

differences between the values of some of the columns 1–9

of the matrix J is equal to zero, i.e. the columns are

identical. Similar observation can be made from Fig. 15

where the difference of some of the columns 11–13 and

15–17 is examined.

6. Hybrid ES–NN methodology

There are two types of algorithms belonging to the class

of evolutionary computation that imitate nature by using

biological methodologies in order to find the optimum

solution of a problem: (i) genetic algorithms (GA) and (ii)

evolution strategies (ES). Both algorithms have a common

characteristic when applied to structural optimization

problems that of a repeated solution of a system of linear

equations in order to check the suitability of the chosen

design vectors. A complete survey of these methods can be

found in Refs. [22,23].

In the present study, the objective is to investigate the

ability of the NN to predict accurate structural analysis

outputs that are necessary during the optimization process.

This is achieved with a proper training of the NN. The NN

training comprises the following tasks: (i) select the proper

training set and (ii) find suitable network architecture. An

Fig. 12. Train the 2–3–2 network: outh.

Fig. 13. Train the 2–3–2 network: Bðx; yÞ:

Fig. 14. Train the 2–3–2 network: Cðx; yÞ:

Fig. 15. Train the 2–3–2 network: Dðx; yÞ:

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 17

important factor governing the success of the learning

procedure of a NN is the selection of the training set.

A sufficient number of input data properly distributed in

the design space together with the output data resulting from

complete structural analyses are needed for the BP algorithm

in order to provide satisfactory results. A few tens of structural

analyses have been found sufficient for the examples

considered to produce a satisfactory training of the NN

[2,24]. Ninety percent of those runs are used for training and

the rest is used to test the results of the NN. In an effort to

increase the robustness as well as the computational efficiency

of the NN procedure the following training set selection

scheme is adopted: the training set is chosen automatically

based on a Gaussian distribution of the design variables

around the midpoints of the design space. In the test examples

considered in this study, we have examined sets composed by

100, 200 and 400 training patterns in order to examine the

influence of the adaptive transfer function for different size of

the training set. All three training sets have been produced by

the Gaussian distribution selection scheme.

After the selection of the suitable NN architecture, the

training procedure is performed using a number ðMÞ of data

sets, in order to obtain the I/O pairs needed for the NN

training. Since the NN based structural analysis can only

provide approximate results it is suggested that a correction

on the output values should be performed in order to

alleviate any inaccuracies entailed, especially, when the

constraint value is near the limit which divides the feasible

with the infeasible region. Thus, a relaxation of this limit

was introduced in this study before entering the optimiz-

ation procedure during the NN testing phase. Therefore, a

‘correction’ of the allowable constraint values was

performed analogous to the maximum testing error of the

NN configuration. The maximum testing error is the biggest

average error of the output values among testing patterns.

When the predicted values were smaller than the accurate

ones derived from the normal structural analysis then the

allowable values of the constraints were decreased accord-

ing to the maximum testing error of the NN configuration

and vice versa [2,24].

The hybrid ES–NN optimization procedure is performed

in two phases. The first phase includes the training set

selection, the structural analyses required to obtain the

necessary I/O data for the NN training, and finally the

selection, training and testing of a suitable NN configur-

ation. The second phase is the ES optimization stage where

instead of the standard structural analyses the trained NN is

used to predict the response of the structure in terms of

objective and constraints function values due to different

sets of design variables.

The hybrid methodology ES–NN can be described with

the following algorithm:

† NN training phase:

1. Training set selection step: select M training

patterns.

2. Constraints check step: perform the check for

each input pattern vector.

3. Training step: selection and training of a suitable

NN architecture.

4. Testing step: test NN and ‘correct’ the allowable

constraint values.

† ES optimization phase:

1. Parents’ initialization.

2. NN constraints check: all parent vectors become

feasible.

3. Offspring generation.

4. NN Constraints check: if satisfied continue, else

and go to step 3.

5. Parents’ selection step.

6. Convergence check.

7. Numerical tests

In sizing optimization problems, the aim is usually to

minimize the weight of the structure under certain

behavioural constraints on stress and displacements. The

design variables are most frequently chosen to be dimen-

sions of the cross-sectional areas of the members of the

structure. Due to engineering practice demands, the

members are divided into groups having the same design

variables [25]. In structural shape optimization problems,

the aim is to improve a given topology by minimizing an

objective function subjected to certain constraints. All

functions are related to the design variables, which are some

of the coordinates of the key points in the boundary of the

structure [26].

