ONOKNHPOTIKE Σ XEEEIL MAXWELL TENIKA
ГРАФН 1

$$
\begin{aligned}
& \oint_{l} \vec{E} \cdot \overrightarrow{d l}=-\frac{d}{d t} \int_{S(l)} \vec{B} \cdot \overrightarrow{d S} . \\
& \oint_{l} \vec{H} \cdot \overrightarrow{d l}=\quad \int_{S(t)}\left(\vec{J}_{i} \cdot \vec{\partial} \cdot \overrightarrow{\partial D} \vec{D}^{-6 t}\right) \cdot \overrightarrow{d S} \\
& \oint_{S} \vec{B} \cdot \overrightarrow{d S}=\int_{V(S)} d V \equiv 0 \\
& \oint_{S} \vec{D} \cdot \overrightarrow{d S}=\int_{V(S)} \rho_{\mathrm{eu}} d d V \equiv Q_{\text {in }}
\end{aligned}
$$

$$
\int_{S} \overrightarrow{P P A P H} 2
$$

Kal

$$
\int_{S} d \overrightarrow{S S} \cdot\binom{\vec{B}}{\vec{D}}=\int_{V(S)} d V\binom{\rho_{\mathrm{mu}} \equiv 0}{\rho_{\mathrm{eu}}}
$$

 povonojojov. Mapuntiká povónoda Sev exav eigétl mupatnpndei,

 avtur onfour 675 prabtis empavelares, onfelakss yal
 parpo (kei6to $)$

- $\frac{1}{2}$ eqqavel (keish)

$$
E \vec{B} H_{H} D \cdot \pi E \delta \alpha \alpha \alpha
$$ yepar

1
 F ol Ypapes 1 kalik kal eníques (onudon, Gmqòves Gauss)

$$
\begin{equation*}
\oint_{S} \vec{J}_{u} \cdot d \vec{S}+\int_{V(S)} d V \frac{\partial \rho_{e v}}{\partial t}=0 \tag{2}
\end{equation*}
$$

* Avapépetar najl ee akivntes emiфàveles

ПEPASMA AIIO AKINHTE Σ SE KINOYMENE Σ ETIPANEIE Σ
Akivntes : $\frac{d}{d t} \int_{V(s)} d V A(\vec{r}, t)=\int_{V(\$)} d V \frac{\partial A(\vec{r}, t)}{\partial t}$
Kivoupeves: $\frac{d}{d t} \int_{V(s)} d V A(\vec{r}, t)=\int_{V(S)} d V \frac{\partial A(\vec{r}, t)}{\partial t}+\oint_{S} \overrightarrow{d S} \cdot \overrightarrow{U_{S}}(\vec{r}, t) A(\vec{r}, t)$

$\vec{U}_{s}(\vec{r}, t)$: n taxúmta tou stanfiou enipaveias 6 m Vésn \vec{r}, thr xpovisnotrynńt.

Kivooutem, Tарааорро'pery, Mädiótom,

$\triangle I A T H P H \Sigma H$ HAEKTPIKOY QOPTIOY

$$
\begin{equation*}
\oint_{S} \vec{J}_{u} \cdot d \vec{S}+\int_{V(S)} d V \frac{\partial \rho_{e v}}{\partial t}=0 \tag{2}
\end{equation*}
$$

* Avapéperal majl $6 \in$ akivntes emipàyeles

TEPASMA ATO AKINHTE Σ इE KINOYMENE Σ ETIPANEIE Σ
Akivntes : $\frac{d}{d t} \int_{V(\$)} d V A(\vec{r}, t)=\int_{V(\$)} d V \frac{\partial A(\vec{r}, t)}{\partial t}$
Kivouperes: $\frac{d}{d t} \int_{V(S)} d V A(\vec{r}, t)=\int_{V(S)} d V \frac{\partial A(\vec{r}, t)}{\partial t}+\oint_{S} \overrightarrow{d S} \cdot \overrightarrow{U_{S}}(\vec{r}, t) A(\vec{r}, t)$

kivoúpem, Taparoppoiyerv,
 empàvela

TA MEDIAKA METE KA KA $\triangle \mid A T Y \Pi O \Sigma H ~ T O Y \Sigma ~ M E ~$ TH BOHOEIA TON EKPPA乏EON TOYइ $\Sigma T O N ~ K E N O ~ X O P O ~$

