Groundwater Contamination from Underground Solvent Storage Tanks Santa Clara Valley, CA

Nicholas Sitar Professor Dept. of Civil and Env. Engineering UC Berkeley

Figure 1: Location Map

N. Sitar UC Berkeley - NTUA Presentation - Jan. 13, 2010

SCHEMATIC CROSS SECTION FOR SANTA CLARA SUB-BASIN

Southwest

Note: Arrows indicate direction of groundwater movement without regard to quantity.

From Back et al., The Geology of North America, Volume O-2, GSA, 1988

N. Sitar UC Berkeley – NTUA Presentation – Jan. 13, 2010

Site Plan

Figure 2: Plan of Study Area

N. Situr UC Berkeley - NTUA Presentation - Jan. 13, 2010

Site History

- First tanks installed in 1956
- By 1983 there were 13 tanks with a capacity of 15,000 liters (4000 gallons) each for solvents and one smaller 2000 liters (550 gallons) tank for gasoline
- Contamination in groundwater was detected in 1983

TABLE 2

CHEMICALS DETECTED IN WATER SAMPLES FROM MONITORING WELLS AT THE SITE^{1,2,3}

Concentration in mg/L (ppm)

Chemical Compound Toluene	1A 1.2	2A 12.0	<u>3A</u> 1.65	<u>4A</u> 240	5A 6.8	6A 1.9	7A 1.0	<u>8B</u> 13.0	<u>98</u> ND	0B ND
Xylene	6.7	24.0	46.0	38.0	23,0	6.9	15.0	11.0	ND	ND
Ethyl Benzene	3.9	7.0	16.0	9.7	4.5	1.4	0.4	2.2	ND	ND
Benzene	0.1	ND	NÐ	0.24	ND	ND	ND	5.8	ND	ND
Naphtalene	0.005	0.03	0.02	0.01	0.02	0.004	0.004	0.06	ND	ND
Phenol	0.004	0.02	ND	ND	ND	ND	ND	0.04	ND	ND
2,4~Dimethyl Phenol	0.02	0.03	0.02	0.03	ND	ND	ND	ND	NÐ	ND
Methyl Cyclohexane	0.1	5.0	50.0	2.0	10.0	3.0	2.0	ND	ND	ND
Cyclohexane	ND	ND	2.0	ND	0.5	0.2	0.3	ND	ND	ND
Propyl Benzene	0.08	0.1	0.2	0.6	0.4	ND	ND	ND	ND	ND
Trimethyl Benzene	0.3	0.4	0.5	3.0	3.0	ND	0.2	0.6	ND	ND
Tetrahydro Naphthalene	0,02	0,02	0.04	ND	0.04	ND	ND	ND	ND	ND
2-Butanone	ND	ND	ND	1.0	ND	ND.	ND	ND	ND	ND
Methyl Isobutyl Ketone	ND	1.0	ND	6.0	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	0.3	ND	ND	ND	ND	0.002	ND
1,1,1-Tri- chlorethane	ND	ND	ND	0.1	0.2	ND	ND	ND	ND	ND
ethane	ND	ND	ND	0.02	ND	ND	ND	ND	ND	ND
Penanthrene	ND	ND	ND	100.0	ND	ND	ND	ND	ND	ND
Cresol	ND	ND	ND	ND	ND	ND	ND	0.04	ND	ND
Methyl Nepthalene	ND	ND	ND	ND	ND	ND	ND	0.03	ND	ND

N. Sitar UC Berkeley - NTUA Presentation -

NOTES: 1.ND = Not detected within laboratory detection limits. 2.Analyzed by U.S. EPA Test Method 624 and 625. 3.Samples taken at ground water surface with Teflon bailer. Principal contaminants

Non-Aqueous Phase Liquids (NAPLs)

- Toluene: S.G.= 0.87, Solubility 500 ppm,
 B.P.= 111°C
- Xylene: S.G.= 0.86-0.88, Solubility 135-198
 ppm, B.P.= 138°-144°C
- Ethyl Benzene: S.G.= 0.87, Solubility 152
 ppm, B.P.= 136° C
- Benzene: S.G.= 0.88, Solubility 1780 ppm,
 B.P.= 80° C

What we expected: LNAPL above the water table

Experimental data from Pantazidou (1993)

N. Sitar UC Berkeley - NTUA Presentation - Jan. 13, 2010

N. Sitar UC Berkeley - NTUA Presentation - Jan. 13, 2010

Figure 3: Generalized Hydrogeologic Section A-A'

N. Sitar UC Berkeley - NTUA Presentation - Jan. 13, 2010

TABLE 3

COMPARISON OF SOIL AND GROUND WATER SAMPLES TAKEN AT DIPPERENT DEPTHS^{1,2,3}

(Concentrations in mg/kg, ppm)

	SOIL SAMPLES2		WATER SAMPLE			
	<u>91 ft</u>	154 ft	Top ⁴	Bottom ⁵		
Toluene	ND	4.4	1.2	2.7		
Xylene	ND	14	6.7	4.9		
Ethyl Benzene	ND	14	3.9	3.4		
Propyl Benzene	ND	2.0	0.08	0.05		
Trimethyl Benzene	ND	10	0.3	0.2		
WELL NO. 5A						
	SOIL	SAMPLES	WAT	ER SAMPLES		

	the second se					
	<u>9 ft</u>	154 ft	Top	Bottom		
Toluene	ND	0,1	6.8	4.9		
Xylene	0.8	210	23	13		
Ethyl Benzene	0.3	120	4.5	1.4		
Propyl Benzene	ND	2.0	0.4	ND		
Trimethyl Benzene	ND	4.0	3.0	0.3		

