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1. INTRODUCTION

Major advances in high-throughput assaypabdity coupled with increasingly sophisticated
computational methods for systematic data anahei® provided scientists with tools to better uatdard the
complexity of biological systems. This potent conation of novel experimental and analytical appheac
should in turn lead to more effective therapeugsign. Most high-throughput experimental techn@egan
generally be categorized based on their readoetsorgics, transcriptomics, metabolomics and protesmi
The increasingly interdisciplinary nature of scierf@as also given rise to complementary disciplgweh as
bioinformatics, systems biology, and computatiob@logy, which are charged with incorporating and
interpreting the vast amounts of experimental dadh generating hypotheses of biological signifiearithat
said, despite the fact that all these high-througtgssays are based on different readouts (DNA, MRN
metabolites, or proteins), the biological inforroatithat they capture is highly overlapping. Howe\since
each experimental assay represents a differenbagipr scientists should be able to understandrttitions
and advantages of DNA, mRNA, metabolomic or protecapproaches and use them appropriately depending
on the knowledge that they want to obtain. Esplycgitical for the pharmaceutical industry is tbeupling of
experimental approaches with computational algm$thThese decisions can significantly impact discgy
reduce research and development costs, minimizg fdilures by predicting drug efficacy and toxicignd
ultimately impact a company's competitiveness endglobal market.

The primary objective of a therapeutic strategtoiselectively alter targeted protein(s) or path{say
within diseased cells in order to ameliorate an esitéd phenotype (unrestrained cell proliferation,
inflammatory cytokine release, etc.). Ideally, etipathways within the diseased cells, as wellllaseHular
functions in healthy cells, would remain unaffectadthe therapeutic approach. Thus, target seledt a
multi-faceted problem with several levels of comxjie 1) cellular pathway(s) or extracellular targ@eed to
be selected 2) associated bio-markers need todmtified which distinguish healthy and disease phgres
and ideally are capable of reflecting pharmacokigiefficacy and safety, 3) the risk-benefit of difint
therapeutic approaches should be considered: smoddicule inhibitors, biologics, siRNA-derived thpeaitics
(transcriptional targets), etc., and 4) a selectidteria needs to be identified for screening commis against
a desired target. Addressing these initial quastitnowever, is just the beginning of the drug aliscy
journey; drug metabolism might render the pharnagiolapproach ineffective, genetic and epigenetisgn-
to-person variability might causéiosyncratic toxicity (i.e. a term that signifies the unknown causehef t
adverse drug effects), and the overlapping cellpddinway architecture might result in even vergstile on-
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target compounds having unwanted effects on the sardifferent cells [1, 2].

In this complicated world of drug development, Hitgroughput technologies (genomics,
transcriptomics, metabolomics and proteomics) Ha@ome invaluable tools for tackling the complexfty
the biological systems and optimizing therapetiategies. In the following section, we will expdodifferent
technologies and their niches in the area of dexgkbpment, efficacy, and toxicity.

Genomicstechnologies:

Several diseases are strongly correlated withifspgenomic mutations (Huntington’s disease, kick
cell anemia, etc). As a general concept, cancagrpssion can be facilitated by gain-of-functiontaions in
oncogenes or loss-of-function mutations in tumasressor genes [3]. In certain instances, dozegsmdmic
aberrations are associated with the developmeiat sihgle cancer type [4]. Specifically, in hepatadar
carcinoma (the most common type of liver cancerjogeic aberrations have been found in several pretei
including TP53, TGFb, Ras, and Rb, EGFR, ERbB2 merthbers of the Wnt-signaling pathway [5-9]. Thus,
understanding the genomic basis for development afisease can significantly impact the focus of
pharmaceutical therapies. It is now evident, tlestognics have moved therapeutic strategies away fieing
phenotype specific (i.e. chemotherapy for highlgliferative cells), and focused them on pathwaycsjme
targets (i.e. anti-EGFR or anti-VEGF treatment$.etc

Specific examples of the role that persondospn genetic variability plays in drug efficacywlalso
been demonstrated in recent years. The epiderroailtly factor receptor (EGFR) tyrosine kinase intaibi
Gefitinib represents just a case. Gefitinib oréiy exhibited significant clinical response in pril0% of
patients with non-small-cell lung cancer, a modesponse rate [10]. However, when primary tumoysmfa
group of patients was screened for EGFR gene ronmtieight of nine gefitinib-responsive patientsl ha
somatic mutations in the EGFR gene [11]. This eXarmpgenomic information coupled with drug meclsami
underscores the importance of understanding uridgrbyenetic anomalies in order to better predicetivar a
therapy will be effective. Individual genetic vaikty of more general biological mechanisms invedvon
drug metabolism, distribution, and clearance can aifluence drug efficacy. For example, polymosptms in
the P450 drug-metabolizing enzyme among populattams generate significantly different profiles irugl
metabolism [12, 13].

In order to better understand and predict ragividual's response to a drug therapy, genomics
approaches provide valuable information regarding:

¢ identification of critical genomic aberrations whistrongly correlate with a specific disease, and i
turn, implicate associated molecular pathways wimety be appropriate for therapeutic intervention

(i.e. targeted pathway(s) identification).