To zeupos \vec{E}, \vec{H} бuv δ étal l6topiká $\mu \in \operatorname{tis} \delta u v a ́ p e i s ~ \mu \in T g\} u ́$ jepovapèvar фoptiar kal papuntikiós rionewv papuntiov.
Tojeivos \vec{D}, \vec{B} artikatontpizel nukvóthtes medpakéà ypappies nektplioú ral rapuntikón reStov avitibtuxa.
yar yrax

$$
\begin{aligned}
& \vec{D} \equiv \varepsilon_{0} \vec{E}+\vec{P} \\
& \vec{B} \equiv \mu_{0}(\vec{H}+\vec{M})
\end{aligned}
$$

Tevikoi opiguoi

Kevo's xẃpos
$\left(\mu_{0}=4 \pi 10^{-7}\right.$ Henry $/ \mu^{\prime}$ 'тpo, $\epsilon_{0}=8.854210^{-12} \mathrm{Farad} / \mu \in$ тро,

To \vec{P} avtikatontpizel tny mapousia vins, evic to \vec{E} eival $n ~_{n}$
 nnfe's evtós tou dikoo p'trou. Ta iSla loxuous kal fió to $\vec{M} \mathrm{Kal} \vec{H}$ avtistoixa. Ol no6́tntes (xapaktnpigtike's tou

 fut xüpo kevó didns. Oi nnjés ol evtós tou valró fitsou exoov
va kàvouv pe tis ifiomtes ths újns oto pikpogkotikós enineso.
Mpétel va tovibdei ótl ol pevikés oxésels ujikèv pébouv ($6 \in \lambda i \delta a \cdot 2)$, eival kuplojektiká fevikés kal ev moddois a motejoìr oplopoós fía
 тav pusiuàr fefteàiv \vec{P} kal $\vec{M} 6 \in$ swapinon $\mu \in$ та \vec{D} kal \vec{B}

 Hax v्रlıá μ '́za se rpepia :

$$
\begin{aligned}
& \nabla . \vec{E}=\frac{\rho_{\text {eu }}}{\varepsilon_{0}}-\frac{\nabla \cdot \vec{P}}{\varepsilon_{0}} \equiv \frac{\rho_{\text {eon }}}{\varepsilon_{0}}-\frac{1}{1} \text { ojuńnukvotnta poptiou } \\
& \begin{array}{l}
\nabla \cdot \vec{H}=-\nabla \cdot \vec{M} \equiv \frac{\rho_{\text {mon }}}{\mu_{0}} \\
\nabla \cdot \vec{H}=\vec{J}_{u}+\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}+\frac{\partial \vec{p}}{\partial t} \equiv \vec{J}_{o n} \text { ojiko ptópa }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{L}_{\rightarrow} \times\left(\vec{E}_{4}-\vec{E}_{-}\right)=0 \\
& \begin{array}{l}
\vec{L}_{+} \cdot\left(\vec{B}_{+}-\vec{B}_{-}\right)=0
\end{array} \quad(5 \beta) \\
& \pm\} \text { oi Su ridats } \\
& \text { Ins olaxupizuk's. } \\
& \text { Encuavelas }
\end{aligned}
$$

Ezigcobers Maxwell se kivaú μ eva viliká μ '́ $6 a$

$$
\begin{aligned}
& \nabla \cdot \vec{E}=\frac{\rho_{e \mu}}{\varepsilon_{0}}-\frac{\nabla \cdot \vec{P}}{\varepsilon_{0}} \\
& \nabla \cdot \vec{H}=-\nabla \cdot \vec{M} \\
& \nabla \times \vec{H}=\vec{J}_{u}+\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}+\frac{\partial \vec{P}}{\partial t}+\nabla \times(\vec{P} \times \vec{V}) \\
& \nabla \vec{E}=-\mu_{0} \frac{\partial \vec{H}}{\partial t}-\mu_{0} \frac{\partial \vec{M}}{\partial t}-\mu_{0} \nabla \times(\vec{M} \times \vec{V})
\end{aligned}
$$

