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1.  INTRODUCTION  

         Major advances in high-throughput assay capability coupled with increasingly sophisticated 
computational methods for systematic data analysis have provided scientists with tools to better understand the 
complexity of biological systems. This potent combination of novel experimental and analytical approaches 
should in turn lead to more effective therapeutic design.  Most high-throughput experimental technologies can 
generally be categorized based on their readouts: genomics, transcriptomics, metabolomics and proteomics. 
The increasingly interdisciplinary nature of science has also given rise to complementary disciplines such as 
bioinformatics, systems biology, and computational biology, which are charged with incorporating and 
interpreting the vast amounts of experimental data and generating hypotheses of biological significance. That 
said, despite the fact that all these high-throughput assays are based on different readouts (DNA, mRNA, 
metabolites, or proteins), the biological information that they capture is highly overlapping. However, since 
each experimental assay represents a different approach, scientists should be able to understand the limitations 
and advantages of DNA, mRNA, metabolomic or proteomic approaches and use them appropriately depending 
on the knowledge that they want to obtain. Especially critical for the pharmaceutical industry is the coupling of 
experimental approaches with computational algorithms. These decisions can significantly impact discovery, 
reduce research and development costs, minimize drug failures by predicting drug efficacy and toxicity, and 
ultimately impact a company's competitiveness in the global market.  

The primary objective of a therapeutic strategy is to selectively alter targeted protein(s) or pathway(s) 
within diseased cells in order to ameliorate an undesired phenotype (unrestrained cell proliferation, 
inflammatory cytokine release, etc.).  Ideally, other pathways within the diseased cells, as well as all cellular 
functions in healthy cells, would remain unaffected by the therapeutic approach.  Thus, target selection is a 
multi-faceted problem with several levels of complexity: 1) cellular pathway(s) or extracellular targets need to 
be selected 2) associated bio-markers need to be identified which distinguish healthy and disease phenotypes 
and ideally are capable of reflecting pharmacological efficacy and safety, 3) the risk-benefit of different 
therapeutic approaches should be considered: small molecule inhibitors, biologics, siRNA-derived therapeutics 
(transcriptional targets), etc., and 4) a selection criteria needs to be identified for screening compounds against 
a desired target.  Addressing these initial questions, however, is just the beginning of the drug discovery 
journey; drug metabolism might render the pharmacologic approach ineffective, genetic and epigenetic person-
to-person variability might cause idiosyncratic toxicity (i.e. a term that signifies the unknown cause of the 
adverse drug effects), and the overlapping cellular pathway architecture might result in even very selective on-
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target compounds having unwanted effects on the same or different cells [1, 2].  
 In this complicated world of drug development, high-throughput technologies (genomics, 
transcriptomics, metabolomics and proteomics) have become invaluable tools for tackling the complexity of 
the biological systems and optimizing therapeutic strategies. In the following section, we will explore different 
technologies and their niches in the area of drug development, efficacy, and toxicity.  
 
Genomics technologies:  
  Several diseases are strongly correlated with specific genomic mutations (Huntington’s disease, sickle 
cell anemia, etc).  As a general concept, cancer progression can be facilitated by gain-of-function mutations in 
oncogenes or loss-of-function mutations in tumor-supressor genes [3].  In certain instances, dozens of genomic 
aberrations are associated with the development of a single cancer type [4].  Specifically, in hepatocellular 
carcinoma (the most common type of liver cancer) genomic aberrations have been found in several proteins 
including TP53, TGFb, Ras, and Rb, EGFR, ERbB2 and members of the Wnt-signaling pathway [5-9]. Thus, 
understanding the genomic basis for development of a disease can significantly impact the focus of 
pharmaceutical therapies. It is now evident, that genomics have moved therapeutic strategies away from being 
phenotype specific (i.e. chemotherapy for highly proliferative cells), and focused them on pathway specific 
targets (i.e. anti-EGFR or anti-VEGF treatments etc).  
     Specific examples of the role that person-to-person genetic variability plays in drug efficacy have also 
been demonstrated in recent years.  The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor 
Gefitinib represents just a case.  Gefitinib originally exhibited significant clinical response in only 10% of 
patients with non-small-cell lung cancer, a modest response rate [10].  However, when primary tumors from a 
group of patients was screened for EGFR gene mutations, eight of nine gefitinib-responsive patients had 
somatic mutations in the EGFR gene [11]. This example of genomic information coupled with drug mechanism 
underscores the importance of understanding underlying genetic anomalies in order to better predict whether a 
therapy will be effective. Individual genetic variability of more general biological mechanisms involved on 
drug metabolism, distribution, and clearance can also influence drug efficacy. For example, polymorphisms in 
the P450 drug-metabolizing enzyme among populations can generate significantly different profiles in drug 
metabolism [12, 13]. 
     In order to better understand and predict an individual’s response to a drug therapy, genomics 
approaches provide valuable information regarding: 

• identification of critical genomic aberrations which strongly correlate with a specific disease, and in 
turn, implicate associated molecular pathways which may be appropriate for therapeutic intervention 
(i.e. targeted pathway(s) identification). 

• identification of genetic variations among the population which indicate the likely success rate of a 
therapeutic intervention (i.e. treatment identification). 