¢ identification of genetic variations among the plagion which indicate the likely success rate of a
therapeutic intervention (i.e. treatment identifica).

e identification of genetic variations in the biologl machinery required for drug metabolism,
distribution, and clearance (impact on efficacy tmdkcity).

The main approaches utilized for genomic discovary whole genome sequencing (i.e. Sanger
sequencing, 454 Life Sciences) which entail sequgrtbe entire genome without bias towards parmicgene
sequences, argenotype analysis which is focused on specific genes or genomictlona. Further, genotype
analysis may evaluate the entire raw sequence ritplar genes or, alternatively, identification 8fngle
Nucleotide Polymorphisms (SNPs) located at discgeteomic locations on a population level. New high
density DNA microarrays and bead-coupled univefse) arrays have further enabled SNP analysis teemov
towards a whole-genome approach [14]. For furtletails regarding the application of genomic tedbgies
to drug development, we direct the reader to sévevaews [4, 15-18].

Transcriptomic technologies:

Transcriptome analysis is based on the deteetnd quantification of mMRNA transcripts. The main
advantage transcript profiling provides, relatieegenomic approaches, is the ability to capturedimamic
response of a hiological system under differendidmns by measuring the expression profile of gands of
MRNA transcripts. There are approximately 25,000é genes, yet only a small percentage (~20%tiigeac
at any given time. Transcriptome technology prositte researcher with a perspective closer touhetibnal
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response of the biological system. The technolbgilzdforms for transcript profiling are very similto those
used for genomic analysis and similarly, can bedsided into two categories: approaches that evalad
MRNA without prior bias regarding the sequence egial analysis of gene expression (SAGE)), aradyais
that is focused on a predefined set of genesN& microarrays). Even thought SAGE and DNA micrags
are based on different technologies, they have lamonstrated to correlate well in terms of mRNA
guantitation, especially in the case of highly egsed transcripts [19]. Current technologies alimy density
DNA microarrays to contain ~45,000 unique trangesrgind genes that span the entire genome, withradeve
commercial DNA microarrays now available at lownmderate cost (Affymetrix, Agilent, GE Healthcare,
Applied Biosystems etc). Results from high thrqugh transcript profiling approaches are frequently
confirmed using lower throughput assays such asBBR or Northern blotting.
Similar to genomic approaches, transcriptoteichnologies have facilitated the identification of
putative targets and pathways, as well as providdigtions regarding drug efficacy and toxicity:
e transcript analysis can identify mRNA transcripisitt are strongly correlated with a disease (and
indicate associated molecular pathways suitabléhfmnapeutic intervention).
¢ identification of on-target and off-target drug esffs throughout the whole genome which may
influence drug efficacy and toxicity
e transcriptomic profiling of the biological mechamis engaged in drug metabolism, distribution, and
clearance
For further information regarding current DNA miarcay products and applications, the reader may
refer to an excellent recent review on “Toxicogeioitechnologies to Predictive Toxicilogy” by the tidenal
Research Council of the National Academies [20hddition to genomic and transcriptomic profilisgyveral
related areas of study show promise in furtherirgunderstanding of drug efficacy but are beyomrdsitope
of this chapter. These include technologies inviblne detection of DNA methylation [21], microRNA
technologies, and CpG microarrays [22].

M etabolomic technologies:

Metabolomics refers to the study of metabslifiee. products or small molecule intermediateshef
biological processes) as they exist in the calsue, organ, or animal as a whole. Biological samicluding
cellular supernatants, blood, plasma, saliva, uramal stool provide the source material which fEclly
analyzed using nuclear magnetic resonance (NMRktsmeEopy or mass spectrometry (MS). These
technologies are capable of evaluating a wide rafgmetabolic components (for example disease-Bpeci
metabolome changes). Metabolites have also besthasbiomarkers in order to quantify the toxieef§ of
drugs. For a complete review of metabolomic apfiims, the reader can refer to metabolomic focused
reviews [23-25]

Proteomic and Protein activity technologies:

Proteins are the ultimate executors of celldlarction, and thus are directly responsible for a
biological phenotype [26-30]. Proteomics is thedgtaf the expression, modification and activitypobteins in
order to better understand a biological systemcdmparison to genomic or transcriptome approaches,
proteomic profiling involves several unique chafjes: 1) screening of the entire proteome in a maginélar
to whole genome or transcriptome is currently ingifgle/impractical 2) the proteome cannot be defingidg
a constrained list of proteins (similar to genomp@raaches) because of the wide range of post-ttémsél
protein modifications which in turn can produceinite combinations that are ultimately responsifoliethe
phenotype 3) protein modifications such as phogpéiion, ubiquitination, methylation, sulfation or
proteolytic cleavage (which are the main modulatifrgrotein activity) cannot simultaneously be meed
from a single assay [31] 4) protein abundance feogingle cell population can span more than siermsrof
magnitude, creating a bias towards high-abundamoteips, 5) as compared to DNA-based experiments,
protein experiments lack a "protein-amplificatioféature (similar to PCR for genes) that makes prote
amount valuable, 6) the ability to broadly analya®tein binding affinity (the driving force in sigh
transduction) is not possible on a high-througtgmate.