Tia Kivaipioves Slaxuplometes triuavien Exape:

$$
\begin{aligned}
& \vec{t}_{t} \cdot\left(\vec{p}_{t}-\vec{D}_{-}\right)=\sigma_{a c} \\
& \left.\vec{l}_{+}\left(\vec{E}_{\overrightarrow{+}} \vec{E}_{-}\right)=\vec{l}_{+} \overrightarrow{\vec{F}}\right)\left(\overrightarrow{(}_{+}-\vec{B}\right) \\
& \vec{L}_{+} \cdot\left(\vec{B}_{t}-\vec{B}_{-}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
i_{+}+y \\
+y
\end{array}
\end{aligned}
$$

 ojokimputik's bxigels önms aut's feviktiovtal fla kivoípeves eniy $\dot{\alpha}$ etes
 Siopoppes nupiothtes 6to oppo duto.

 nepistpoyn's tav yapuntikiov Siriojaw ($\vec{M} \not H \vec{V}$)

E $\equiv 1 \Sigma$ OSEIS HELMHOLTZ IE YAIKA HESA (Σ HPEMIA)

$$
\begin{align*}
& \nabla \times \nabla \times \vec{E}+\frac{1}{c^{2}} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=-\mu_{0} \frac{\partial \vec{J}_{0 \Lambda}}{\partial t} \\
& \nabla \times \nabla \times \vec{B}+\frac{1}{c^{2}} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=\mu_{0} \nabla \times \vec{J}_{0 \Lambda} \\
& \vec{J}_{0 \Lambda}=\vec{J}_{r u}+\nabla \times \vec{M}+\frac{\partial \vec{p}}{\partial t} \tag{9}
\end{align*}
$$

EYNTAKTIKE $\sum X E \sum E I \Sigma$

 - apizpós tav avezaptitar ézigibsav Maxwell μ нicuvetal katá $\mu i \alpha$.
 tapount $\partial \nabla \cdot \vec{B} / \partial t=0$ то опоio $6 w \in \pi$ aftrai іті $\nabla \cdot \vec{B}=0$

Kovtá otn qusiun upappatilithted povtija, eivaldu7ó ths kintinis 5

 da mpèner va avtivatontpijoon tav wu ci $\delta \alpha$ ditids-attotejéguatos
 Fevika, n Soaion ths aitias kai n exinjwon tou amotifiophatos (Gav diria priopoiv Gup Barmá va oplodoiv ta \vec{E} kai \vec{H}, evie The

 Tjucraid ÉXouv EKTjphzsi iflaittpo kai avoijouv véous petparous opopous

 rapmerux yonopera find jrworm efá kal evav dièva kal jappaitial

Otlou ta $f(j, k, l)=1,2,3$ avapefortal GTIS kapteglave's sovista'ses

 Ths mponfaiparns ékypaons 6To xipo Fouvier cus npos tow xpiovo, Sunain, бто ouxvotikó xipo). Suvibues o ppapulizos'opos (Tpústos) kal ol

 n tionn tous. Moparpoipet erions óu akojun kal D reapulko's ópos Sev
 rijuorn Sn div: piavtó o rupinas. Emitpftrinntas $X^{(1)}$ Eival rivakas 3×3. O дóros ths ph rapanjias evtrobees redlou kal tiulaons propti

 Tefos, ta yavoputur uerephons artila tompgional oznv tlapousid tau oloyppapmar ral poljom tav xponbắr (10topirar) ojogupapeitav. Hugiphen μ Topà va mopouoladisi pt to yarviptivo "vtopuvo":

 Tn rijuon, tite eiva yavepo ón To To Tu xor viepivo Sev "uaraés"

 eryporon fix in rojuen.

