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ABSTRACT  

In the present work the probabilistic characteristics of the long-time (when dynamic statistical 
equilibrium has been reached), steady-state response of a half oscillator, subject to a colored, 
asymptotically stationary, Gaussian or non Gaussian (cubic Gaussian) excitation, are derived by 
means of the Response-Excitation (RE) theory, first introduced by Athanassoulis & Sapsis (2006). 
RE theory permits us to derive an evolution equation for the joint Response-Excitation Probability 
Density Function (REPDF) of any dynamical system with polynomial nonlinearities under arbitrary 
stochastic excitation. This evolution equation is derived by projecting an exact, infinite 
dimensional, Functional Differential Equation, for the joint response-excitation characteristic 
functional, to finite dimensions. Application of this theory to the ship roll motion has been 
presented by Athanassoulis et al (2009). The joint REPDF evolution equation is a peculiar equation, 
involving two times (one for the excitation and one for the response), and two sets of probability 
arguments (one for the excitation variables, and another one for the response variables), and partial 
derivatives only with respect to the response time and the response probability arguments. In 
general it is not uniquely solvable and, thus, it needs to be completed by an appropriate closure 
scheme. In this paper we present a closure technique via localized linear problems, and a numerical 
solution to the steady-state case, providing the long-time, statistical equilibrium PDFs. The method 
of numerical solution is based on a representation of the sought-for REPDF by means of kernel 
density functions, and a Galerkin-type numerical scheme. The obtained PDFs are compared with 
results from Monte Carlo simulation for the same problem. The method can be extended to treat full 
nonlinear oscillators, with polynomial nonlinearities, subjected to Gaussian or non Gaussian 
excitation. 
Keywords: Probabilistic characterization of responses, non markovian responses, non gaussian excitation, stochastic modeling of 

non-linear systems, half oscillator. 

 
1. INTRODUCTION 

Wave loads on ships are generally modelled 
as colored (smoothly-correlated) stochastic 
processes (in contrast to delta-correlated pro-
cesses, which are commonly used in stochastic 
dynamic analysis; see e.g., Naess (2000), Iourt-
chenko (2003), Pirrotta (2007)). Thus, ship 
responses are also smoothly-correlated stocha-
stic processes, lacking to obey the Markovian 
property, which essentially simplifies the ana-
lysis of stochastic systems. The determination 
of probability density functions (PDFs) associ-

ated with ship responses is straightforward as 
far as the assumption of linearity is (approxi-
mately) valid, and the excitation can be simpli-
fied as Gaussian. When strong nonlinearities 
are present, and the excitation cannot be consi-
dered neither Gaussian nor delta correlated, as 
in the case of roll motion, the classical theory 
of diffusion processes and the Fokker-Planck-
Kolmogorov (FPK) equation is not applicable 
(see e.g. Neves et al, 2011, for a compre-
hensive review on issues involving dynamic 
behaviour and probabilistic nature of extreme 
events in a seaway). In such cases, the proba-
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bilistic characterization of the responses is a 
difficult problem, calling for specific modelling 
techniques and advanced mathematical tools.  

In cases where the correlation time of the 
excitation is small, in comparison with the 
relaxation time of the dynamical system, it is 
possible to reformulate the problem as an 
averaged Ito SDE and advance to the 
corresponding averaged FPK. This technique, 
known as the stochastic averaging method, 
was first introduced by Stratonovitch (1963) 
and made rigorous by Khasminkii (1966). 
Variants of this methodology have been 
applied to the ship rolling problem by Roberts 
(1982), Roberts and Vasta (2000), where also 
an extensive survey of the previous works is 
presented, Kreuzer and Sichermann (2007).  

An approach which can resolve the non-
Markovian character of the response, keeping a 
close connection with the standard treatment of 
stochastic differential equations, is the filtering 
approach. This method is implemented by 
making the colored excitation to be the output 
of an appropriate linear filter, coupled with the 
original dynamic system. In this way, an 
augmented stochastic system is obtained, 
which can be treated by means of a FPK 
equation involving the state-space variables of 
the original system and the filter (Spanos, 
1986, Muscolino, 1995, Pugachev and 
Sinitsyn, 2001). The method has been applied 
to the ship roll motion by Francescutto and 
Naito (2004) and others. It is rather general and 
effective as far as the excitation is Gaussian 
and the appropriate filter is of low order. 
Hybrid techniques, combining some of the 
above methods have also been developed (Di 
Paola & Floris, 2008).  