The use of NN was motivated by the time-consuming

repeated structural analyses required for ES during the

optimization process. The quality of NN predictions is

investigated in three structural design problems optimized

with ES, where the computational advantages of the

proposed approach for improving the conditioning of the

NN are demonstrated. In the tables containing the results of

the test examples the following abbreviations are used: ES

refers to the standard evolution strategies optimization

procedure, in which structural analyses are performed

following a numerical solution of the system of linear

equations resulting from the application of the finite element

method. The equation solver is based on the Cholesky

factorization of the stiffness matrix, which is stored in

skyline form. ES–NN refers to the combination of NN with

ES optimization procedure, where the structural analysis

response is predicted by a trained NN and the activation

function used is the simple sigmoid function. ES–NN(a)

refers to the combination of NN with ES as above but the

activation function used in this case is the adaptive sigmoid

function.

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2518

7.1. Sizing optimization test examples

Two benchmark test examples of space frames with 6 and

20 storeys, have been considered to illustrate the efficiency of

the proposed methodology in sizing optimization problems

with discrete design variables. The objective in this type of

problems is to select appropriate cross-sections for the

members of the structure that lead to the least possible weight

and satisfy the behavioural constraints of the structure. In

both examples, the modulus of elasticity is 200 GPa and the

yield stress is sy ¼ 250 MPa. The cross-section of each

member is assumed to be an I-shape, while for each member

two design variables are considered as shown in Fig. 16.

The values of b and h are selected from an integer design

space, while t and w are fixed ðf ¼ 0:06h þ 0:10ðb 2 10Þ;

w ¼ 0:625tÞ: Those two expressions make sure that the web

thickness is less than b; the opposite of which would have not

been acceptable.

The objective function of the problem is the weight of the

structure. For rigid frames with I-shapes, the stress

constraints, under allowable stress design requirements

specified by Eurocode 3 [27], are expressed by the non-

dimensional ratio q of the following formulas

q ¼
fa
Fa

þ
f

y
b

F
y
b

þ
f z
b

Fz
b

1:0 if
fa
Fa

0:15 ð21Þ

and

q¼
fa

0:60sy

þ
f

y
b

F
y
b

þ
f z
b

Fz
b

1:0 if
fa

Fa

. 0:15; ð22Þ

where fa is the computed compressive axial stress, f
y
b ; f z

b are

the computed bending stresses for y- and z-axis, respect-

ively. Fa is the allowable compressive axial stress, F
y
b; Fz

b

are the allowable bending stresses for y- and z-axis,

respectively, and sy is the yield stress of the steel. The

allowable inter-storey drift is limited to 1.5% of the height

of each storey. The constraints are imposed on the inter-

storey drifts and the maximum non-dimensional ratio q of

Eqs. (21) and (22) in each element group which combines

axial force and bending moment. The values of allowable

axial and bending stresses are 150 and 165 MPa,

respectively, whereas the maximum allowable inter-storey

drift is limited to 5.5 cm, which corresponds to 1.5% of the

height of each storey.

7.1.1. Six-storey space frame

The first example is a six-storey space frame, first

analyzed by Orbinson et al. [28], with 63 elements and 180

nodal degrees of freedom (dof). The length of the beams is

L1 ¼ 7:32 m and the length of the columns L2 ¼ 3:66 m.

The loads consist of 17 kPa gravity load on all floor levels

and a lateral load of 100 kN applied at each node in the front

elevation in the z direction. The element members are

divided into five groups shown in Fig. 17 and the total

number of design variables is 10. The constraints are

imposed on the maximum allowable inter-storey drift and

the non-dimensional ratio q at each element group. For this

test case, the ðmþ lÞ-ES approach is used with m ¼ l ¼ 5:

Tables 1–4 depict the Epochs needed to train the

network for different values of training samples and for

the various transfer functions used in this study. Table 1

contains the Epochs and the time in seconds needed to train

a network of size 10–20–6, for different number of training

samples, when the standard sigmoid function of Eq. (10)

is used. The input units are equal to the number of

design variables where the six output units correspond

to the maximum value of the non-dimensional ratio q of

Fig. 16. I-shape cross-section design variables.

Fig. 17. Six-storey space frame.