$$
\begin{aligned}
& \left.M_{i}(\vec{r}, t)=\sum_{j=1}^{3} \int_{V} d V_{-\infty}^{\prime} \int_{-\infty}^{t} t^{\prime}\right\}_{i j}^{(1)}\left(\vec{r}^{\prime} t^{\prime}, \vec{r}, t\right) H_{j}\left(\vec{r}^{\prime}, t^{\prime}\right) \\
& \left.+\sum_{j=1}^{3} \sum_{k=1}^{3} \int_{V} d V \int_{V}^{\prime} d V^{\prime \prime} \int_{-\infty}^{t} d t^{\prime} \int_{-\infty}^{t} d t^{\prime \prime}\right\}_{i j k}^{(2)}\left(\vec{r}^{\prime \prime}, t_{j}^{\prime \prime} \vec{r}_{i}^{\prime} t^{\prime} ; \vec{r}_{i}, t\right) H_{j}\left(\vec{r}^{\prime \prime} t^{\prime \prime}\right) H_{j}\left(\vec{r}_{i}^{\prime} t^{\prime}\right)
\end{aligned}
$$

$+\cdots$ 令: nuphres papmoriens emidermiontrs
 Ths rijuans P_{i} atró ta $H_{j} b^{\text {a }}$ Ths pafuñlons M_{i} ario ta E_{j}.
 Gta onine Lo eravkloupe dpiotepa.
Ytaproov Sld popezikui ppotio fpapiss tav ourtaktikav $6 x$ f6fav. O mfor Gundigutvos tpötos mou amiotelei oup 阝olkn' бuptikuman tav mapatara eind of én's pla vilka nou Sév rapovoidzoov gujeuson \vec{P} kal \vec{M} :
TPAQH $1 \quad \vec{D}=\vec{\varepsilon} \cdot \vec{E} \equiv \varepsilon_{L} \cdot \vec{E}+\overrightarrow{N L}(\vec{E}) \bigcirc \vec{\rightarrow}$
(12) $=\varepsilon_{0}\left[\stackrel{\leftrightarrow}{I}+\AA^{(1)}\right] \vec{E}+\overrightarrow{N L}(\vec{E}) \equiv \varepsilon_{0} \varepsilon_{r} \cdot \vec{E}+\overrightarrow{N L}(\vec{E})$
kal

$$
\begin{align*}
\vec{B} & =\overleftrightarrow{\mu} \cdot \vec{H} \equiv \vec{\mu}_{0} \cdot \vec{H}+\overrightarrow{N L}(\vec{H}) \equiv \mu_{0}[\vec{I}+\vec{\xi}(1)] \cdot \vec{H}+\overrightarrow{N L}(\vec{H}) \\
& \equiv \mu_{0} \vec{\mu}_{r} \cdot \vec{H}+\overrightarrow{N L}(\vec{H}) \tag{12a}
\end{align*}
$$

 n' rodandi-tanvotraí). Ta $\stackrel{\varepsilon}{\varepsilon}_{L}$ kal $\stackrel{\mu}{\mu}_{L}$ kajoivtal

 Exoupt:
(13)

$$
\begin{align*}
& \vec{D}=\stackrel{\rightharpoonup}{\varepsilon} \cdot \vec{E}+\stackrel{\rightharpoonup}{\zeta} \cdot \vec{H} \tag{13a}\\
& \vec{B}=\vec{\eta} \cdot \vec{E}+\vec{\mu} \cdot \vec{H}
\end{align*} \quad \stackrel{\prime}{D}\binom{\vec{D}}{\vec{B}}=\binom{\vec{E}}{\vec{H}}
$$

 Tou μ pos, eiral évas mivakas-muphras 6×6 тou Beibreed! 66 oovéjisn μt to "Siarugud" ($\vec{E}, \vec{H}) \cdot 0$ ouvadkivis, Tavion's
 fivand,

$$
\begin{equation*}
\binom{\vec{D}_{\omega}}{\vec{B}_{\omega}}=\stackrel{C}{C}_{\omega}\binom{\vec{E}_{\omega}}{\vec{H}_{\omega}} \tag{14}
\end{equation*}
$$

 6To ouxvozivó Xwpo (ω), Hóvo GTis tiepitaibets ektires mou to

 Guxvolivi xapo n rpappiuin buxarion μ torsí tou (\vec{D}, \vec{B}) kal Tou (\vec{E}, \vec{H}) fireial Siavospormin $6 \times f$ on ptiadgi Tav ourlowowi