Another generic approach, applicable to 
quite general dynamical systems under colored 
stochastic excitation, introduced in 2006 
(Athanassoulis & Sapsis, 2006), further 
developed in Sapsis & Athanassoulis (2008) 
(hereafter referred to as [1]), and applied to 
ship rolling motion by Athanassoulis et al 
(2009) (hereafter referred to as [2]). This 
approach is based on the use of the joint, 

response-excitation characteristic functional, 
which is an infinite-dimensional mathematical 
object modelling the complete probabilistic 
structure of the involved stochastic processes, 
without any simplifying assumptions. See Hopf 
(1952), who introduced the characteristic 
functional for the study of turbulent flows, and 
its extensions to other stochastic dynamical 
problems presented by Beran (1968). A Hopf-
type functional differential equation (FDE) 
governing the evolution of the joint, response-
excitation characteristic functional for quite 
general stochastic differential equations is easy 
to obtain. Since, however, the numerical 
solution of infinite-dimensional FDEs is not 
feasible (at least, for the time being), the goal 
of this approach is to come back to 
probabilistic equations for finite-dimensional 
PDFs, by appropriate projections of the FDE. 
For example, if we assume that the ship roll 
motion obeys the following dynamical equa-
tion (see, e.g., Belenky & Sevastianov, 2003).  
 

( ) ( ) ( ) ( )

( ) ( ) ( )

3
1 3

3
31

I A x t b x t b x t

x t K x t Y tK

ɺɺ ɺ ɺ+ + + +

+ + =      (1)  

where ( )Y t  is the external stochastic 
excitation, the Response-Excitation (RE) 
theory developed in [1,2] leads to the following 
evolution equation for the joint Response–
Excitation, Probability Density Function 
(REPDF) 

1 2 1 2( ) ( ) ( ) ( , , )x x y st tf βα α  ( 1 ( ) ( )x t x t= , 

2 1( ) ( )x t x t= ɺ ; see [2] for a detailed description 

of all coefficients appearing in equ. (1)): 
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supplemented by the marginal compatibility 
condition  
 

( ) ( )1 2

2

1 2
1 2( ) ( ) ( ) ( )y s x x yt t sf f d dα α α α= =∫∫ , ,ββ

ℝ

 

0,known density function s t∀ ≥=                       (2b) 
 

and the initial condition.  
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( )
0 01 2 1 2( ) ( )t tx x known density functionf α α =,      (2c) 

( )
1 2α α

L i , appearing in (2a), is a linear 

differential operator given by  
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∂ ∂ ∂
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∂ ∂ ∂
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Equ. (2a) is a peculiar equation, involving 
two times and three probability arguments (one 
for the excitation, one for the motion and one 
for the velocity), and partial derivatives only 
with respect to one (response) time and two 
(motion-velocity) probability arguments. This 
peculiarity gives rise to fundamental questions 
regarding both the well-posedness of the 
problem (2a,b,c) and the methods of its 
numerical solution. Recently, our approach re-
examined by Venturi et al (2012), using a 
different (but essentially equivalent) method. 
They confirmed the validity of equation 
derived in [1] (and, thus, indirectly, of equation 
(2a), derived in [2]), and answered in negative 
the question regarding the well-posedness of 
problem (2), by presenting a simple example in 
which our equation is valid but it does not 
ensures uniqueness. Accordingly, it becomes 
clear that a kind of completion of problem (2) 
is necessary. The type of completion proposed 
by Venturi et al (2012) results in a much more 
complicated equation, including the entire 
history of the response process in a functional 
integral form, which cannot be considered as 
an attractive alternative.  

The crucial problem with the equ. (2a) is 
that the joint-REPDF 

1 2 1 2( ) ( ) ( ) ( , , )x x y st tf βα α  is 

differentiated only with respect to the response 
time t . However, since the function 

1 2 1 2( ) ( ) ( ) ( , , )x x y st tf βα α  is unknown, the partial-

time (called hereafter half-time) derivative 

1 2 1 2( ) ( ) ( ) ( , , ) /x x y st tf tβα α∂ ∂  cannot be properly 

evaluated, because there is no way to separate 
the effect of the response time t  from the effect 
of the excitation time s , without knowing the 
specific form of 

1 2 1 2( ) ( ) ( ) ( , , )x x y st tf βα α . This 

fact calls for a kind of a priori approximation 
of the term 

1 2 1 2( ) ( ) ( )lim ( , , ) /x x y st ts t
f tβα α

→
∂ ∂ , 

before any attempt to formulate a numerical 
scheme for solving.  