• identification of genetic variations in the biological machinery required for drug metabolism, 
distribution, and clearance (impact on efficacy and toxicity). 
The main approaches utilized for genomic discovery are whole genome sequencing (i.e. Sanger 

sequencing, 454 Life Sciences) which entail sequencing the entire genome without bias towards particular gene 
sequences, and genotype analysis which is focused on specific genes or genomic locations.  Further, genotype 
analysis may evaluate the entire raw sequence of particular genes or, alternatively, identification of Single 
Nucleotide Polymorphisms (SNPs) located at discrete genomic locations on a population level.  New high-
density DNA microarrays and bead-coupled universal Tag arrays have further enabled SNP analysis to move 
towards a whole-genome approach [14].  For further details regarding the application of genomic technologies 
to drug development, we direct the reader to several reviews [4, 15-18]. 
 
Transcriptomic technologies: 
     Transcriptome analysis is based on the detection and quantification of mRNA transcripts. The main 
advantage transcript profiling provides, relative to genomic approaches, is the ability to capture the dynamic 
response of a biological system under different conditions by measuring the expression profile of thousands of 
mRNA transcripts. There are approximately 25,000 human genes, yet only a small percentage (~20%) is active 
at any given time. Transcriptome technology provides the researcher with a perspective closer to the functional 
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response of the biological system. The technological platforms for transcript profiling are very similar to those 
used for genomic analysis and similarly, can be subdivided into two categories: approaches that evaluate all 
mRNA without prior bias regarding the sequence (i.e. serial analysis of gene expression (SAGE)), and analysis 
that is focused on a predefined set of genes (i.e. DNA microarrays). Even thought SAGE and DNA microarrays 
are based on different technologies, they have been demonstrated to correlate well in terms of mRNA 
quantitation, especially in the case of highly expressed transcripts [19]. Current technologies allow high density 
DNA microarrays to contain ~45,000 unique transcripts and genes that span the entire genome, with several 
commercial DNA microarrays now available at low to moderate cost (Affymetrix, Agilent, GE Healthcare, 
Applied Biosystems etc).  Results from high throughput transcript profiling approaches are frequently 
confirmed using lower throughput assays such as qRT-PCR or Northern blotting.   
     Similar to genomic approaches, transcriptomic technologies have facilitated the identification of 
putative targets and pathways, as well as provide predictions regarding drug efficacy and toxicity: 

• transcript analysis can identify mRNA transcripts that are strongly correlated with a disease (and 
indicate associated molecular pathways suitable for therapeutic intervention). 

• identification of on-target and off-target drug effects throughout the whole genome which may 
influence drug efficacy and toxicity 

• transcriptomic profiling of the biological mechanisms engaged in drug metabolism, distribution, and 
clearance 
For further information regarding current DNA microarray products and applications, the reader may 

refer to an excellent recent review on “Toxicogenomic Technologies to Predictive Toxicilogy” by the National 
Research Council of the National Academies [20]. In addition to genomic and transcriptomic profiling, several 
related areas of study show promise in furthering the understanding of drug efficacy but are beyond the scope 
of this chapter. These include technologies involved in detection of DNA methylation [21], microRNA 
technologies, and CpG microarrays [22].  
 
Metabolomic technologies: 
     Metabolomics refers to the study of metabolites (i.e. products or small molecule intermediates of the 
biological processes) as they exist in the cell, tissue, organ, or animal as a whole. Biological samples including 
cellular supernatants, blood, plasma, saliva, urine, and stool provide the source material which is typically 
analyzed using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). These 
technologies are capable of evaluating a wide range of metabolic components (for example disease-specific 
metabolome changes).  Metabolites have also been used as biomarkers in order to quantify the toxic effects of 
drugs.  For a complete review of metabolomic applications, the reader can refer to metabolomic focused 
reviews [23-25] 
 