As with the previously described genomic arahdcriptomic techniques, protein analysis can be
divided into two separate approaches: one that snakex priori assumption about protein composition or




4

structure (i.e. 2D-PAGE and mass spectrometry (N&ghnology), and another which is based on a
predetermined set of target proteins (i.e. affihiédged approaches). Using a 2D-PAGE approachrotont
lysates are separated based on their physical piegpémass and charge). Diseased (or drug trdgsates)
are identically processed and comparative anapaiformed to evaluate protein expression betweeriviio
samples. The MS approach, which often complemdms2D-PAGE approach, entails protein digestion to
generate a mixture of peptides which are then aggérand analyzed using liquid-chromatography-amlipl
mass spectrometry (LC-MS). Depending on specifigsizal properties, each peptide generates a unique
signature (i.e. MS-MS spectra) that can be idettifty a semi-automated search against proteomabases.
This approach, known as shotgun proteomic analyseshles the automated characterization of hundreds
proteins in a complex mixture. Both 2D-PAGE and Is§$roaches have the disadvantage of being biased
towards high abundance proteins and can only psacesry low number of samples at a time.

Affinity-based assays utilize capture entities. (antibody, peptide, nucleotides, etc.) to mezidally
bind target proteins of interest. In contrastite 2D-PAGE and MS approaches, affinity based addaysify
proteins that can be recognized and captured by dfiinity molecules. Thus, a well developed affjrassay
provides a high degree of specificity. A criticabfure of affinity-based approaches is the ahititguantitate
both protein concentration and protein activityformation which is essential for computational mede
Antibody-based detection approaches are among tis¢ commonly used for high throughput protein asialy
and therefore will be more thoroughly describedrat this chapter.

High-throughput measurements of protein activity capture the dynamic changes in intracellular
signals, thus generating large amount of dataghedmpass high-quality protein-level informatiohisTdata
carries valuable information regarding propagatrsignals, a process known to be non-linear axdhhi
dynamic. Time-dependent and non-linear processes haen well-studied in many fields of engineeriag,
discipline known as dynamical systems. It is aptiteéd that similar methods can be utilized to extvaluable
information from protein activity measurements &sctibe the biological phenotype. Thus, the contluinaof
high-throughput data under different conditionsrigmbations) and mathematical modeling (see Figlre
supported by bioinformatics tools is a paradignthef way in which a systems biology approach care fzav
impact on drug development, efficacy and toxicR®,[33].

Measure

Figure 1. A systems biology approach for high-throughput protein-based datasets: The Modify-Measure-Mine-Model
paradigm (Aldridge et al., 2006)

2. EXPERIMENTAL PLATFORMS FOR PROTEIN ACTIVITY
QUANTIFICATION

This section describes high-throughgoud multiplexed protein activity-based measuremantells.
First, we will introduce the basics for high thrbpgit protein measurements. Then, we will focus elecs
platforms that are based on antibody detectionliahdheir major advantages and limitations. Thisot an
exhaustive list of all proteomics platforms as thehnology is constantly developing and new assegs
continually emerging. Purposely, we will not dissusingle-cell based approaches (FACS, high content
screening/microscopy) since they are extensivelerad in other chapters of this book. Finally, wil w
introduce computational tools which can be usedHeranalysis of protein signaling datasets obthlmehigh
throughput approaches.



2.1: Affinity-based assays

Affinity-based assays utilize molecules wiilghhaffinity and specificity for the capture and@tion
of targeted protein(s). The most commonly used hiffinity molecules are antibodies, whose selegtiand
affinity for the targeted protein are critical fthe outcome of the assay. Despite the fact thabauayt
development and production is a well-matured ingustientists should be aware that a significamtentage
of antibodies often recognize more than one taagdtthus are not suitable or interchangeable feryeassay.
Assays are only as good as the antibodies availdbleaddition, when we discuss antibody-based
measurements of “protein activity” we are generadiferring to the phosphorylation state of the girotand
not to the actual protein activity. This is esplgieelevant for kinase molecules, in which phospftetion
state of a substrate is a good surrogate of kiresévity. However, discrepancies between kinase
phosphorylation status and activity are to be etqaeander varied conditions [34].

A. MULTIPLEXING SCHEME [:> B. CAPTURE SCHEME |:> C. DETECTION SCHEME
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Figure 2: The three main characteristics of a high-throughput affinity based assay. A: A multiplexing scheme in which
solid supports (e.g. microparticles [35], beads, spots, or wells) are obtain a unique identity. B: A capture scheme
immobilizes and/or isolates the protein of interest. C: A detection scheme generates a readable output which is linearly
correlated to the amount of the immobilized protein if interest.
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Three are three main characteristics of everyigfflrased assay (Figure 2):

1. An identification (multiplexing) scheme in which asolid support (individual wells, spots on glass, beads
etc) obtains a unique identity required for mu#iphg. A solid support not only contributes to the
multiplexability of the assay, but is also essdnfiie all steps in the assay including washes, ginot
separation and coupling, measurements etc. Thigiaridentity can be obtained by either:

o Spatially distributed 2D arrangements, where the individual coordinates on a 2D planeespond to
individual conditions (e.g. well “B2” in a 96/384Welates, spot with coordinates,n) on a printed
glass slide, or combination of botbtlf spot on the B2 well))

e Microparticlesin suspension where each microparticle has a unique physicaiadberistic (i.e. emits a
unique spectrometric signature, or carries a ungraphical signature — See figure 2A: In suspension
particles)