Evá o tpottos fpayís 1 Tupatif μ titl 6 Tis proubtis, ario in fopvabidun' EkTaidevon, $6 x+6+1$ is $\vec{D}=\varepsilon \vec{E}$ kal $\vec{B}=\mu \vec{H} \quad(\varepsilon, \mu \mu \pi l o p \dot{j}$ rd tiven

XPONIKA APMONIKA KAI MONOXPOMATIKA HNEKTPOMAINHTIKA TIEAIA
Stis Tepitiwásels ekeives tou evdiaytpopaote fià mefiaká ptfian tav

(15) $\vec{A}(\vec{r}, t) \equiv \operatorname{Re}\left[\overrightarrow{A_{\omega}}(\vec{r}) e^{-j \omega t}\right] \quad$ ómov $\vec{A}(\vec{r}, t) k a ̂ \partial t \pi+\delta 1 \alpha k o$
 pitupoiv va zavappayion us egn's:

$$
\begin{aligned}
& \nabla \times \vec{E}_{\omega}=j \omega \vec{B}_{\omega} \\
& \nabla \times \vec{H}_{\omega}=-j \omega \vec{D}_{\omega}+\vec{J}_{u, \omega} \\
& \nabla \cdot \vec{B}_{\omega}=0 \\
& \nabla \cdot \vec{D}_{\omega}=\rho_{e \mu, \omega}
\end{aligned}
$$

 Tav Teflakair $\mu \in f+\partial c i v$, óbes kai vá Ellal dutes.
 $\mu \in \operatorname{Ta}(\vec{E}, \vec{B})$ kata tó δ sittpo tpotio fpaçn's Eival, drious ith cidaput

 Tou δ ov ancyipapt katá in ouzizinon tw tparou tpittou feayńs, órion

 didotopa'. Av firan Xpovikes, Titt Ta pitad Xoporkmpizavzal ariv Xpowin'

 Sifapobes zou proou, ol Gwidichus aribess ptiopri va draumaden' uste3ns:
TPAPH 2

$$
\therefore\binom{\vec{D}_{\omega}}{\vec{H}_{\omega}}=C_{C_{0}}\binom{\vec{E}_{\omega}}{\vec{B}_{\omega}}
$$

 kal $\stackrel{\rightharpoonup}{Q}_{a}$. To Tjeovicinpa Tw Tpottou fpayns 2 sival ón unakoist 6 tous pitabxnpuniopous Lorent? (autoi rras auñon

 Eravijpoupt 6 To avrike'ipro anó apfortea.

otiote kal Tiproupt tis ardes Bodputis ax́bus $\vec{D}_{\omega}=\varepsilon_{\omega} \vec{E}_{\omega}, \vec{H}_{\omega}=\frac{\vec{B}_{\omega}}{\mu_{\omega}}$.

 Tika' n' kai Jima' avlourpotika'. Ei Slk's utiokannfopits Tuv príar

$$
\stackrel{\leftrightarrow}{\epsilon}_{\omega}=\left(\begin{array}{ccc}
\epsilon_{x}(\omega) & 0 & 0 \\
0 & \epsilon_{y}(\omega) & 0 \\
0 & 0 & \epsilon_{z}(\omega)
\end{array}\right)
$$

$$
\stackrel{\epsilon}{\epsilon}_{\omega}=\left(\begin{array}{ccc}
\epsilon(\omega) & 0 & 0 \\
0 & \epsilon(\omega) & 0 \\
0 & 0 & \epsilon_{2}(\omega)
\end{array}\right)
$$

$$
\stackrel{\leftrightarrow}{\epsilon_{\omega}}=\left(\begin{array}{ccc}
\varepsilon(\omega) & -j \varepsilon_{g}(\omega) & 0 \\
j \varepsilon_{g}(\omega) & \varepsilon(\omega) & 0 \\
0 & 0 & \varepsilon_{t}(\omega)
\end{array}\right)
$$

kai ta fypopaymnluá pibd (фEpittes)

$$
\stackrel{\mu}{\mu}_{\omega}=\left(\begin{array}{ccc}
\mu(\omega) & -j \mu_{g}(\omega) & 0 \\
j \mu_{g}(\omega) & \mu(\omega) & 0 \\
0 & 0 & \mu_{z}(\omega)
\end{array}\right)
$$

