Lecture 3:Forces and Torques&Body Mechanics

Forces and the Body

- Electro-chemical forces
 Body Forces
 - Chemical binding
 - Nerve conduction
 - Muscle fibers

- - Gravity (mg)
 - Friction (Electromagnetic)
 - Air resistance (friction)

Other Forces:

- Magnetic (show brain activity -- NMR)
- Strong Nuclear Force (Binds Nucleus)
- Weak Nuclear Force (Radioactivity)

Friction

- Materials in contact make and break weak bonds
- Sliding friction and static friction are different
- Static Friction $(F_f < \square N)$

Reduced Friction in Joints

WALKING

Coefficients of Friction:

Rubber Heel on Road	1.00 (dry)
Steel on ice (skating)	0.03
Steel on steel (ouch)	0.15
Cartilage (joint)	0.003
Tendon and sheath	0.013

Joints: Where Muscle Meets Bone

Muscles Contract and Pull -- TENSION

Bones Compress and Push -- COMPRESSION

Muscle and Bone Work as Levers

Muscles Contract

- Protein Filaments
 - Actin (5 nm x 1.5 □m) forms filaments
 - Myosin II (10 nm x 2 □m) ATP energy source
 - Ca⁺⁺ activated: negative myosin heads -> positive actin end
- Skeletal Muscle
 - Striated
 - Fast (0.1 sec)
 - Move bones
 - Connect to tendons
 - Fibers/cells fuse
 - 1-2 cm long
 - 100 [m diameter
 - Myofibril units
 - 15-20% contraction

- Cardiac muscle
 - Striated
 - Slower (1 sec)
 - Involuntary
 - Single nucleus cells
 - Synchronized contractions

- Smooth muscle
 - Non-striated
 - Slower (few sec)
 - 100% contraction
 - Sphincters
 - Paristolic channels
 - Arterial walls

Muscle Contraction: Actin and Myosin II Fibers Slide

zone of the A-band. In the A-band it is seen that in actin filament six actin filaments surround each myosin filament. This is the pattern found in rabbit psoas muscle, and other arrangements are found in different animals.

Myosin Head "Walks" to + end of Actin

Myosin with Globular Head

Myosin II head hydrolizes ATP producing structural (allosteric) changes - a kind of lever.

Skeletal Levers

• First Class Lever

- Second Class
 - TippyToes

Forearm Curl

Levers

First Class Lever

Torque: =FL sin =

$$F_1L_1 - F_2L_2 = 0$$
 torques balance

$$F_1+F_2 = F_{\text{fulcrum}}$$
 (up) forces balance

Tippy Toes

Second Class Lever

Torque:
$$\Box$$
=FL sin \Box
 $F_1L_1 - F_2L_2 = 0$
 $F_1-F_2 = F_{gravity}$ (weight)

Skeletal Levers

Third Class:

Forearm Curl

Torque: ☐=FL sin ☐

$$F_1L_1 - F_2L_2 = 0$$

$$F_2$$
- F_1 = F_{humerus} (down)

HEAVY LIFITING

Don't do it!!!

Proton Spin Density MRI

T₂ weighted MRI

Lecture 3: Physics of the Skeleton