2. A capture scheme that aims to immobilize the protein of interesthe uniquely addressed solid support.
Three main approaches widely used for immobilizatiba protein of interest are:

o A capture antibody, peptide, or aptamer attachedsolid substrate (plate, slide, bead)

e Cell lysate directly spotted on a chemically dedivglass slide (usually known asverse phase
approach)

e Cells that are directly fixed on a support (usualya 96/384 well plate).
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3. A detection scheme that aims to produce a signal which ideally igdify proportional to the amount of the
protein captured on the support. Depending on thiiptexing and capturing scheme there are at least
four distinct categories of detection:

e Fluorescent-labeled detectiovhich can be either: (Direct labeling: samples are chemically labeled
with a fluorophore. Even though this approach hasessfully been applied to study cancer markers
[36], it has not been widely adopted because iblres chemical modifications of the samples which
may affect their biochemical properties (i§ngle-antibody approach: proteins that have been
covalently immobilized on a substrate are recoghibg a single antibody that is either directly
labeled, biotinylated (for binding fluorescent eftiavidin) or recognized by a species-specific
antibody (i.e. anti-goat fluorescent secondarybematy). (iii) Double-antibody approach (or sandwich
assay): the protein of interest is captured between amaivilized antibody and a secondary antibody
which can be either directly labeled, biotinylateccan be recognized by a species-specific antibody

o Enzymatic labeled detectiotypically a biotinylated secondary antibody isubhd by a streptavidin-
linked horseradish peroxidase which yields ampliftaromogenic products.

e Planar Wave Guide Technolagylhis technology, implemented by Zeptosens (wwptasens.com),
uses guided light passed over a thin film whichldeated below the detection antibody. The
electromagnetic field created by the propagatiotheflight can lead to measurements with 50 fold
increase in sensitivity compared to regular fluoees schemes.

o Electrochemiluminescent detectionhis technology, implemented by Meso Scale Discgv MSD
(www.meso-scale.com), is based on the electrichldtion of an oxidation-reduction cycle resulting i
emitted light. Similar to Planar Wave Guide Teclugyl, only labels proximal to the captured antigen
surface can be detected, resulting in minimal biamkgd signals.

A novel detection scheme recently reported is tloipity ligation procedure in which detection sis
can be generated by a PCR- type reaction. Thiy és&emsed on pairs of primers that are separataipled to
individual antibodies which recognize closely rethepitopes. Thus, when the antibodies bind thegets and
come in close proximity, a PCR reaction can geeeetDNA product which verifies the proximity and
presence of the antibodies ([37-40]).

2.2: Specific platforms for protein measurements
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Figure 3: High throughput proteomics platform comparison based on the number of samples and the number
of analytes that can be processed.

Protein Microarrays

Protein microarrays (or capture microarrays) empéoycapture antibody (alternatively: peptide,
nucleotide, etc.) which is covalently bound to idesl(or membrane) in an ordered manner; multipitiretit
antibodies may be affixed at separate locationghensame slide. Their main advantage is the altdity
measure dozens to hundreds of proteins in eachlsaaithough the total number of samples that can be
processes is somewhat limited (Figure 3 and Tahldexten spotting of the antibody is critical foroper
interaction with analytes and subsequent readintyeslide. Following blocking of free microarrayrfaces
to reduce nonspecific binding (and improve sigmalbackground ratio), lysate bathes the entire slide
Detection and quantification of an interaction betw the capture antibody and analyte can be achitheer



by direct labeling or sandwich assay, as mentioned above. The advantage of directlitapbas the
simultaneous measurement of many analytes and wreetgnt for only a single antibody (the capture
antibody). However, uneven labeling of all proteand the chemical alteration of the labeled pnoigia
source of false positive and high background sgnaDn the other hand, a sandwich assay employs two
antibodies, a capture antibody and a detectiorbaayi The detection antibody binds to a proteinctvlis
already immobilized to the surface via the capt@mébody. Subsequently, a fluorescent-labeled reteny
antibody associates with the capture antibody atigwior detection and quantification of the signéhe
sandwich assay avoids labeling of the sample asdres more accurate and specific detection of &iyeos
signal. In turn, a limitation is the requiremeat fwo high quality antibodies. Identification bigh quality
antibodies is a common theme for all protein mimag and poses a challenge beyond identifyindadies
suitable for Western Blotting which detects denaduproteins. In either case (direct-labeling ardséch
assay), slides are analyzed using readers whicHaatg common equipment in many labs today. An
alternative to fluorescent detection is the plamave guided technology by Zeptosens which offecseased
signal sensitivity and lower background. Howevhais imethodology requires specialized instrumeraiod
the proprietary technology makes the assay moreresiye.