Table 1

Six-storey space frame: performance of the standard transfer function

ðg ¼ 1Þ

Number of

training samples

Epochs Time (s)

100 66 953

200 127 4074

400 251 14,817

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 19

the five element groups plus one for the value of the

maximum inter-storey drift.

In Table 2, we examine the performance of the modified

sigmoid function of Eq. (16) where the gain parameter g is

the same in both hidden and output layers. It can be seen that

the optimum value for g is not fixed for different numbers of

training samples with a trend to move from 0.1 to 0.25 for

larger number of training samples. In Table 3, we examine

the use of a modified sigmoid function where the gain

parameter g is different in the hidden and the output layers.

The size of the network used is the same as in the previous

tests. The results indicate that there is not any specific trend

in combining the values of g in the two layers for

achieving better results. Table 4 shows the performance of

the adaptive sigmoid function where the gain parameter g is

not fixed but is updated during the learning process according

to Eq. (17). In Table 5 the rms (Eq. (2)) and the maximum

testing errors are reported, for the standard ðg ¼ 1Þ and

adaptive transfer functions. As it can be observed the testing

error is reduced when using a largest training set.

Tables 6 and 7 depict, the performance of the proposed

ES–NN methodology for various numbers of NN training

patterns. These results clearly demonstrate the improvement

achieved on the total computational time required for

solving the optimization problem when the adaptive

sigmoid function is used. It should be noted that the

standard ES optimization procedure without NN appears to

be more efficient for this case due to the small size of the test

problem considered. This was expected because of the small

size of the structure (only 180 dof). The CPU improvement

on the training phase and on the hybrid optimization time of

the ES–NN procedure is presented in Table 7. Figs. 18

and 19 depict the training history for the simple and the

adaptive sigmoid transfer functions, respectively. It can be

seen that the CPU time improvement achieved in training

affects the computing time required to perform the whole

optimization procedure.

7.1.2. Twenty-storey space frame

The second example is the 20-storey space frame, first

analyzed by Papadrakakis and Papadopoulos [29], shown in

Fig. 20 with 1020 members and 2400 dof. The loads

considered here are uniform vertical forces applied at joints

and are equivalent to uniform load of 4.8 kPa and horizontal

forces equivalent to uniform forces of 1.0 kPa on the largest

surface. The element members are divided into 11 groups

shown in Fig. 20 and the total number of design variables is

22. The constraints are imposed on the maximum allowable

inter-storey drift and the maximum non-dimensional ratio q

at each element group, as in the previous example. For this

test case, the ðmþ lÞ-ES approach is used with m ¼ l ¼ 10:

Tables 8–11 depict the Epochs needed to train the

network for different values of training samples and for

various transfer functions. Table 7 contains the Epochs

and the time in seconds needed to train a network of size

22–30–12, for different number of training samples with

the standard sigmoid function. The input units are equal to

the number of design variables where the 12 output units

Table 2

Six-storey space frame: performance of uniform modified transfer function

in the two layers of the network

g Number of

training samples

Epochs Time (s)

0.1 100 56 809

0.25 100 73 1054

0.5 100 86 1242

0.1 200 99 3177

0.25 200 130 4171

0.5 200 180 5774

0.1 400 280 16,528

0.25 400 220 12,987

0.5 400 238 14,049

Table 3

Six-storey space frame: performance of different modified transfer

functions in the two layers of the network

g1 –g2 Number of

training samples

Epochs Time (s)

0.5–0.25 100 59 852

0.25–0.1 100 60 867

0.1–0.05 100 72 1040

0.5–0.25 200 103 3304

0.25–0.1 200 95 3047

0.1–0.05 200 207 6641

0.5–0.25 400 188 10,872

0.25–0.1 400 268 15,820

0.1–0.05 400 335 19,775

Table 4

Six-storey space frame: performance of the adaptive transfer function

Number of

training samples

Epochs Time (s)

100 55 793

200 95 3049

400 184 10,761

Table 5

Six-storey space frame: NN accuracy for different number of training

patters

Number

of training

samples

Standard transfer

function ðg ¼ 1Þ

Adaptive transfer function

E(w)

error

Max

testing

error (%)

E(w) error Max

testing

error (%)

100 0.02 9.1 0.02 9.3

200 0.02 5.4 0.02 5.2

400 0.02 3.1 0.02 3.7

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2520

correspond to the maximum value of the non-dimensional

ratio q for the 11 element groups plus one for the value of

the maximum inter-storey drift.