WELL NO. 7A

	SOIL SA	MPLES	WATE	R SAMPLES
	81 ft 15	i ft	Top	Bottom
Toluene	ND	0.1	1.0	ND
Xylene	0.5	1.2	15	8.7
Ethyl Benzene	0.1	0.5	0.4	ND
Propyl Benzene	ND	ND	ND	ND
Trimethyl Benzene	ND	ND	0.2	0.4

NOTES:

1 ND = Not detected within laboratory detection limits.

2. Soil samples analyzed by U.S. EPA Test Methods 8240 and 8270.

3. Ground water samples analyzed by U.S. EPA Test Methods 624 and 625.

4. Top - Samples obtained at ground water surface with Teflon bailer.

 Bottom - Samples obtained near the bottom of the water column with submersible bladder pump.

N. Sitar UC Berkeley - NTUA Presentation - Jan. 13, 2010

TABLE 4

PREDOMINANT CHEMICALS DETECTED IN BORINGS B2, B4, B6, AND B8

Concentrations in mg/kg (ppm)

BORING B2

Sample Depth, Feet

Chemical Compound	3	5	7	9	11	13	15	17	19	21	23	26 i	311
Toluene	22	8.3	63	350	63	ND	15	ND	490	65	ND	65	110
Xylene	61	22	82	81	190	13	35	13	580	43	- 4	13	1
Ethyl Benzene	15	5.4	20	46	110	8.7	8.6	8.5	130	11	1.3	4.6	ND
Benzene	0.04	ND	0.1	0.9	0.3	ND	2.1	ND	41	2.9	0.7	0.7	0.6
Methyl Cyclohexane	1.6	0.7	7.3	53	17	NA	NA	NA	NA	NA	NA	ΝA	NA
Total Hydrocarbons	99.64	36.41	72.4	530.93	380.3	21.7	60.7	21.5	1241	121.9	6.0	33.3	111.6

BORING B4

Chemical Compound	9	14	19	24	29	34	39	44
Toluene	57	1.4	56	12	71	0.3	0.4	0.3
Xylene	77	18	100	19	500	1.5	0.7	5.9
Ethyl Benzene	16	4.8	20	5.2	52	0.2	0.1	1.3
Benzene	ND	ND	0.6	0.4	2.1	0.02	ND	0.06
Methyl Cyclohexane	NA	NA	NA	NA	NA	ND	0.03	0.3
Total Hydrocarbons	150	24.2	175.6	36.8	625.1	2.02	1.33	7.86

Sample Depth, Feet

BORING B6

Sample Depth, Feet

Chemical Compound	6	11	16	21	26	31	36
oluene	1200	230	17	290	65	29	1.8
(ylene	1100	640	8.0	130	26	9.8	0.7
thyl Benzene	290	190	ND	32	8.5	4.3	0,2
Senzene	3.1	1.9	0.5	6.2	3.7	0.3	0.01
fethyl Cyclohexane	NA	NA	NA	NA	NA	NA	0.2
otal Hydrocarbons	2593.1	1061.9	25.5	458.2	103.2	43.4	2.9

BORING B8

Sample Depth, Feet

Chemical Compound	6	11	16	21	26	31	36
Toluene	0.5	430	0.06	0.4	4.5	0.3	0.05
Xylene	ND	550	0.2	7.5	8.7	0.9	0.05
Ethyl Benzene	0.3	200	0.4	16.0	0.81	0.1	ND
Benzene	ND	18	ND	0.2	2.3	0.7	0.1
Methyl Cyclohexane	1.0	1100	0.7	3.6	1.7	0.1	ND
Total Hydrocarbons	1.8	2298.0	1.4	27.7	18.0	2.1	0.2

NOTES:

N Siton	ι.	ND = Not detected within laboratory limits.	
N. Shur	2.	NA = Not analyzed.	
UC Berkeley - NTUA Presentation -	3.	Analyzed by modified U.S. EPA Test Method 8020.	

Figure 4: Distribution of Contaminants In Soil

Mechanisms of LNAPL movement at the site

XV.a.

Figure XV.a. Beads initially moist; diameter range = 0.85 - 1.23 mm. PER then dripped in from above. Most of the PER flowed out, leaving isolated drops in the internal portions of the pore spaces.

Figure XV.b. Beads initially dry; diameter range = 0.85 - 1.23 mm. PER then dripped in from above; it occupied the corners of the pore spaces. Beads then saturated from below with water; PER thereby forced into the smaller pore spaces.

From Pantazidou 1993

Conclusions

- Principal release of solvents from the tanks occurred over 10 to 15 years prior to discovery during a period of low water table
- Separate phase liquids lighter than water can be trapped below the water table when the water table fluctuates
- Shallow clay and silty clay layers often contain fractures that act as conduits for contaminants and cannot be considered impermeable

What happened at the site?

- The tanks were emptied immediately after discover of leakage and they were eventually removed
- To soil immediately around the tanks was removed
- Groundwater recovery system was installed and pumping continues to this day.