Meso Scale Discovery (MSD)

Meso Scale Discovery (MSD) is a multi-array tedogyg which utilizes electrochemiluminescent
detection of antibody-analyte interactions (www.pgsale.com). Its main advantage is the abilityneasure
a few proteins (up to 10) in large number of sam 86 per plate) (Figure 3, Table 1). Capturebadlies are
bound to the surface of the wells of a 96-well@laEach well can accommodate up to 10 distinébadies at
defined locations (multi-spot). Lysate, supernataetc. are incubated in the well followed by thdition of a
capture antibody containing a proprietary SULFO-T&dectrochemical stimulation is then initiateddarbon
electrodes located in the base of the microplaetivation of SULFO-Tags within close proximity the
electrode results in the emission of light whiclhdad by the specialized MSD reader. The readepoacess
a plate in 1-3 minutes and does not involve aniits. One drawback is the inability to re-readtes, if
desired, as the signal is significantly reducedratie plate has been read once. The assaysitresepsitive
(to near 10 attamole for some analytes) and halymamic range of approximately 5 logs. Howevecaose
of the specialized nature of the MSD plates, th&amuer is limited to targets available from the pamy, or
alternatively developing their own plates. The M@Rder, plates and reagents are quite speciaizédome
with appreciable cost.

XMAP thechnology

XMAP technology developed by the Luminex Corpamat{www.luminexcorp.com) is a bead-based
assay which allows for the simultaneous analysisupfto 100 different analytes from a single well.
Microspheres (5.6 micron polystyrene beads) arermaily dyed to generate up to 100 distinct spkctra
signatures. Each uniquely identified bead caruin be coupled to a different capture antibodyegozyme
substrate, DNA, receptors, antigens, etc.). Thkénditly conjugated beads can then be mixed (mekexl)
and incubated with a single sample. Next, a mixtfrbiotinylated detection antibodies is added \whice
able to interact with analytes to form a sandwisbag on the surface of the bead, and a fluoregcahitled
reporter molecule (StreaptAvedin PhycoErythrin &iPE) binds the detection antibody allowing for ditmn
and quantification. A flow cytometer-based instamhequipped with two lasers and associated opticie
the dyes and allows for quantification of the fleseent signal representing each analyte. The rededi
(635nm) laser excites and identifies the bead asobd 00 distinct signatures. The green diode (582 laser
simultaneously excites the fluorescent reporterbimgnd to the detection antibody, with the resalemount
of green fluorescence proportional to the amourinaflyte captured in the assay.

The theoretical multiplex capabilities of xMAP beology are currently unparalleled.

Theoretically, it can measure 100 proteins in etlsamples (Figure 3, Table 1). In practice, howeere
are several limitations with regard to the numbletaogets which simultaneously can be evaluatetuiticg
antibody cross-reactivity, natural protein abundarand antibody competition for protein complexé¢s][ A




further advantage using bead suspensions in licgladive to planar microarrays is the fast reactioretics

and the high surface-to-volume ratio which leadbdtier washes, and homogeneous chemical reacians.
with other antibody-based assays, scientists angelii to commercially available targets, althouglvesal
vendors currently provide a growing list of anatytdhe vacuum-based protocol and plate-reading t&me
moderately time-consuming and limits the numbermplaites that can be processed. However, advances
including the use of magnetic bead technology andraated assay/readers promise to couple the taouen
amount of data per well with the ability to increahe number of plates measured. The xXMAP techgolog
requires a specialized bead-reader, although dasitechnology has also been developed by Bectokiiion

and Company (Cytometric bead array) which utilizenore typical FACS instrument.

Reverse Phase

Reverse phase assays also utilize an antibodygtzs@oach, but in contrast to capture microarrays,
the cell lysate itself is immobilized on a solidbport (typically a chemically-treated slide or meene). A
real strength of this approach is that multipleatgs (dozens to several hundreds) correspondidgfésent
treatments or conditions can be arrayed and predess a single slide (Figure 3, Table 1). Therergiide
can be probed with a single antibody, or altermdyiv distinct individual primary antibodies can be
compartmentalized at discrete locations. A labskzbndary antibody binds the capture antibodywitig for
detection and quantification. Reverse phase aways require a single antibody for detection, whis an
advantage over the necessity to identify two rédiamtibodies as is the case for sandwich asskygsvever,
the signal which is generated by reverse phaseesepts the sum of specific and non-specific antibod
binding, and thus is very dependent on the qualitthe antibodies being used (an issue avoided bgtiYn
blotting, in which individual proteins are sepajte The presence of all cellular proteins bouna tsurface
also carries with it issues of specificity (crosagtive antibodies can result in false-positivenaig) and
decreased signal to noise ratio.

Table 1. A partial list of commercial and generic high-throughput assays for protein-based measurements

Size of Size of
MULTIPLEXING CAPTURE DETECTION
ASSAY SCHEME SCHEME SCHEME SAMPLES SIGNALS
(per run) (per run)
ELISA Multi-wells Sandwich Fluorescent or 100 / plate 1 per well
(several brands) (96 or 384) antibodies Enzymatic P P
. . Fluorescently
MU | els) | G oy abeled | 100 piste | 1.2 perwel
Antibody
Protein Arrays Planar Array Sandwich Fluorescently . ~100 per slide
. S labeled 1/ slide e
(several brands) slides/membranes antibodies X (Ab pair limited
Antibody
. Planar Array Sandwich -
Protein Arrays slides/membranes on antibodies and Fluorescently 10 spots/well
on multi-wells ; . labeled 100/ plate (spot size
multi-wells different sample X o
(several brands) Antibody limited)
(usually 96) per well
Protein Arrays Planar Array Spotting and Fluorescently . Usually 1 per
Rever se Phase . . d A labeled 1000s / slide .
slides/membranes | single antibodies . slide
(several brands) Antibody
FF)\’re\O}SrgeAPri::gs indgsl?rEZlinpt\)rr?rxlles on Spotting and Fluorescently
. : single antibodies labeled ~10 spots/well  ~100 per plate
on multi-wells multi-wells or well Antibod
(several brands) (usually 96) P y