In Tables 9 and 10 we examine the performance of

the modified sigmoid functions with the same and

different values for g in the hidden and output layers,

respectively. It can be seen that similar trends with the

previous example apply to this test case as well. The

optimum value for g; in the first case, is 0.1 for all

training samples, while marginal improvement is

observed for some combinations of g1–g2 in the second

case. Table 10 demonstrates the performance of the

adaptive sigmoid function where the gain parameter g is

not fixed but is automatically updated during the

learning process. The results demonstrate the favorable

effect of the adaptive sigmoid function, used for the

improvement on the condition of the Jacobian matrix

during the training phase of NN. In Table 12 the rms

(Eq. (2)) and the maximum testing errors are reported,

for the standard ðg ¼ 1Þ and adaptive transfer functions.

The reduction of the training error follows a similar

trend with respect to the size of the training set, as in

the previous example.

Furthermore, a comparison of the performance of various

NN training patterns and the conventional ES optimization

scheme is depicted in Table 13. These results demonstrate

the improvement achieved on the total optimization time.

The percentage of the improvement in terms of training and

the hybrid optimization techniques ES–NN is presented in

Table 14.

Table 6

Six-storey space frame: performance of different optimization schemes

Analysis

type

Number of FE

analyses/training

patterns

Number of

NN analyses

Computing

time (s)

Optimum

weight (kN)

Analysis Training ES–NN Total

ES 281/– – 116 – – 116 867

ES–NN –/100 255 40 953 3 996 883

ES–NN(a) –/100 255 40 793 3 836 883

ES–NN –/200 261 80 4074 3 4157 875

ES–NN(a) –/200 261 80 3049 3 3132 875

ES–NN –/400 275 160 14,817 3 14,980 873

ES–NN(a) –/400 275 160 10,761 3 10,924 873

Fig. 18. Six-storey space frame: Epochs needed for the training (simple

sigmoid).

Table 7

Six-storey space frame: CPU improvement with the adaptive scheme

Number

of training

samples

CPU improve-

ment (%) in

training

CPU improve-

ment (%) in the

total optimization

procedure

100 17 16

200 25 25

400 28 27

Fig. 19. Six-storey space frame: Epochs needed for the training (adaptive

sigmoid).

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 21

7.2. Shape optimization test example

One benchmark test example [26] have been considered

to illustrate the efficiency of the proposed methodology in

shape optimization problems with continuous design

variables. In this example, plane stress condition and

isotropic material properties are assumed (elastic modulus,

E ¼ 210; 000 N/mm2 and Poisson’s ratio, n ¼ 0:3).

7.2.1. Connecting rod

The problem definition is given in Fig. 21a whereas the

optimized shape is depicted in Fig. 21b. The linearly

varying line load between key points 4 and 6 has a

maximum value of p ¼ 500 N/mm. The objective is to

minimize the volume of the structure subject to a limit on

the equivalent maximum stress smax ¼ 1200 N/mm2

allowed to be developed within the structure. The design

model, which makes use of symmetry, consists of 12 key

points, 4 primary design variables (7, 10, 11, 12) and 6

secondary design variables (7, 8, 9, 10, 11, 12). The stress

constraints are imposed as a global constraint for all

Gauss points and as key point constraints are considered

the points 2–6 and 12. The movement directions of the

design variables are indicated by the dashed arrows.

Fig. 20. Twenty-storey space frame.

Table 9

Twenty-storey space frame: performance of uniform modified transfer

function in the two layers of the network

g Number of training samples Epochs Time (s)

0.05 100 49 999

0.1 100 41 836

0.25 100 53 1080

0.5 100 82 1672

0.05 200 127 4606

0.1 200 97 3518

0.25 200 110 3989

0.5 200 135 4896

0.05 400 201 14,578

0.1 400 209 15,158

0.25 400 331 24,007

0.5 400 294 21,323

Table 8

Twenty-storey space frame: performance of the standard transfer function

ðg ¼ 1Þ

Number of training samples Epochs Time (s)

100 47 958

200 111 4025

400 216 15,666

Table 10

Twenty-storey space frame: performance of different modified transfer

functions in the two layers of the network

g1–g2 Number of training samples Epochs Time (s)