In the present paper we develop an a priori 
closure technique, for the long-time, steady-
state REPDF evolution equation, by formula-
ting and using localized linear problems. Up to 
now, this, improved, response-excitation theory 
has been developed only for first-order dyna-
mical systems, that is, half-oscillators, under 
Gaussian excitation. (Athanassoulis et al, 
2012). Accordingly, we shall present herewith 
the method of closure, the scheme of the 
numerical solution, and numerical results for a 
half-oscillator of the form:  
 

( ) ( )( ) ( )( ); ; ;x t H x t y tθ θ θΨɺ = +              (4a) 

( )0(0 ; )x xθ θ=
            (4b)

 

where θ  is the stochastic argument (the 
sample-point indicator), ( )H i  and ( )Ψ i  are 

polynomial functions, and ( );y t θ  is a given, 

smoothly correlated, asymptotically stationary, 
Gaussian stochastic process (regular colored 
noise). Accordingly, the polynomial excitation 

( )( );y t θΨ  can model (strongly) non-Gaussian 

processes. We shall focus on the long-time, 
steady-state response of equ. (4), assuming that 
the Gaussian process ( );y t θ , shaping the 

excitation, becomes quickly stationary, as 
t →∞ . Then, the evolution equation for the 
long time steady state REPDF ( )( ) ( )x y stf α,β , 

which is valid in the limit s t→  (for s  and t  in 
the long-time regime) and for every point 
( ) 2∈α,β ℝ  of the RE phase space, reads as 

follows:  
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supplemented by the marginal-compatibility 
constraint,  
 

( )

( )

( ) ( )

( ) a known pdf=

x yt s

y s

f d

f
∈

=

=

∫
α

α,β α

β

ℝ

        

(5b) 

 

ensuring that ( )( ) ( )x y stf α,β  complies with the 

given marginal, as well as by the conditions:  
 

( )( ) ( ) 0x yt s
f ≥α,β ,               (5c)  

( )( ) ( ) 1x y stf d d

∈∈

=∫ ∫
αβ

α,β β α

ℝℝ

.           (5d) 

 

No initial condition needs to be assumed, since 
in the long-time statistical equilibrium system’s 
response is no longer dependent on the initial 
conditions.  

2. LOCAL DESCRIPTION OF THE 
RESPONSE-EXCITATION 
CORRELATION STRUCTURE 

In order to implement our a priori closure 
scheme for equ. (5a), we define and solve 
localized linear problems, providing us with 
information concerning the local RE-
correlation structure. Focusing on a (any) 
specific point 0y  of the excitation state space, 
we find the corresponding (deterministic) long-
time equilibrium point 0x  in the response state 

space, by solving the equation ( )0H x =  

( )0yΨ− . Introducing a localized, around the 

point 0 0( , )x y , linear approximation of the 

right-hand side of equ.(4a), we get: 
 

( ) ( ) ( )( )
( ) ( )( )

0 0

0 0

; ;

;

x t H x x t x

y y t y

θ θ

θΨ

′≈ ⋅ − +

′+ ⋅ −

ɺ

         (6) 

and formulate the following localized version 
of equ. (4a):   

( ) ( ) ( )( )
( ) ( )( )

0 0

0 0

; ;

;

oc oc

oc

x t H x x t x

y y t y

θ θ

θΨ

′= ⋅ − +

′+ ⋅ −

ℓ ℓ

ℓ

ɺ

     (7) 

To ensure stability we always assume that 
( )0 0xH <′ . The localized excitation ( );ocy t θ

ℓ
 

is considered Gaussian (as ( );y t θ ), with mean 

value 0ocym y=
ℓ

 and an appropriate 

autocovariance function ( );
oc ocy yC t s
ℓ ℓ

. Since 

we are interested in the long-time regime, we 
choose a scaled version of the long-time limit 
of the global autocovariance function 

( )( )
y yC t s∞ − , that is ( )

oc ocy yC t s− =
ℓ ℓ

 

( )2 ( ) 2/
oc y y yy C t sσ σ∞⋅ −
ℓ

. However, the long-time 

correlation matrix of the local linear problem is 
scaled uniformly by 2 2/

oc yyσ σ
ℓ

, and we can 

assume 2 2

oc yyσ σ=
ℓ

 and introduce the scaling 

later on.  