Protein Arrays Planar Array Sandywch Elect.rocheml- ~10 spots/well
. antibodies and| luminescent -
Meso Scale on multi-wells diff | labeled 100/ plate (spot size
Discovery (usually 96) ifferent sample abele limited)
per well Antibody
. . Antibody w/
Protein Arrays Planar Array on slides AntlboFly or Planar Wave 32/ chip up to 6 per chi
Zeptosens Peptides
Technology
Protein Arrays Direct attabmen Antibody w/ 200 / chip but
Rever se Phase Planar Array on slides . Planar Wave |scalable 1000s|/ 1 per chip
(spotting)
Zeptosens Technology run
Bead-Based In suspension
(Luminex or bead particles Sandwich Fluorescently ~30 per well
- - L labeled 100/ plate DL
Cytometric Bead on multi-wells antibodies . (Ab pair limited
antibody
Array) (usually 96)
Fluorescently . up to 4 signals o
Flow Cytometry Individual vials or wellg Fixed/Live cell labeled 1 per vial or 10 1000s of single
(several brands) . per well
antibody cells.

3. ORGANIZING AND ANALYZING DATA

The tremendous amount of data obtained througbetiégh-throughput approaches necessitates an
organized system of data storage and handling.e@bspecific information (e.g. conditions under gfhihe
data was obtained, protocols used, cell type, giopld accompany the experimental data itself. putar
approach to storing data (widely used in genonmggglational database management systems (RDBIMS).
relational database, the subdivision of data amdtibrage follows a predefined schema, which allomes to
identify and maintain links between disparate pegkinformation. However, this approach comesatgrice
of limited flexibility: it is difficult for a relatonal database to accommodate frequent changesténfakmats
and to incorporate unstructured information. Sutlanges and adaptation may be common during the
experimental process and thus should be considehet deciding on system for data storage. Thereaare
number of RDBMS type databases adapted for proteodata, such as SBEAMS—nhttp://www.sbeams.org—
or Bioinformatics Resource Manager ([42]). In order overcome the limitations of RDBMS, we have
developed DataRail, a free and open-source (http://code.google.caingipeline/) MATLAB
(http://www.mathworks.com/) toolbox for data managest which stores, processes and visualizes
experimental datdataRail supports both scripting and GUI-based interact&on incorporates a variety of
data processing algorithms (normalization, diszaian, scaling, etc.) and visualization routinghe
information derived from a set of experiments igamized into a structure called a compendium, which
consists of multiple n-dimensional data arrays. algerithms and parameters used during data priocease
stored with each array to maintain a record ofpiteenance of the data [43].

Besides its flexibility, the strength DfataRail is its the ability to link the data to mathematicendels.
Data is imported and exported using a MIDAS foriiMinimal Amount of Information for Data Analysis in
Systems Biology), a derivative of the MIACA (Minimu Information About a Cellular Assay,
http://miaca.sourceforge.net/) format. In additiamport of the data generated by disparate deviees.
Luminex reader, ELISA, etc.), as well as exporspecific modeling toolsGelINetAnalyzer ([44]) and the
differential-equation based modeling packdgmterswWheel-http://www.PottersWheel.de/) are possible (see
Figure 4).
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Figure 4. DataRail Workflow. DataRail helps to close the iterative loop between measurements, modeling and generation
of hypothesis characteristic of systems biology (see Figure 3). Experimental measurements are first converted into a
MIDAS format and then used to assemble a multi-dimensional primary data array. Different algorithms transform the
data to create new data arrays (orange) that can then be modeled using internal (full-line boxes) or external routines
(dashed boxes) [ SaezRodriguez2008] .

High throughput data sets are inherently difficalinterpret solely based on inspection and iraniti
Thus, mathematical analyses can help to extrastrirdtion which is not readily apparent. There arm nain
approaches: by strictly studying the data itseH imypothesis-free manner using 'data-driven mo¢jék]), or
by comparing the data #priori biological knowledge encoded in a mathematicah&aork ([32]).

3.1. Data-driven models

Data-driven approaches to data analysis encongmsral methods derived mainly from machine
learning and statistics. Methods of machine legrfidlow one of two paradigms: supervised or unsuged
learning [46]. In supervised learning, such asghpport vector machine (SVM) algorithm, a set ofeots
(e.g. drugs) with certain properties (e.g. thefedfon intracellular signals) are assigned toedédht groups
(e.g. toxic or non-toxic). Rules are constructedciwhink the properties to the groups. These rokas then be
used to classify objects whose class is unknown.eixample, one could train a classification systeitin
information (e.g. based on intracellular signatepf drugs known to be either toxic or non-toxicd dinen use
this system to screen new compounds with unknowicitg [47].