0.5–0.25 100 83 1692

0.25–0.1 100 56 1142

0.1–0.05 100 39 795

0.05–0.025 100 42 856

0.5–0.25 200 121 4388

0.25–0.1 200 93 3373

0.1–0.05 200 115 4170

0.05–0.025 200 114 4134

0.5–0.25 400 240 17,407

0.25–0.1 400 239 17,334

0.1–0.05 400 210 15,231

0.05–0.025 400 188 13,635

Table 12

Twenty-storey space frame: NN accuracy for different number of training

patters

Number

of training

samples

Standard transfer

function ðg ¼ 1Þ

Adaptive transfer

function

E(w)

error

Max

testing

error (%)

E(w)

error

Max

testing

error (%)

100 0.02 15.7 0.02 15.8

200 0.02 14.2 0.02 14.0

400 0.02 12.8 0.02 12.5

Table 11

Twenty-storey space frame: performance of the adaptive transfer function

Number of training samples Epochs Time (s)

100 37 755

200 90 3262

400 185 13,419

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2522

Key points 8 and 9 are linked to point 7 so that the

shape of the arc is preserved throughout the optimization.

For this test case, the ðmþ lÞ-ES approach is used with

m ¼ l ¼ 10:

Tables 15–18 depict the Epochs needed to train the

network for different values of training samples and for

various transfer functions. Table 13 contains the Epochs and

the time in seconds needed to train a network of size 9–10–

8, for different number of training samples with the standard

sigmoid function.

In Tables 16 and 17 we examine the performance of the

modified sigmoid functions with the same and different

values for g in the hidden and output layers, respectively.

The optimum value for g; in the first case is 0.1 for all

training samples, while marginal improvements are

observed for some combinations of g1 2 g2 in the second

case. Table 16 depicts is performance of the adaptive

sigmoid function where the gain parameter g is not fixed but

is automatically updated during the learning process. In

Table 19 the rms (Eq. (2)) and the maximum testing errors

are reported, for the standard ðg ¼ 1Þ and adaptive transfer

functions. The reduction of the training error follows a

similar trend with respect to the size of the training set, as in

the previous examples.

These results demonstrate the favorable effect of the

adaptive sigmoid function, used for the improvement on

the condition of the Jacobian matrix during the training

phase of NN. Furthermore, a comparison of various NN

training patterns is depicted in Table 20. The depicted

results demonstrate again the improvement achieved on

the total optimization time. The percentage of the

improvement in terms of training and the hybrid

Table 13

Twenty-storey space frame: performance of different optimization schemes

Analysis type Number of

FE analyses/

training patterns

Number of

NN analyses

Computing time (s) Optimum

weight (kN)

Analysis Training ES–NN Total

ES 1566/– – 24,930 – – 24,930 5430

ES–NN –/100 1507 1590 958 12 2560 5449

ES–NN(a) –/100 1507 1590 755 12 2357 5449

ES–NN –/200 1592 3180 4025 13 7218 5439

ES–NN(a) –/200 1592 3180 3262 13 6455 5439

ES–NN –/400 1571 6360 15,666 13 22,039 5434

ES–NN(a) –/400 1571 6360 13,419 13 19,792 5434

Fig. 21. Connecting rod: (a) initial shape; (b) final shape.

Table 14

Twenty-storey space frame: CPU improvement with the adaptive scheme

Number of

training

samples

CPU improve-

ment (%) in

training

CPU improve-

ment (%) in

the total optimi-

zation procedure

CPU improve-

ment (%) compared

to the ES

100 21 8 91

200 19 11 74

400 14 10 21

Table 16

Connecting rod: performance of uniform modified transfer function in the

two layers of the network

g Number of

training samples

Epochs Time (s)

0.1 100 30 416

0.25 100 37 513

0.5 100 29 402

0.1 200 48 1323

0.25 200 56 1544

0.5 200 46 1268

0.1 400 110 5723

0.25 400 67 3486

0.5 400 95 4943

Table 15

Connecting rod: performance of the standard transfer function ðg ¼ 1Þ

Number of

training samples

Epochs Time (s)

100 31 430

200 53 1461

400 190 9886

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 23

optimization techniques ES–NN is presented in Table 21.

Finally, Figs. 22 and 23 present the training history for the

simple and the adaptive sigmoid transfer functions,

respectively.