Tèjos, ta fapuntonjekiplué viluá (ujuá Mou mudovonian bian tideran

Qus doxis Ths 「ficaftion TN '60 atio zous 60ß16uko's, Landou, Dazaloshinskii kai Lifshitz. Apjuispa o boß1gr1ues Indenbom ku or Birss kau Rado enteonnavar on to papromomerapiné

 groxsiou kukjapátew, rou jtfipsvou fuparopa amí tov enturuorá 200, zov Tellegen, hipw gra 1948 ora tpfacinipra ens Philips
 Tapovadijour paprmonifkipinén 1810 mm o bow tedoiv of kimon' Alii Tg' majá nizar frubró, anú. O Roentgen, pálíro, 201888

 netorpiud.
 Tújubrs kal paprinions tpor abxegndoipae pe thr afapipionnd. TONOSH

Qubikn' Meplrpaipn'
Ta vjlkà, er fivel, xwpizonal at Sio patajes katnfopies:

- Mn Tolk $k \alpha^{\prime}$
- Tojkaj

 Tujaiv, irmen quan esurpiodpe) mesiou.
Ta pq-mequá yluá piupoiv vo fiakpioir atis fins leanfupits:

- Eता Sepmue 6e nekponion riduon:

 Siopsusus zas nafmpoiar-ugfipoonniau vsyair atic loes तuphrts).
养 Infaratún парайpnon * \& ПPOミOXH!

 oxedor' wivn zur Hytiopovian Tow propons sjoidspa vakwoir fimon kal on love, ajes os nribon

 o7014n Jownonába.

MOEOTIKOI OPIEMOI

$$
\begin{equation*}
\vec{p} \equiv|q| d \tag{23}
\end{equation*}
$$

 $A_{v}, \pi \cdot x_{0},|q|=8$ en $10^{-18} \mathrm{C}$. Tite $10^{-30} \mathrm{Cm}=p$ Gultaíferan
 ths alconas tou Bohr (tio to àtopo tou ufogiveu).
Mukvirnta Sitrgimis potios (Mojw6m, 100 Dovapa)

$$
\begin{equation*}
\vec{P} \equiv \lim _{\Delta V \rightarrow 0} \frac{1}{\Delta V} \sum_{j \in \Delta V} \vec{p}_{j}=\vec{p}(\vec{r}, t) \tag{24}
\end{equation*}
$$

 oriv tenovi evos oupnoe \vec{r}, on ypoun ortpint.
 Guv,

$$
\begin{equation*}
\langle\vec{P}\rangle \equiv \lim _{\Delta V \rightarrow 0} \frac{1}{\Delta N} \sum_{j \in \Delta V}^{\Delta N} \vec{P}_{j} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\vec{p}=n_{p}(\vec{r}, t) \cdot\langle\vec{p}\rangle \tag{26}
\end{equation*}
$$

 tite трочаиаї,

$$
\begin{equation*}
\vec{P}=\sum_{a} n_{p a}(\vec{r}, t)\left\langle\overrightarrow{P_{a}}\right\rangle \equiv \sum_{a} \vec{P}_{\alpha} \tag{27}
\end{equation*}
$$

Mrapajepes rukriontes Yopriar rijuons kai \vec{P}

 a keyages zous) घival ios goor apipui evia' zou onpaipanog avoro'. Enopivas, brav $\quad \vec{d} \cdot d \vec{S}>0: \quad d Q_{p}^{-}=-|9| \vec{d} \cdot \overrightarrow{d S} n_{p}<0$

$$
-11-\quad \vec{d} \cdot \vec{d}<0 \quad: \quad d Q_{p}^{+}=|q|(-\vec{d} \cdot \vec{d} s) n_{p}>0
$$

$$
\begin{equation*}
d Q_{p}\left(+\eta^{\prime}-\right)=-|q| \vec{d}_{0} d \vec{S}^{\prime} n_{p}=-\vec{P}_{0} \overrightarrow{d S} \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\Delta Q_{p}=-\oint_{\Delta S(\Delta V)} \vec{P}_{0} \cdot \vec{S} \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\Delta Q_{p}=-\int_{\Delta V} \nabla_{0} \vec{P} d V \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{p} \equiv \lim _{\Delta V \rightarrow 0} \frac{\Delta Q_{p}}{\Delta V}=-\nabla \cdot \vec{P} \tag{31}
\end{equation*}
$$