The localized, linear, stochastic differential 
equation (7) is readily solved analytically. The 
long-time covariances ( )( )

oc ocx yC w∞
ℓ ℓ

 and 

( )( )

oc ocx xC w∞
ℓ ℓ

 are given by the formulae:  
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( ) ( )0

( )

const

( )
0

lim ( , )
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x yx y
t

w .

H x u w
y y

w
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=
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ℓ ℓℓ ℓ
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and  

( )
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( )0
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02
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oc oc
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x x

H x v w
y y

v
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y
C w
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C v dve

Ψ∞
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′ ⋅ −

=−∞

′
= ×
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ℓ ℓ

ℓ ℓ
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We shall now specialize the results (8) and 
(9) for the covariance function  

( ) ( )

( )( )

( )

22 exp

oc ocy y y y

y

C t s C t s

a t sσ

∞− = − =

= ⋅ − −

ℓ ℓ

          (10) 

The integrals appearing in the right-hand side 
of equs. (8) and (9) can be calculated explicitly. 
The results read as follows:  
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Using equ. (11) we are able to determine the 
partial-time derivative of ( )( )

oc ocx yC t s∞ −
ℓ ℓ

 with 

respect to the excitation time t . After some 
algebraic manipulations, the final result reads 
as follows:  
 

( )

( ) ( ) ( ) ( )

( )

( ) ( )
0 0

(13)oc oc

oc oc oc oc

x y

x y y y

C t s

t

H x C t s y C t sΨ

ℓ ℓ

ℓ ℓ ℓ ℓ

∞

∞ ∞

∂ −
=

∂

′ ′= ⋅ − + ⋅ −
 

     The derived auxiliary conditions (11)-(13), 
provide the local correlation structure between 
( );x t θ  and ( );y s θ , as s t→ , in the vicinity of 

the RE phase space point 0 0( , ) ( , )x yα β = . This 

information will be exploited in the next 
section, in order to implement the long time 
limit ( )( ) ( )lim /x y sts t

f t
→

∂ ∂α,β . 

3. KERNEL DENSITY 
REPRESENTATION FOR THE JOINT 
RESPONSE-EXCITATION AND 
MARGINAL PDFS 

The target of the numerical solution to equ. 
(5a), supplemented by all appropriate auxiliary 
conditions (already discussed), is to find the 
time-independent (statistical equilibrium) joint 
REPDF ( ) ( )( ) ( )x y x yt tf f=α,β α,β . However, 

in order to cope with the appearance of the 
unusual, response-time (half-time) derivative in 
equ. (5a), a representation of the lag-time 
dependent joint REPDF ( )( ) ( )x y stf α,β  capable 

of embedding the acquired local conditions 
shall be introduced. On the basis of the above 
and previous (successful) experience in 
representing PDFs by superposition of kernel 
density functions (Athanassoulis and Belibas-
sakis 2002, Athanassoulis and Gavriliadis 
2002), the following Kernel Density Represen-
tation (KDR) is adopted: 
 

( )

( )
( ) ( )

,
,

; , , ( )

x y st

i j i j i j
i j

f

p t sα βα β Σ

=

= ⋅ −∑
α,β

α,βΚ   (14) 

 

where ( ), ( , ),i j i j ∈ ×α β ℤ ℤ , is a grid of 

points in the state space ×ℝ ℝ , each ( ),i jα β  

serving as the center of the Gaussian kernel 
density function ( ); , ,⋅ ⋅ iα,βΚ , while  
 

,

(0) ( )
( )

( ) (0)
i i i j

i j j j

i j

C C t s
t s

C t s C

α α α β

α β
α β β β

Σ
 −  − =   −  

 (15) 

is the covariance matrix of ( ); , ,⋅ ⋅ iα,βΚ . To 

ensure that (14) is a legitimate PDF, the 
following constraints need to be imposed on 
the unknown coefficients , ( , )i jp i j ∈ ×ℤ ℤ :  

0 i jp≤   and   
,

1i j
i j

p =∑ .                          (16a,b) 