Proteomic and Protein activity technologies: 
    Proteins are the ultimate executors of cellular function, and thus are directly responsible for a 
biological phenotype [26-30]. Proteomics is the study of the expression, modification and activity of proteins in 
order to better understand a biological system. In comparison to genomic or transcriptome approaches, 
proteomic profiling involves several unique challenges: 1) screening of the entire proteome in a manner similar 
to whole genome or transcriptome is currently impossible/impractical 2) the proteome cannot be defined using 
a constrained list of proteins (similar to genome approaches) because of the wide range of post-translational 
protein modifications which in turn can produce infinite combinations that are ultimately responsible for the 
phenotype  3) protein modifications such as phosphorylation, ubiquitination, methylation, sulfation or 
proteolytic cleavage (which are the main modulators of protein activity) cannot simultaneously be measured 
from a single assay [31] 4) protein abundance from a single cell population can span more than six orders of 
magnitude, creating a bias towards high-abundance proteins, 5) as compared to DNA-based experiments, 
protein experiments lack a "protein-amplification" feature (similar to PCR for genes) that makes protein 
amount valuable, 6) the ability to broadly analyze protein binding affinity (the driving force in signal 
transduction) is not possible on a high-throughput scale. 
     As with the previously described genomic and transcriptomic techniques, protein analysis can be 
divided into two separate approaches: one that makes no a priori assumption about protein composition or 
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structure (i.e. 2D-PAGE and mass spectrometry (MS) technology), and another which is based on a 
predetermined set of target proteins (i.e. affinity-based approaches).  Using a 2D-PAGE approach, control 
lysates are separated based on their physical properties (mass and charge). Diseased (or drug treated lysates) 
are identically processed and comparative analysis performed to evaluate protein expression between the two 
samples. The MS approach, which often complements the 2D-PAGE approach, entails protein digestion to 
generate a mixture of peptides which are then separated and analyzed using liquid-chromatography-coupled 
mass spectrometry (LC-MS).  Depending on specific physical properties, each peptide generates a unique 
signature (i.e. MS-MS spectra) that can be identified by a semi-automated search against proteomic databases. 
This approach, known as shotgun proteomic analyses, enables the automated characterization of hundreds of 
proteins in a complex mixture. Both 2D-PAGE and MS approaches have the disadvantage of being biased 
towards high abundance proteins and can only process a very low number of samples at a time.  
   Affinity-based assays utilize capture entities (i.e. antibody, peptide, nucleotides, etc.) to preferentially 
bind target proteins of interest.  In contrast to the 2D-PAGE and MS approaches, affinity based assays identify 
proteins that can be recognized and captured by high-affinity molecules. Thus, a well developed affinity assay 
provides a high degree of specificity. A critical feature of affinity-based approaches is the ability to quantitate 
both protein concentration and protein activity, information which is essential for computational models.  
Antibody-based detection approaches are among the most commonly used for high throughput protein analysis 
and therefore will be more thoroughly described later in this chapter.  
       High-throughput measurements of protein activity can capture the dynamic changes in intracellular 
signals, thus generating large amount of data that encompass high-quality protein-level information. This data 
carries valuable information regarding propagation of signals, a process known to be non-linear and highly 
dynamic. Time-dependent and non-linear processes have been well-studied in many fields of engineering, a 
discipline known as dynamical systems. It is anticipated that similar methods can be utilized to extract valuable 
information from protein activity measurements to describe the biological phenotype. Thus, the combination of 
high-throughput data under different conditions (perturbations) and mathematical modeling (see Figure 1) 
supported by bioinformatics tools is a paradigm of the way in which a systems biology approach can have an 
impact on drug development, efficacy and toxicity [32, 33].

Figure 1: A systems biology approach for high-throughput protein-based datasets: The Modify-Measure-Mine-Model 
paradigm (Aldridge et al., 2006) 

 
2. EXPERIMENTAL PLATFORMS FOR PROTEIN ACTIVITY 
QUANTIFICATION   

             This section describes high-throughput and multiplexed protein activity-based measurements in cells. 
First, we will introduce the basics for high throughput protein measurements. Then, we will focus on select 
platforms that are based on antibody detection and list their major advantages and limitations. This is not an 
exhaustive list of all proteomics platforms as the technology is constantly developing and new assays are 
continually emerging. Purposely, we will not discuss single-cell based approaches (FACS, high content 
screening/microscopy) since they are extensively covered in other chapters of this book. Finally, we will 
introduce computational tools which can be used for the analysis of protein signaling datasets obtained by high 
throughput approaches.  
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2.1: Affinity-based assays  

     Affinity-based assays utilize molecules with high affinity and specificity for the capture and detection 
of targeted protein(s). The most commonly used high affinity molecules are antibodies, whose selectivity and 
affinity for the targeted protein are critical for the outcome of the assay. Despite the fact that antibody 
development and production is a well-matured industry, scientists should be aware that a significant percentage 
of antibodies often recognize more than one target and thus are not suitable or interchangeable for every assay. 
Assays are only as good as the antibodies available. In addition, when we discuss antibody-based 
measurements of “protein activity” we are generally referring to the phosphorylation state of the protein and 
not to the actual protein activity. This is especially relevant for kinase molecules, in which phosphorylation 
state of a substrate is a good surrogate of kinase activity. However, discrepancies between kinase 
phosphorylation status and activity are to be expected under varied conditions [34].

Figure 2: The three main characteristics of a high-throughput affinity based assay. A: A multiplexing scheme in which 
solid supports (e.g. microparticles [35], beads, spots, or wells) are obtain a unique identity. B: A capture scheme 
immobilizes and/or isolates the protein of interest. C: A detection scheme generates a readable output which is linearly 
correlated to the amount of the immobilized protein if interest.   
 
Three are three main characteristics of every affinity based assay (Figure 2):  
1. An identification (multiplexing) scheme in which a solid support (individual wells, spots on glass, beads 

etc) obtains a unique identity required for multiplexing. A solid support not only contributes to the 
multiplexability of the assay, but is also essential for all steps in the assay including washes, protein 
separation and coupling, measurements etc. This unique identity can be obtained by either:  
• Spatially distributed 2D arrangements, where the individual coordinates on a 2D plane correspond to 

individual conditions (e.g. well “B2” in a 96/384well plates, spot with coordinates (n,m) on a printed 
glass slide, or combination of both (5th spot on the B2 well))  

• Microparticles in suspension where each microparticle has a unique physical characteristic (i.e. emits a 
unique spectrometric signature, or carries a unique graphical signature – See figure 2A: In suspension 
particles)     