Table 17

Connecting rod: performance of different modified transfer functions in the

two layers of the network

g1–g2 Number of

training samples

Epochs Time (s)

0.5–0.25 100 20 278

0.25–0.1 100 26 361

0.1–0.05 100 35 486

0.5–0.25 200 31 855

0.25–0.1 200 40 1103

0.1–0.05 200 37 1020

0.5–0.25 400 79 4116

0.25–0.1 400 94 4891

0.1–0.05 400 83 4318

Table 18

Connecting rod: performance of the adaptive transfer function

Number of

training samples

Epochs Time (s)

100 20 278

200 31 855

400 72 3746

Table 19

Twenty-storey space frame: NN accuracy for different number of training

patters

Number of

Training samples

Standard

transfer

function

ðg ¼ 1Þ

Adaptive

transfer

function

E(w)

error

Max

testing

error (%)

E(w)

error

Max

testing

error (%)

100 0.02 24.6 0.02 24.7

200 0.02 20.1 0.02 19.9

400 0.02 14.7 0.02 14.7

Table 20

Connecting rod: performance of different optimization schemes

Analysis

type

Number

of FE

analyses/

training

patterns

Number

of NN

analyses

Computing time (s) Opti-

mum

volume

(mm3)

Analysis Trai-

ning

ES–

NN

Total

ES 133/– – 2617 – – 2617 305

ES–NN –/100 139 1967 430 2 2399 308

ES–NN(a) –/100 139 1967 278 2 2247 308

ES–NN –/200 137 3934 1461 2 5397 305

ES–NN(a) –/200 137 3934 855 2 4791 305

ES–NN –/400 137 7868 9886 2 17,756 305

ES–NN(a) –/400 137 7868 3746 2 11,616 305

Table 21

Connecting rod: CPU improvement with the adaptive scheme

Number

of training

samples

CPU improve-

ment (%) in

training

CPU improve-

ment (%) in

the total

optimization

procedure

CPU improve-

ment (%)

compared

to the ES

100 35 6 14

200 42 11 –

400 63 35 –

Fig. 22. Connecting rod: Epochs needed for the training (simple sigmoid).

Fig. 23. Connecting rod: Epochs needed for the training (adaptive sigmoid).

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–2524

8. Conclusions

The implementation of a hybrid optimization pro-

cedure, based on the combination of ES and NNs, in

shape and sizing structural optimization problems was

found to be very effective particularly for large-scale

optimization problems. This deduction can be drawn

mainly from the first test example, which is comparatively

a small one (180 dof), where the NNs are not efficient

compared to the conventional FE analysis in terms of the

required CPU time. On the other hand, in the third

example and particularly in the second example NNs

significantly outperformed the conventional FE analysis. It

is expected that this trend will further enhanced when

largest test examples are examined.

The time-consuming requirements of repeated struc-

tural analyses associated with the optimization procedure

using ES motivated the use of properly trained NNs to

predict the structural response for different combinations

of the design variables. The computational efficiency of

the procedure is increased by using the adaptive sigmoid

transfer function leading to better conditioned Jacobian

matrices of the network. This has a direct influence on

the training phase of the NN by decreasing the training

time as well as on the total optimization time

required by the ES. The computational effort involved

in the optimization procedure using ES becomes

excessive in large-scale problems and the use of NNs

to ‘predict’ the necessary optimization data for ES can

practically eliminate any limitation on the size

of the problem. The methodology presented in this

paper is an efficient, robust and generally applicable

optimization procedure capable of finding the

global optimum design of complicated structural optim-

ization problems.

Acknowledgements

The authors wish to thank Matthew J. Simoneau

developer of the Mathematics Group of the MathWorks,

Inc for his helping tips.

References

[1] Hajela P, Berke L. Neurobiological computational models in

structural analysis and design. Comput Struct 1991;41:657–67.

[2] Papadrakakis M, Lagaros ND, Tsompanakis Y. Structural optimiz-

ation using evolution strategies and neural networks. Comput Meth

Appl Mech Engng 1998;156:309–33.

[3] Berke L, Patnaik SN, Murthy PLN. Optimum design of aerospace

structural components using neural networks. Comput Struct 1993;48:

1001–10.

[4] Arslan MA, Hajela P. Counterpropagation neural networks in

decomposition based optimal design. Comput Struct 1997;65(5):

641–50.

[5] Shieh RC. Massively parallel structural design using stochastic

optimization and mixed neural net/finite element analysis methods.

Comput Syst Engng 1994;5(4–6):455–67.

[6] Adeli H, Hyo Seon P. Neural dynamics model for structural

optimisation: theory. Comput Struct 1995;57(3):383–99.