In unsupervised learning, there is no informatbiout which group each object (e.g. drug) beloogs t
and therefore, one tries to define such groupdeftatiusters) based on similarities. One applicatid
clustering is to organize signaling responses basetieir similarities ([45]). Another method ofsupervised
learning is based on the computation of principanponents, which transforms the values of a single
measurement into combinations of measurements raagtine maximum of data variability. As an example
instead of considering individual phosphorylatioh particular proteins [48], one considers the camdi
phosphorylation of groups of proteins [45]. Thispegach has the additional feature that it redutes t
dimension of the data. Principal Component Anal{Bi€A) can be helpful to obtain biological insigbising
signaling profiles, PCA was employed to qualitativdiscriminate apoptotic cell fates ([45]). Palrtizeast
Square Regression (PLSR) is another techniqueasinoilPCA. However, in PLSR, the data is structuntol
independent and dependent variables (inputs amli)t whereas in PCA there is only one set of. d&t&R
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reduces the inputs and outputs to their principatgonents and then identifies a linear solutiom thiates the
former to the latter ([45]). PLSR not only providaslogical insight but can also be used to pretfietresults
of new experiments. Multiple Linear Regression (MLR a technique used to extract correlations betwe
inputs and outputs and can be viewed as simplfe8R. In MLR, the linear solution is computed dihec
between the measured variables. It does not retheceomponents as PLSR does, but on the other Haad,
resulting correlations are links between experiminmeasured variables, and therefore the reauteasier
to interpret. For example, the results of MLR canvisualized as a pathway map that connects phpspiein
activity to cytokine release [41]. Therefore, MLBncbe used as a means to reconstruct the netwaslotry
from the experimental data. There are also morbistgated methods to construct pathways maps fodiata
that constitute a field known as reverse enginge(id9]), which has been extensively applied to egen
regulatory networks ([49]), and to a lesser extergsignaling networks [50, 51]).

In addition toDataRail, a number of tools are available to perform dateed analyses, including the
free open source systems R/Bioconductor [46], dé asecommercial software such as MATLAB specific
toolboxes.

3.2. Topology-based models

The methods described above make use of only dte itself, and in some cases, a classification
scheme (categorization of objects into classedéncase of supervised learning). Knowledge accuedlila
from decades of research and gathered in the férthoosands of scientific publications is not atid. In
order to take advantage of this vast resourcenalico replica of the current knowledge of the signaling
system under consideration can be generated. Tduelngcan then be interrogated with respect tolitktyato
reproduce the experimental data in order to obtagthanistic insight. There are several mathematical
formalisms which can be used to describe signatetgvorks, varying in the level of detail they ingorate.

An extensive review is out of the scope of thisptha but we will describe the most popular appheacand
refer to reviews for further reading.

Probably the simplest description of a signaliegwork is what is known in mathematics as a graph:
each species (typically proteins) is representedh awde, and the nodes are linked with edges §'line
representing the interactions). Using this simm@satdiption, one can unravel important structurapprties of
the network such as the presence of clusters ¢¢ipso(potentially involved in common biologicahfttions),
or to identify elements which are highly connect&gdown as hubs) representing central elements of a
signaling network [52, 53].

Directionality and sign (positive or negative)tbé arrows (defining the effect between nodes)dead
interaction graphs which capture the direct depeciée among species (see Figure 5). This descriptlows
a useful analysis in terms of examining networks data: One can compute the paths from any spécies
any other species B. Four possibilities exist: faths are all positive, all negative, mixed positand
negative, or there is no path. Accordingly, thecgg®e A can be classified with respect to B as atiy
inhibitor, ambiguous, or non-affecting. By comparilepossible connections (positive, negative, ambiguous)
between two proteins with the experimental dat& oan identify consistencies and discrepanciesglblye
building a model which best represents the cellsyatem [54]. For example, in the case of an imtetion in
which a particular protein A is blocked (e.g. wéth inhibitor), if the activity of a different prateB increases,

A cannot have a direct positive effect on B.

IUnd|rected Directed Logical ODEs
graphs graphs networks
B (AR | 1B me e
C C k-1
+ mechanistic detail
+ potential insight

~+ quality of data required
- size of solvable system

Figure 5. Different representations of pathway topology in mathematical terms.
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In cellular networks, an interaction (edge) oftepresents a relationship among more than two epeci
(nodes). In an interaction graph, the interpretatibsuch cases can be ambiguous: if two kinastshave a
positive effect on a third C, does it mean thahezitof them can activate C, or rather that botlettogr are
required? The logical gates AND (for the lattere)aand OR (for the former) can be used to distisiyuhe
possibilities. Thus, by including some additionaflormation about the logic of the signal propagatione
obtains a more accurate description. This type efinement of interaction graphs is called intei@cti
hypergraphs and is the framework for Boolean (gicial) networks (see Figure 5), in which all statese a
discrete value (in the simplest case, either OREF) [54].