2. A capture scheme that aims to immobilize the protein of interest to the uniquely addressed solid support. 
Three main approaches widely used for immobilization of a protein of interest are:  
• A capture antibody, peptide, or aptamer attached to a solid substrate (plate, slide, bead)  
• Cell lysate directly spotted on a chemically derived glass slide (usually known as reverse phase 

approach) 
• Cells that are directly fixed on a support (usually on a 96/384 well plate).  
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3. A detection scheme that aims to produce a signal which ideally is linearly proportional to the amount of the 

protein captured on the support. Depending on the multiplexing and capturing scheme there are at least 
four distinct categories of detection: 
• Fluorescent-labeled detection which can be either: (i) Direct labeling: samples are chemically labeled 

with a fluorophore. Even though this approach has successfully been applied to study cancer markers 
[36], it has not been widely adopted because it involves chemical modifications of the samples which 
may affect their biochemical properties (ii) Single-antibody approach: proteins that have been 
covalently immobilized on a substrate are recognized by a single antibody that is either directly 
labeled,  biotinylated (for binding fluorescent Streptavidin) or recognized by a species-specific 
antibody (i.e. anti-goat fluorescent secondary antibody). (iii) Double-antibody approach (or sandwich 
assay): the protein of interest is captured between an immobilized antibody and a secondary antibody 
which can be either directly labeled, biotinylated or can be recognized by a species-specific antibody. 

• Enzymatic labeled detection: typically a biotinylated secondary antibody is bound by a streptavidin-
linked horseradish peroxidase which yields amplified chromogenic products. 

• Planar Wave Guide Technology:  This technology, implemented by Zeptosens (www.zeptosens.com), 
uses guided light passed over a thin film which is located below the detection antibody. The 
electromagnetic field created by the propagation of the light can lead to measurements with 50 fold 
increase in sensitivity compared to regular fluorescent schemes.    

• Electrochemiluminescent detection: This technology, implemented by Meso Scale Discovery- MSD 
(www.meso-scale.com), is based on the electrical induction of an oxidation-reduction cycle resulting in 
emitted light. Similar to Planar Wave Guide Technology, only labels proximal to the captured antigen 
surface can be detected, resulting in minimal background signals.  

A novel detection scheme recently reported is the proximity ligation procedure in which detection signals 
can be generated by a PCR- type reaction. This assay is based on pairs of primers that are separately coupled to 
individual antibodies which recognize closely related epitopes. Thus, when the antibodies bind their targets and 
come in close proximity, a PCR reaction can generate a DNA product which verifies the proximity and 
presence of the antibodies ([37-40]).  

2.2: Specific platforms for protein measurements 

Figure 3:  High throughput proteomics platform comparison based on the number of samples and the number 
of analytes that can be processed. 
 
Protein Microarrays 
 

Protein microarrays (or capture microarrays) employ a capture antibody (alternatively: peptide, 
nucleotide, etc.) which is covalently bound to a slide (or membrane) in an ordered manner; multiple distinct 
antibodies may be affixed at separate locations on the same slide. Their main advantage is the ability to 
measure dozens to hundreds of proteins in each sample although the total number of samples that can be 
processes is somewhat limited (Figure 3 and Table 1). Even spotting of the antibody is critical for proper 
interaction with analytes and subsequent reading of the slide.  Following blocking of free microarray surfaces 
to reduce nonspecific binding (and improve signal to background ratio), lysate bathes the entire slide.  
Detection and quantification of an interaction between the capture antibody and analyte can be achieved either 
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by direct labeling or sandwich assay, as mentioned above.  The advantage of direct labeling is the 
simultaneous measurement of many analytes and a requirement for only a single antibody (the capture 
antibody).  However, uneven labeling of all proteins and the chemical alteration of the labeled protein is a 
source of false positive and high background signals.  On the other hand, a sandwich assay employs two 
antibodies, a capture antibody and a detection antibody.  The detection antibody binds to a protein which is 
already immobilized to the surface via the capture antibody.  Subsequently, a fluorescent-labeled secondary 
antibody associates with the capture antibody allowing for detection and quantification of the signal. The 
sandwich assay avoids labeling of the sample and ensures more accurate and specific detection of a positive 
signal.  In turn, a limitation is the requirement for two high quality antibodies.  Identification of high quality 
antibodies is a common theme for all protein microarrays and poses a challenge beyond identifying antibodies 
suitable for Western Blotting which detects denatured proteins.  In either case (direct-labeling or sandwich 
assay), slides are analyzed using readers which are fairly common equipment in many labs today.  An 
alternative to fluorescent detection is the planar wave guided technology by Zeptosens which offers increased 
signal sensitivity and lower background. However, this methodology requires specialized instrumentation and 
the proprietary technology makes the assay more expensive. 

 
Meso Scale Discovery (MSD)  
 Meso Scale Discovery (MSD) is a multi-array technology which utilizes electrochemiluminescent 
detection of antibody-analyte interactions (www.meso-scale.com).  Its main advantage is the ability to measure 
a few proteins (up to 10) in large number of samples (96 per plate) (Figure 3, Table 1).  Capture antibodies are 
bound to the surface of the wells of a 96-well plate.  Each well can accommodate up to 10 distinct antibodies at 
defined locations (multi-spot). Lysate, supernatants, etc. are incubated in the well followed by the addition of a 
capture antibody containing a proprietary SULFO-Tag.  Electrochemical stimulation is then initiated by carbon 
electrodes located in the base of the microplate.  Activation of SULFO-Tags within close proximity to the 
electrode results in the emission of light which is read by the specialized MSD reader.  The reader can process 
a plate in 1-3 minutes and does not involve any fluidics.  One drawback is the inability to re-read plates, if 
desired, as the signal is significantly reduced after the plate has been read once.  The assays are quite sensitive 
(to near 10 attamole for some analytes) and have a dynamic range of approximately 5 logs.  However, because 
of the specialized nature of the MSD plates, the customer is limited to targets available from the company, or 
alternatively developing their own plates.  The MSD reader, plates and reagents are quite specialized and come 
with appreciable cost.  
 