[7] Adeli H, Hyo Seon P. Optimization of space structures by neural

dynamics. Neural Networks 1995;8(5):769–81.

[8] Stephens JE, VanLuchene D. Integrated assessment of seismic

damage in structures. Microcomput Civil Engng 1994;9(2):119–28.

[9] Papadrakakis M, Papadopoulos V, Lagaros ND. Structural

reliability analysis of elastic–plastic structures using neural

networks and Monte Carlo simulation. Comput Meth Appl Mech

Engng 1996;136:145–63.

[10] Topping BHV, Bahreininejad A. Neural computing for structural

mechanics. UK: Saxe Coburg; 1997.

[11] Khan AI, Topping BHV, Bahreininejad A. Parallel training of neural

networks for finite element mesh generation. In: Topping BHV,

Khan AI, editors. Neural networks and combinatorial optimisation in

civil and structural engineering. New York: Civil-Comp Press; 1993.

p. 81–94.

[12] Theocharis PS, Panagiotopoulos PD. Neural networks for computing

in fracture mechanics: methods and prospects of applications. Comput

Meth Appl Mech Engng 1993;106:213–28.

[13] Gunaratnam DJ, Gero JS. Effect of representation on the performance

of neural networks in structural engineering applications. Micro-

comput Civil Engng 1994;9:97–108.

[14] Saarinen S, Bramley R, Cybenko G. Ill-conditioning in neural

network training problems. SIAM J Sci Comput 1993;14(3):693–714.

[15] Rummelhart DE, McClelland JL. Parallel distributed processing. vol.

1, Foundations. Cambridge: MIT Press; 1986.

[16] Wasserman PD. Neural computing, theory and practice, ANZA

research. New York: Van Nostrand Reinhold; 1989.

[17] Papalabros PY, Wilde WJ. Principles of optimal design: modelling

and computation. New York: Cambridge University Press; 1988.

[18] Hagan MT, Menhaj MB. Training feedforward networks with the

Marquardt algorithm. IEEE Trans Neural Networks 1994;5(6):

989–93.

[19] Schiffmann W, Joost M, Werner R. Comparison of optimized

backpropagation algorithms. Proc ESANN93, Brussels; 1993.

[20] Rognvaldsson T. On Langevin updating in multilayer perceptrons.

Neural Comput 1994;6(5):916–26.

[21] Jordan MI, Bishop CM. Neural networks. A.I. Memo No. 1562,

C.BC.L. Memo No. 131, MIT AI Lab; 1996.

[22] Papadrakakis M, Lagaros ND, Tsompanakis Y. Optimization of large-

scale 3D trusses using evolution strategies and neural networks. Spec

Issue Int J Space Struct 1999;14(3):211–23.

[23] Schwefel HP. Numerical optimization for computer models. Chiche-

ster: Wiley; 1981.

[24] Goldberg DE. Genetic algorithms in search, optimization and machine

learning. Reading, MA: Addison-Wesley; 1989.

[25] Papadrakakis M, Lagaros ND, Thierauf G, Cai J. Advanced solution

methods in structural optimization based on evolution strategies.

Engng Comput 1998;15(1):12–34.

[26] Hinton E, Sienz J. Studies with a robust and reliable structural shape

optimization tool. In: Topping BHV, editor. Developments in

computational techniques for structural engineering. Edinburgh:

Civil-Comp Press; 1995. p. 343–58.

[27] Eurocode 3. Design of steel structures. Part 1.1. General rules for

buildings. CEN, ENV 1993-1-1/1992.

[28] Orbinson JG, McGuire W, Abel JF. Yield surface applications in non-

linear steel frames analysis. Comput Meth Appl Mech Engng 1982;

33:557–73.

[29] Papadrakakis M, Papadopoulos V. A computationally efficient

method for the limit elasto plastic analysis of space frames. Comput

Mech J 1995;16(2):132–41.

N.D. Lagaros, M. Papadrakakis / Advances in Engineering Software 35 (2004) 9–25 25

	Learning improvement of neural networks used in structural optimization
	Introduction
	Unconstrained optimization algorithms in NN training
	The back propagation learning algorithm
	The adaptive sigmoid activation function
	The basic idea of adaptation

	Rank-deficiency
	Hybrid ES-NN methodology
	Numerical tests
	Sizing optimization test examples
	Shape optimization test example

	Conclusions
	Acknowledgements
	References