Within this framework, it is possible to test tkensistency between the network topology and
experimental data across different cell types amdlitions. Measurements of protein activation urditerent
conditions can automatically be compared with thedigtions of a model based on a certain topol@yy.
comparing the models with data from different dgfpes, one can uncover significant differenceshia t
signaling networks. Furthermore, experimental datt can not be reconciled with tlaepriori knowledge
encoded in the maps suggests gaps in our curremii&dge that point to potential new connectiond.[41

Additional insight can be unlocked by constructargl subsequently analyzing detailed, mechanistic,
kinetic models. Here, one considers the individudmical processes underlying signaling events dafides
the reactions consuming and producing speciesinigad balances of their concentrations. This Edslly
encoded as a set of ordinary differential equati@ISEs) which describes the time-dependent conatoir
of the protein species as a function of kineticapzsters and initial concentration [AldridgeetalZ006
However, due to the large number of unknown paramedlues and entities (enzymatic activities, bigdi
constants, etc), modeling a very large network meghanistic manner is an arduous task. If largeusmts of
data are available, one can try to calibrate thdehby finding parameter values so that the mogé&hwlly
describes the data. This is, however, a very ahgilig) problem [55, 56], so that fully calibrated dets are
typically available only for small systems or subssf systems.

A wide range of methods are suitable for the aiglgf ODE models: analysis of nonlinear behavior
(e.g. oscillations), calculation of sensitivitiehd variations of the activation level of certairoteins upon
changes in the model parameters, which reveal &egnpeters in the signaling network, of importararedfug
discovery) or finite-time Lyapunov exponents (whidiscern how initial transients in a signaling netkv
determine alternative cell fates) [32, 56].

Many computational tools are now available whilbva scientists to establish, simulate and analyze
models. These include a number of tools devotegtdph-based methods (e.g. Cytoscape, ViSANT, ste;
Aittokallio for reviews [52]), others to analyze dohemical systems from a qualitative perspective
(GNA:[57],GINsim:[58],CAN:[44]), and a larger nurabare suitable for kinetic modeling ([59, 60]). 81 of
these tools provide support to set up and analygentodels using user/interfaces and/or programraofng
scripts. The standard formats CellML and speci@BML ([61]) are widely used to allow an exchangealafa
between different programs. Information to beginestablish specific models are widely availablethia
literature and on the web including vast resouaigsut signaling pathways, interactions between cotds
(binding, substrate/enzyme relationships, etc.) esittspecific information. Data mining tools prdei an
invaluable resource for facilitating the retriewéithis information (see chapter on data mining).

4. CONCLUSION

Knowledge is power. Scientists have long sougtextract as much information as possible fromrthei
experiments in order to maximize understandincghefdystems they study. This effort is demonstrhatethe
wide range of genomic screening approaches takemcaglemics and industry such as the much celebrated
Human Genome Project and the ongoing InternatibtfeMap Project. Several computational tools have
evolved around those datasets that seek a glabalofi biological systems.

When it comes to protein-based measurements, tsteerhave been reluctant to follow similar
approaches as generating large proteomic datagptesents a tremendous (if not impossible) taskgusi
standard biological assays such as Western bloELIBAs [62, 63]. However, the recent high-throughp
protein platforms such as the ones described snctipter have provided scientists with the oppdstio use
computational models to harvest the power of pnogeid phospho-protein based measurements [41,847, 4
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That said, despite the fact that current protetagias lack the synoptic scope of whole genomeesming,
phosphoprotein measurements incorporate knowledm iwloser to a cell’s biological function.

The pharmaceutical industry has a vested inteneapplying a Systems Biology approach to the drug
discovery process. For target identification, thericonnectivity of biological pathways can be immrated
into models and optimal novel targets identifiedie8tist can investigate whether a single targeragch is
preferential to multi-targeting approaches whichyrba carried out either by co-drugging schemesdaty”
inhibitors. For lead compound discovery, cell-bagedtein screens can complement chemical screans fo
understanding the effects of “on-target” inhibition the rest of the cellular network. For toxicgudies,
compounds can be classified as toxic or non-toggell on their effect on the intracellular and edialar
protein space. The impact of such knowledge orsticeess or failure of a drug therapy is self-eviden

As the size of protein-based datasets increase,dpparent that computational tools are becoming
more and more invaluable for understanding celbigip. However, combination of a mathematical maogligh
protein datasets is not a trivial task and cerfiaiitations should be considered prior to the imnpémtation of
a model or to the generation of an expensive datBee example, correlation algorithms such as PERIESR
or MLR cannot handle the time space as efficieatiyan ODE model. ODE models in turn cannot haratel
topologies (because they are computationally expensind require time-dense, high quality experitakn
data. Boolean models on the other hand, can hdadje topologies but with limited description otttime
domain. Other algorithms, such as SVM, can optiyradindle classification problems (e.g. toxic van-toxic
drugs) but require a sizable training set.

For a given proteomic platform, two are the maiasons that limit the size of protein datasets: Benc
time and cost. On the other hand, they are marsorsafor a large dataset: time points requiremaasing
concentrations, measured signals, many stimulibitdns (especially for compound screening), anchber of
replicates. This is actually a cost/benefit optitizn problem where the several dimensions of timgbt
(time, inhibitors etc) should be designed to warkharmony with the computational model keepingttital
experimental cost down. The complexity of both ekpental approaches and computational algorithres al
highlights the importance of interdisciplinary @dbrations.

The coupling of high throughput proteomic approaciwiéh advanced computational models promises
to vastly increase our understanding of biologisgstems and their behavior. It will be up to the
pharmaceutical industry to implement this knowledlyerder to develop more efficient and effectiveigd
development strategies.
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