 
xMAP thechnology  
 xMAP technology developed by the Luminex Corporation (www.luminexcorp.com) is a bead-based 
assay which allows for the simultaneous analysis of up to 100 different analytes from a single well.  
Microspheres (5.6 micron polystyrene beads) are internally dyed to generate up to 100 distinct spectral 
signatures.  Each uniquely identified bead can in turn be coupled to a different capture antibody (or enzyme 
substrate, DNA, receptors, antigens, etc.).  The distinctly conjugated beads can then be mixed (multiplexed) 
and incubated with a single sample. Next, a mixture of biotinylated detection antibodies is added which are 
able to interact with analytes to form a sandwich assay on the surface of the bead, and a fluorescently labeled 
reporter molecule (StreaptAvedin PhycoErythrin or SAPE) binds the detection antibody allowing for detection 
and quantification.  A flow cytometer-based instrument equipped with two lasers and associated optics excite 
the dyes and allows for quantification of the fluorescent signal representing each analyte. The red diode 
(635nm) laser excites and identifies the bead as one of 100 distinct signatures.  The green diode (532 nm) laser 
simultaneously excites the fluorescent reporter tag bound to the detection antibody, with the resultant amount 
of green fluorescence proportional to the amount of analyte captured in the assay. 

 The theoretical multiplex capabilities of xMAP technology are currently unparalleled. 
Theoretically, it can measure 100 proteins in each 96 samples (Figure 3, Table 1). In practice, however, there 
are several limitations with regard to the number of targets which simultaneously can be evaluated including 
antibody cross-reactivity, natural protein abundance, and antibody competition for protein complexes [41]. A 
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further advantage using bead suspensions in liquid relative to planar microarrays is the fast reaction kinetics 
and the high surface-to-volume ratio which leads to better washes, and homogeneous chemical reactions. As 
with other antibody-based assays, scientists are limited to commercially available targets, although several 
vendors currently provide a growing list of analytes. The vacuum-based protocol and plate-reading time is 
moderately time-consuming and limits the number of plates that can be processed.  However, advances 
including the use of magnetic bead technology and automated assay/readers promise to couple the tremendous 
amount of data per well with the ability to increase the number of plates measured. The xMAP technology 
requires a specialized bead-reader, although a similar technology has also been developed by Becton Dickinson 
and Company (Cytometric bead array) which utilizes a more typical FACS instrument.  
   
Reverse Phase  
 Reverse phase assays also utilize an antibody-based approach, but in contrast to capture microarrays, 
the cell lysate itself is immobilized on a solid support (typically a chemically-treated slide or membrane).  A 
real strength of this approach is that multiple lysates (dozens to several hundreds) corresponding to different 
treatments or conditions can be arrayed and processed on a single slide (Figure 3, Table 1).  The entire slide 
can be probed with a single antibody, or alternatively, distinct individual primary antibodies can be 
compartmentalized at discrete locations.  A labeled secondary antibody binds the capture antibody allowing for 
detection and quantification.  Reverse phase arrays only require a single antibody for detection, which is an 
advantage over the necessity to identify two reliable antibodies as is the case for sandwich assays.  However, 
the signal which is generated by reverse phase represents the sum of specific and non-specific antibody 
binding, and thus is very dependent on the quality of the antibodies being used (an issue avoided by Western 
blotting, in which individual proteins are separated).  The presence of all cellular proteins bound to a surface 
also carries with it issues of specificity (cross-reactive antibodies can result in false-positive signals) and 
decreased signal to noise ratio. 
 
Table 1: A partial list of commercial and generic high-throughput assays for protein-based measurements 

ASSAY 
MULTIPLEXING 

SCHEME 
CAPTURE 
SCHEME 

DETECTION 
SCHEME 

Size of  
SAMPLES 
(per run) 

Size of 
SIGNALS 
(per run) 

ELISA 
(several brands) 

Multi-wells 
(96 or 384) 

Sandwich 
antibodies 

Fluorescent or 
Enzymatic 

100 / plate 1 per well 

In-Cell Western 
LICOR 

Multi-wells 
(usually 96) 

Fixed Cell and 
single antibody 

Fluorescently 
labeled 

Antibody 
100 / plate 1-2 per well 

Protein Arrays 
(several brands) 

Planar Array 
slides/membranes 

Sandwich 
antibodies 

Fluorescently 
labeled 

Antibody 
1 / slide 

~100 per slide 
(Ab pair  limited) 

Protein Arrays 
on multi-wells 
(several brands) 

Planar Array 
slides/membranes on 

multi-wells 
(usually 96) 

Sandwich 
antibodies and 

different sample 
per well 

Fluorescently 
labeled 

Antibody 
100 / plate 

~10 spots/well 
(spot size 
limited) 