In principle, ( ) ( ) ( , )x y ttf α β  is supported on 

the whole plane ×ℝ ℝ . For computational 
reasons, we focus on its form in its essential 
support essD , conventionally defined as the 

subset of ×ℝ ℝ  where ( , )x yf ε> ≈α β  

{ }310 max ( , )x yf− ⋅ α β . This choice, restricts the 

approximation in a compact subdomain 

min max min max, ,Dα α α β β   = ×      β , of ×ℝ ℝ , 

such that essD Dα⊆ β  (tail questions are not 

considered herewith), and the indices ( , )i j  run 
over the finite set ( ) ( )I J×ℕ ℕ , where 

{ }( ) 1,2, ... ,I I=ℕ  and ( )Jℕ  is similarly 

defined. Since essD  is not known a priori some 

preliminary information is necessary in order to 
choose the computational domain Dα β . This 

information is provided by the essential support 
of the known excitation ( )yf β , in conjunction 
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with an estimate of the total response variance, 
approximated by solving a global moment 
problem using Gaussian closure.  

Introducing the KDR in equs. (5a) (the 
constitutive conditions, equs. (5c,d) are 
automatically satisfied thanks to the defining 
properties of the KDR), we obtain the 
following reformulation of problem (5a,c,d):  
 

( )( ),

,

, ; , ,i j i j i j
ti j ts

Kp t sα βα β Σ
∂

∂ →






+−∑ α β   

( ) ( )( ){

( )( ) },,, ; , 0 0i j i j ts

H

K α ββα

Ψ

Σ
→

∂
+ + ×

∂


× =


α β
α

α β

   (17a) 

 

under the marginal compatibility constraint  

( )
( ) ( ) ( )

,

; , ( ) 0
j ii j j i j i y

i j

p K fββ β σ − =∑ β β  (17b) 

where ( )( ) ( ) ( ); ,
j i j i j iK ββ σ =β β   

( )( ),, ,; i j i j t s dK α β
βα Σ

∈

−= ∫
α

α,βα

ℝ

 

Note that, the half-time derivative 

( )( ), /, i j tK t sα βΣ∂ ∂−⋯ , appearing in equ. 

(17a), is now reduced to the corresponding 
derivative of the covariance matrix 

( ),i j t sα βΣ − , which is a priori estimated by 

means of the results of the previous section.  

4. GALERKIN TYPE 
DISCRETIZATION OF THE 
PROBLEM 

On the basis of the KDR, equ. (14), the 
determination of the sought-for joint REPDF 
has been reduced to the determination of the 
coefficients i jp , ( , ) ( ) ( )i j I J∈ ×ℕ ℕ , from 

the system of equs. (17a,b). This problem can 
be solved using a Galerkin type, weighted-
residual method (Kantorovich and Krylov, 
1964, Zeidler, 1990) to find a discrete system 
of equations, approximately equivalent to equs. 
(17a,b). Using Gaussian Galerkin Kernels 

( ),κ λΛ α,β  and ( )λ
Λ ɶ
ɶ β  (see Athanassoulis et al 

2012) we obtain the following linear system for 

i jp  coefficients:  
 

( ), , ( ) ( ) ,

,

0 ,i j i j K L

i j

p G κ λ κ λ ∈ ×∀⋅ =∑ ℕ ℕ

( )( ),
,

, ( )i j yj i
i j

p g f LG
λ

λ
λ

Λ
⋅ = ∀ ∈∑

ɶ
ɶɶ

ɶ ɶɶ ℕ   (18a,b) 

where ,i jG κ λ , 
( ),j i

G
λɶ

ɶ  are integrals of Gaussian 

functions (calculated analytically) and  

( ) ( )( )y yg f df
λ

λ
β

Λ
Λ⋅= ∫

ɶ

ɶ
ɶ

ɶ ββ

ℝ

. 

On the basis of the above discussion, the 
problem of calculating the expansion coef-
ficients i jp  of the joint-REPDF takes the fol-

lowing form:  
 

Problem P : Find i jp , ( , ) ( ) ( )i j I J∈ ×ℕ ℕ , 

satisfying the homogeneous equation (18a), 
under the marginal compatibility constraint 
(18b) and the constitutive constraints (16a,b).  