Protein Arrays 
Reverse Phase 
(several brands) 

Planar Array 
slides/membranes 

Spotting and 
single antibodies 

Fluorescently 
labeled 

Antibody 
1000s / slide 

Usually 1 per 
slide 

Protein Arrays 
Reverse Phase 
on multi-wells 
(several brands) 

Planar Array 
slides/membranes on 

multi-wells 
(usually 96) 

Spotting and 
single antibodies 

per well 

Fluorescently 
labeled 

Antibody 
~10 spots/well ~100 per plate 
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Protein Arrays 
Meso Scale 
Discovery 

Planar Array 
on multi-wells 
(usually 96) 

Sandwich 
antibodies and 

different sample 
per well 

Electrochemi-
luminescent 

labeled 
Antibody 

100 / plate 
~10 spots/well 

(spot size 
limited) 

Protein Arrays  
Zeptosens 

Planar Array on slides 
Antibody or 

Peptides 

Antibody w/ 
Planar Wave 
Technology 

32 / chip up to 6 per chip 

Protein Arrays 
Reverse Phase 

Zeptosens 
Planar Array on slides 

Direct attachment 
(spotting) 

Antibody w/ 
Planar Wave 
Technology 

200 / chip but 
scalable 1000s / 

run 
1 per chip 

Bead-Based 
(Luminex or  

Cytometric Bead 
Array) 

In suspension 
bead particles 
on multi-wells 
(usually 96) 

Sandwich 
antibodies 

Fluorescently 
labeled 

antibody 
100 / plate 

~30 per well 
(Ab pair  limited) 

Flow Cytometry 
(several brands) 

Individual vials or wells Fixed/Live cell 
Fluorescently 

labeled 
antibody 

1 per vial or 100 
per well 

up to 4 signals on 
1000s of single 

cells. 

 

3. ORGANIZING AND ANALYZING DATA   

 The tremendous amount of data obtained through these high-throughput approaches necessitates an 
organized system of data storage and handling. Context specific information (e.g. conditions under which the 
data was obtained, protocols used, cell type, etc) should accompany the experimental data itself. A popular 
approach to storing data (widely used in genomics) is relational database management systems (RDBMS). In a 
relational database, the subdivision of data and its storage follows a predefined schema, which allows one to 
identify and maintain links between disparate pieces of information. However, this approach comes at the price 
of limited flexibility: it is difficult for a relational database to accommodate frequent changes in data formats 
and to incorporate unstructured information. Such changes and adaptation may be common during the 
experimental process and thus should be considered when deciding on system for data storage. There are a 
number of RDBMS type databases adapted for proteomics data, such as SBEAMS—http://www.sbeams.org—
or Bioinformatics Resource Manager ([42]). In order to overcome the limitations of RDBMS, we have 
developed DataRail, a free and open-source (http://code.google.com/p/sbpipeline/) MATLAB 
(http://www.mathworks.com/) toolbox for data management which stores, processes and visualizes 
experimental data. DataRail supports both scripting and GUI-based interaction, and incorporates a variety of 
data processing algorithms (normalization, discretazation, scaling, etc.) and visualization routines. The 
information derived from a set of experiments is organized into a structure called a compendium, which 
consists of multiple n-dimensional data arrays. The algorithms and parameters used during data processing are 
stored with each array to maintain a record of the provenance of the data [43].  
 Besides its flexibility, the strength of DataRail is its the ability to link the data to mathematical models. 
Data is imported and exported using a MIDAS format (Minimal Amount of Information for Data Analysis in 
Systems Biology), a derivative of the MIACA (Minimum Information About a Cellular Assay, 
http://miaca.sourceforge.net/) format. In addition, import of the data generated by disparate devices (e.g. 
Luminex reader, ELISA, etc.), as well as export to specific modeling tools (CellNetAnalyzer ([44]) and the 
differential-equation based modeling package PottersWheel-http://www.PottersWheel.de/) are possible (see 
Figure 4). 
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Figure 4: DataRail Workflow. DataRail helps to close the iterative loop between measurements, modeling and generation 
of hypothesis characteristic of systems biology (see Figure 3). Experimental measurements are first converted into a 
MIDAS format and then used to assemble a multi-dimensional primary data array. Different algorithms transform the 
data to create new data arrays (orange) that can then be modeled using internal (full-line boxes) or external routines 
(dashed boxes) [SaezRodriguez2008].  
 

High throughput data sets are inherently difficult to interpret solely based on inspection and intuition. 
Thus, mathematical analyses can help to extract information which is not readily apparent. There are two main 
approaches: by strictly studying the data itself in a hypothesis-free manner using 'data-driven models' ([45]), or 
by comparing the data to a priori biological knowledge encoded in a mathematical framework ([32]). 

3.1. Data-driven models 

 Data-driven approaches to data analysis encompass several methods derived mainly from machine 
learning and statistics. Methods of machine learning follow one of two paradigms: supervised or unsupervised 
learning [46]. In supervised learning, such as the support vector machine (SVM) algorithm, a set of objects 
(e.g. drugs) with certain properties (e.g. their effect on intracellular signals) are assigned to different groups 
(e.g. toxic or non-toxic). Rules are constructed which link the properties to the groups. These rules can then be 
used to classify objects whose class is unknown. For example, one could train a classification system with 
information (e.g. based on intracellular signals) from drugs known to be either toxic or non-toxic, and then use 
this system to screen new compounds with unknown toxicity [47]. 
 In unsupervised learning, there is no information about which group each object (e.g. drug) belongs to, 
and therefore, one tries to define such groups (called clusters) based on similarities. One application of 
clustering is to organize signaling responses based on their similarities ([45]). Another method of unsupervised 
learning is based on the computation of principal components, which transforms the values of a single 
measurement into combinations of measurements capturing the maximum of data variability. As an example, 
instead of considering individual phosphorylation of particular proteins [48], one considers the combined 
phosphorylation of groups of proteins [45]. This approach has the additional feature that it reduces the 
dimension of the data. Principal Component Analysis (PCA) can be helpful to obtain biological insight. Using 
signaling profiles, PCA was employed to qualitatively discriminate apoptotic cell fates ([45]). Partial Least 
Square Regression (PLSR) is another technique similar to PCA. However, in PLSR, the data is structured into 
independent and dependent variables (inputs and outputs), whereas in PCA there is only one set of data. PLSR 
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reduces the inputs and outputs to their principal components and then identifies a linear solution that relates the 
former to the latter ([45]). PLSR not only provides biological insight but can also be used to predict the results 
of new experiments. Multiple Linear Regression (MLR) is a technique used to extract correlations between 
inputs and outputs and can be viewed as simplified PLSR. In MLR, the linear solution is computed directly 
between the measured variables. It does not reduce the components as PLSR does, but on the other hand, the 
resulting correlations are links between experimentally measured variables, and therefore the results are easier 
to interpret. For example, the results of MLR can be visualized as a pathway map that connects phosphoprotein 
activity to cytokine release [41]. Therefore, MLR can be used as a means to reconstruct the network topology 
from the experimental data. There are also more sophisticated methods to construct pathways maps out of data 
that constitute a field known as reverse engineering ([49]), which has been extensively applied to gene 
regulatory networks ([49]), and to a lesser extent to signaling networks [50, 51]). 
 In addition to DataRail, a number of tools are available to perform data-driven analyses, including the 
free open source systems R/Bioconductor [46], as well as commercial software such as MATLAB specific 
toolboxes.  
 

3.2. Topology-based models  

 The methods described above make use of only the data itself, and in some cases, a classification 
scheme (categorization of objects into classes in the case of supervised learning). Knowledge accumulated 
from decades of research and gathered in the form of thousands of scientific publications is not utilized. In 
order to take advantage of this vast resource, an in-silico replica of the current knowledge of the signaling 
system under consideration can be generated. This model can then be interrogated with respect to its ability to 
reproduce the experimental data in order to obtain mechanistic insight. There are several mathematical 
formalisms which can be used to describe signaling networks, varying in the level of detail they incorporate. 
An extensive review is out of the scope of this chapter, but we will describe the most popular approaches and 
refer to reviews for further reading.  
 Probably the simplest description of a signaling network is what is known in mathematics as a graph: 
each species (typically proteins) is represented as a node, and the nodes are linked with edges (“lines” 
representing the interactions). Using this simple description, one can unravel important structural properties of 
the network such as the presence of clusters of proteins (potentially involved in common biological functions), 
or to identify elements which are highly connected (known as hubs) representing central elements of a 
signaling network [52, 53]. 
 Directionality and sign (positive or negative) of the arrows (defining the effect between nodes) leads to 
interaction graphs which capture the direct dependencies among species (see Figure 5). This description allows 
a useful analysis in terms of examining networks and data: One can compute the paths from any species A to 
any other species B. Four possibilities exist: the paths are all positive, all negative, mixed positive and 
negative, or there is no path. Accordingly, the species A can be classified with respect to B as activator, 
inhibitor, ambiguous, or non-affecting. By comparing the possible connections (positive, negative, ambiguous) 
between two proteins with the experimental data, one can identify consistencies and discrepancies, thereby 
building a model which best represents the cellular system [54]. For example, in the case of an intervention in 
which a particular protein A is blocked (e.g. with an inhibitor), if the activity of a different protein B increases, 
A cannot have a direct positive effect on B. 
 