5. RESULTS - SOLUTION OF THE 
HALF-OSCILLATOR PROBLEM 

In this section numerical results will be 
presented for the special case of equ. (4a), 
describing a cubic half-oscillator under cubic 
excitation:  

( ) ( )( ) ( )

( )( ) ( )

2
1 2

2
1 2

; ; ;

; ;

x t x t x t

y t y t

θ µ µ θ θ

κ κ θ θ

= + ⋅ ⋅ +

+ + ⋅ ⋅

ɺ

     (19) 

where ( ; )y t θ  is a Gaussian stochastic process, 
with long-time correlation function given by 
equ. (10). Two cases have been considered: the 
case of a linear half-oscillator under non 
Gaussian (cubic) excitation, with parameter 
values 1 1 ,µ =−  2 0µ = , 1 0,κ =  2 1κ = , 

(hereby called Case 1) and the case of a non-
linear half-oscillator under Gaussian excitation, 
with parameter values 1 2 1µ µ= =− , 1 1κ = , 

2 0κ =  (hereby called Case 2). The correlation 

time of the Gaussian excitation process ( ; )y t θ  
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is given, by ( )
corr

0
( ) / (0)y

y y y yC d Cτ τ τ
∞

= =∫  

/0.5 aπ= , while the relaxation time of the 

system is estimated by the linear relaxation 

time (lin)
relax 1τ =  (which is an overestimation 

regarding Case 2). Two methods have been 
used for the derivation of the joint REPDF 

( )x yf α,β  and the marginal PDF ( )xf α . The 
numerical solution of the constraint optimi-
zation problem P (hereby referred to as RE 
solution), and a conventional Monte Carlo 
scheme (hereby referred to as MC simulation). 
Systematic comparisons of the results obtained 
by the two methods are also presented.  

In the context of the RE theory, Problem P 
is solved numerically in three steps. In the first 
step, representation kernels and Galerkin 
kernels are identified. Their centers , ,i jβα  

( ), ( )i j J∈ ∈Ιℕ ℕ , are placed on a regularly 
spaced grid over the computational domain 
Dα β . The kernel variances ,

i i j j
C Cα α β β  are 

adjusted to Dα β  and the resolution of the grid, 

aiming at a certain degree of overlapping 
between contiguous kernels. The kernel 
covariances 

i j
Cα β , are defined by means of the 

formula ( )( ) 0
i j i i j jloc

C C Cα β α α β βρ ∞= ⋅ ⋅ , where 

the local correlation coefficient ( )( ) 0
loc

ρ ∞  is 

calculated from the localized linear problem. 
The long-time limit of the half-time derivative 

( )lim /
i j i js t

C C t s tα β α β
→

∂ = ∂ − ∂ , necessary in 

order to fully specify the coefficients ,i jG κ λ , 

is estimated from the localized approximation, 
equ. (13). The Galerkin kernels have been 
selected to be Gaussian kernels, identical with 
the representation ones. With these choices all 
coefficients of equs. (18) are fully specified 
and thus we can proceed to the second step, 
namely, the numerical solution of problem P. 
This is performed using LSQLIN, the 
constrained least squares MATLAB® function. 
The solution yields i jp , from which a first 

estimate of the joint-REPDF is obtained. In the 
third step the solution obtained in the second 

step is exploited in order to estimate the 
essential support essD , to redistribute the 

kernels, and redefine the kernel parameters. 
Within usually one or two iterations of step 3, 
the essential support converges, and the final 
solution ( )x yf α,β  is extracted.  

The Monte Carlo simulation is obtained by 
generating 4000 samples of the excitation 
process ( ; )y t θ , using the 1-D random-phase 
model. Equ. (19) (with zero initial condition) is 
solved using ODE45, a MATLAB® imple-
menttation of the Dormant-Prince method 
(Dormand and Prince 1980), based on an 
explicit Runge-Kutta (4,5) formula. The MC 
PDF estimations are computed using the kernel 
density estimation via diffusion, introduced by 
Botev et al (2010) and coded in MATLAB® 
functions by the same author. 

Results are presented for two different 
values of parameter a , namely a =  3 and 7, 
corresponding to excitation correlation time: 

( )
corr

yτ = 0.51 and 0.33 respectively. Since the 

nonlinearity of equ. (19) contributes to damp-
ing terms, the relaxation time of Case 2 is 
smaller than that of Case 1, for which 

(lin)
relax 1τ = . Thus, the values a =  3 and 7 

correspond to λ =  ( ) (lin)
relaxcorr

yτ τ =  0.51, 0.33. In 

all cases 2 1yσ = .  

In Figures 1 and 5, the joint REPDF is 
shown, as calculated by the MC simulation for 
Case 1 and 2 respectively. The corresponding 
calculations using RE theory are illustrated in 
Figures 2 and 6. The latter Figures also depict 
the marginals obtained by the two methods. 
The absolute difference between the MC and 
RE method is shown in Figure 3 for Case 1, 
and Figure 7 for case 2. This difference is, in 
general, less than 5% in both Cases, except for 
the high probability areas in the strongly 
colored examples (a =  3), where it locally 
reaches a maximum of 20%. The latter, local, 
high mismatch should be associated with the 
local steepness of the corresponding PDFs. In 
general, the PDFs shapes, as obtained by the 
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two methods, are very similar, as can be seen 
from Figs. 1, 2 and 5, 6. In addition, the 
response marginal PDFs calculated by the two 

methods, compare very satisfactorily in both 
Cases, regardless of the color strength

  

 
 

Figure 1: (Color online). REPDFs as calculated via MC solution for Case 1 and 3, 7a = . The 
projections depict the marginal PDFs. 

 

 
 

Figure 2: (Color online). REPDFs as calculated using the RE solution for Case 1 and 3, 7a = . The 
marginal projections depict both MC (solid lines) and RE solutions (dashed lines). 

,,  
 

Figure 3: (Color online). The absolute difference between RE and MC solutions: Case 1, 3, 7a = .  

Response PDF 

Response PDF 



 

   87 

Proceedings of the 11th International Conference on the Stability of Ships and Ocean Vehicles 

23-28 September 2012, Athens, Greece. 

 

 
Figure 4: (Color online). The RE covariance 
function for Case 1. 

It is interesting to notice the strong 
deviations of the calculated PDFs from the 
“equivalent” 2D Gaussian distributions, for 
both examined cases. The same also holds for 
the response densities, as intuitively expected. 
Apart from the examples shown here, the RE 
solution is also applicable for higher values of 
ratio λ , as shown in recent work (Athanas-
soulis et al, 2012), where the joint REPDF 

becomes bi-modal, although the examined 
system is mono-stable (regarding the bi-
modality of bi-stable systems see also Grigolini 
et al, 1988, Jung & Risken, 1985).  

In Figs. 4 and 8, the response-excitation co-
variance ( )x yC τ  for Cases 1 and 2 is plotted, as 

obtained by MC simulation. 0τ <  corresponds 
to future lag values (excitation in advance of 
response). In contrast to cases of delta-
correlated excitation, there is a correlation 
between the current response value and the 
future excitation. It is interesting to point out 
that, after a rescaling, ( )x yC τ  has a very 

similar shape for both examined cases, when a  
values are equal. 

 

 
 

 
 

Figure 5: (Color online). REPDFs as calculated via MC solution for Case 2 and 3, 7a = . The 
projections depict the marginal PDFs. 

 

Response PDF 
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Figure 6: (Color online). REPDFs as calculated using the RE solution for Case 2 and 3, 7a = . The 
marginal projections depict both MC (solid lines) and RE solutions (dashed lines). 

 

 
 

Figure 7: (Color online). The absolute difference between RE and MC solutions: Case 2, 3, 7a = . 

 

 
Figure 8: (Color online). The RE covariance 
function for Case 2. 

6. CONCLUSIONS 

In this paper we present, for the first time, 
an a priori closure scheme, and a method for 
numerical solution of the joint REPDF evolu-
tion equation, introduced in [1] and applied to 
ship rolling motion in [2]. The method is used 
to solve numerically two examples, a linear 
half-oscillator excited by a non-Gaussian ran-
dom process, and a non-linear half-oscillator 
excited by Gaussian noise (see also Athanas-
soulis et al, 2012). The numerical results 
obtained have been confirmed via MC simula-
tion. It is clear that the present method can be 
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extended straightforwardly to the general case 
of equ. (19) (nonlinear half-oscillator under 
non Gaussian excitation), covering both mono-
stable and bistable cases. The extension of the 
presented methodology to full (2D) oscillators 
(e.g., to the 2nd-order ship roll motion equ. (1)), 
is currently under investigation.  
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