 
Figure 5. Different representations of pathway topology in mathematical terms. 
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 In cellular networks, an interaction (edge) often represents a relationship among more than two species 
(nodes). In an interaction graph, the interpretation of such cases can be ambiguous: if two kinases both have a 
positive effect on a third C, does it mean that either of them can activate C, or rather that both together are 
required? The logical gates AND (for the latter case) and OR (for the former) can be used to distinguish the 
possibilities. Thus, by including some additional information about the logic of the signal propagation, one 
obtains a more accurate description. This type of refinement of interaction graphs is called interaction 
hypergraphs and is the framework for Boolean (or logical) networks (see Figure 5), in which all states have a 
discrete value (in the simplest case, either ON or OFF) [54].  
 Within this framework, it is possible to test the consistency between the network topology and 
experimental data across different cell types and conditions. Measurements of protein activation under different 
conditions can automatically be compared with the predictions of a model based on a certain topology. By 
comparing the models with data from different cell types, one can uncover significant differences in the 
signaling networks. Furthermore, experimental data that can not be reconciled with the a priori knowledge 
encoded in the maps suggests gaps in our current knowledge that point to potential new connections [41].  
 Additional insight can be unlocked by constructing and subsequently analyzing detailed, mechanistic, 
kinetic models. Here, one considers the individual chemical processes underlying signaling events, and defines 
the reactions consuming and producing species, leading to balances of their concentrations. This is typically 
encoded as a set of ordinary differential equations (ODEs) which describes the time-dependent concentration 
of the protein species as a function of kinetic parameters and initial concentration [Aldridgeetal2006]. 
However, due to the large number of unknown parameter values and entities (enzymatic activities, binding 
constants, etc), modeling a very large network in a mechanistic manner is an arduous task. If large amounts of 
data are available, one can try to calibrate the model by finding parameter values so that the model optimally 
describes the data. This is, however, a very challenging problem [55, 56], so that fully calibrated models are 
typically available only for small systems or subsets of systems. 
 A wide range of methods are suitable for the analysis of ODE models: analysis of nonlinear behavior 
(e.g. oscillations), calculation of sensitivities (the variations of the activation level of certain proteins upon 
changes in the model parameters, which reveal key parameters in the signaling network, of importance for drug 
discovery) or finite-time Lyapunov exponents (which discern how initial transients in a signaling network 
determine alternative cell fates) [32, 56]. 
 Many computational tools are now available which allow scientists to establish, simulate and analyze 
models. These include a number of tools devoted to graph-based methods (e.g. Cytoscape, visANT, etc.; see 
Aittokallio for reviews [52]), others to analyze biochemical systems from a qualitative perspective 
(GNA:[57],GINsim:[58],CAN:[44]),  and a larger number are suitable for kinetic modeling ([59, 60]). Most of 
these tools provide support to set up and analyze the models using user/interfaces and/or programming of 
scripts. The standard formats CellML and specially SBML ([61]) are widely used to allow an exchange of data 
between different programs. Information to begin to establish specific models are widely available in the 
literature and on the web including vast resources about signaling pathways, interactions between molecules 
(binding, substrate/enzyme relationships, etc.) and cell-specific information. Data mining tools provide an 
invaluable resource for facilitating the retrieval of this information (see chapter on data mining). 
 

4. CONCLUSION 

 Knowledge is power.  Scientists have long sought to extract as much information as possible from their 
experiments in order to maximize understanding of the systems they study.  This effort is demonstrated by the 
wide range of genomic screening approaches taken by academics and industry such as the much celebrated 
Human Genome Project and the ongoing International HapMap Project. Several computational tools have 
evolved around those datasets that seek a global view of biological systems.  
 When it comes to protein-based measurements, scientists have been reluctant to follow similar 
approaches as generating large proteomic datasets represents a tremendous (if not impossible) task using 
standard biological assays such as Western blots or ELISAs [62, 63]. However, the recent high-throughput 
protein platforms such as the ones described in this chapter have provided scientists with the opportunity to use 
computational models to harvest the power of protein and phospho-protein based measurements [41, 47, 48]. 
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That said, despite the fact that current protein datasets lack the synoptic scope of whole genome sequencing, 
phosphoprotein measurements incorporate knowledge much closer to a cell’s biological function. 

The pharmaceutical industry has a vested interest in applying a Systems Biology approach to the drug 
discovery process. For target identification, the interconnectivity of biological pathways can be incorporated 
into models and optimal novel targets identified. Scientist can investigate whether a single target approach is 
preferential to multi-targeting approaches which may be carried out either by co-drugging schemes or “dirty” 
inhibitors. For lead compound discovery, cell-based protein screens can complement chemical screens for 
understanding the effects of “on-target” inhibition on the rest of the cellular network. For toxicity studies, 
compounds can be classified as toxic or non-toxic based on their effect on the intracellular and extracellular 
protein space. The impact of such knowledge on the success or failure of a drug therapy is self-evident.   

As the size of protein-based datasets increase, it is apparent that computational tools are becoming 
more and more invaluable for understanding cell biology. However, combination of a mathematical model with 
protein datasets is not a trivial task and certain limitations should be considered prior to the implementation of 
a model or to the generation of an expensive dataset. For example, correlation algorithms such as PCA, PLSR 
or MLR cannot handle the time space as efficiently as an ODE model. ODE models in turn cannot handle large 
topologies (because they are computationally expensive) and require time-dense, high quality experimental 
data. Boolean models on the other hand, can handle large topologies but with limited description of the time 
domain. Other algorithms, such as SVM, can optimally handle classification problems (e.g. toxic vs. non-toxic 
drugs) but require a sizable training set.  

For a given proteomic platform, two are the main reasons that limit the size of protein datasets: Bench 
time and cost. On the other hand, they are many reasons for a large dataset: time points requirements, dosing 
concentrations, measured signals, many stimuli, inhibitors (especially for compound screening), and number of 
replicates. This is actually a cost/benefit optimization problem where the several dimensions of the dataset 
(time, inhibitors etc) should be designed to work in harmony with the computational model keeping the total 
experimental cost down. The complexity of both experimental approaches and computational algorithms also 
highlights the importance of interdisciplinary collaborations.   

The coupling of high throughput proteomic approaches with advanced computational models promises 
to vastly increase our understanding of biological systems and their behavior. It will be up to the 
pharmaceutical industry to implement this knowledge in order to develop more efficient and effective drug 
development strategies.  
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