 Tw oroxniou dS. Sughón [ani unv (28)]] ह̀xoup:

$$
\sigma_{p} \equiv\left(\frac{d Q_{p}}{d S}\right)_{+}+\left(\frac{d Q_{p}}{d S}\right)_{-}=-\vec{p}_{0}^{(t)} \frac{\left.\vec{d} S^{(}\right)}{d S}-\vec{p}\left(\frac{\left(d \vec{S}^{(}\right)}{d S}=-\left(\vec{p}^{(+)}-\vec{p}^{(-)}\right) \cdot \overrightarrow{L_{n}}\right.
$$

 Peipa Mojwons, $\overrightarrow{J_{p}}$

 otions a tionv (28) غ́xoops,

$$
\begin{equation*}
d i_{p} \equiv-\frac{d}{d t}\left(d \alpha_{p}\right)=\frac{\partial \vec{p}}{\partial t} \cdot d \vec{S} \tag{33}
\end{equation*}
$$

 $d \dot{i}_{p}=\overrightarrow{J_{p}} \cdot \overrightarrow{d S}$ n', joge. ans (33):

$$
\begin{equation*}
\overrightarrow{J_{p}}=\frac{\vec{P}}{\partial t} \tag{34}
\end{equation*}
$$

Snparani Tapazipion (*) (\leftarrow Mpozoxit!): To grownio ds mpins дarupions dkímo.
Nopos Sidanonons yopriar tigauons
Eiva tpopaion on (Skkarabutuis) oi axisom (31) kal (34) odn gan' apssod Goov vipo dianipuons.

$$
\begin{equation*}
\frac{\partial \rho_{p}}{\partial t}+\nabla_{0} \vec{J}_{p}=0 \tag{35}
\end{equation*}
$$

 unakoiore zo kativa to vopo dannpuons yoprion. As onpriath Bu bav

$$
\begin{equation*}
\overrightarrow{J_{o n}}=\vec{J}_{u}+\vec{J}+\nabla \times \vec{M} \tag{36}
\end{equation*}
$$

 dí utisuripatian kad!gon oros ripons dasipuons tar yopziar.

Durapiko jópw yopriar tiogarns
$1^{\text {os tpotios (Swapiku }}$ Sitiojou)

To dunauiki an Jion (\vec{r}) (as Teg 20 àmépo)
 ins kseogns 200 ditionas 200 oxajuaros):

$$
\phi_{p}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{|q|}{\left|\vec{r}-\vec{r}_{p}-\vec{d} / 2\right|}-\frac{|q|}{\left|\vec{r}-\vec{r}_{p}+\vec{d} / 2\right|}\right\}
$$ óter \vec{r}_{p} vitodajaiss on aion 700 feapenpluan. kevenper 200 Sitiogn. It axton donn fireadi:

$$
\begin{aligned}
\phi_{p}=\frac{|q|}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}_{p}\right|} & \left\{\left[1+\frac{d^{2} / 4-\vec{d} \cdot\left(\vec{r}-\vec{r}_{p}\right)}{\left|\vec{r}-\vec{r}_{p}\right|^{2}}\right]^{-1 / 2}\right. \\
& \left.-\left[1+\frac{d^{2} / 4+\vec{d} \cdot\left(\vec{r}-\vec{r}_{p}\right)}{\left|\vec{r}-\vec{r}_{p}\right|^{2}}\right]^{-1 / 2}\right\}
\end{aligned}
$$

$A v z a ́ p a, d \ll\left|\vec{r}-\vec{r}_{p}\right|$ Tint,

$$
\begin{aligned}
\phi_{p} & \simeq \frac{|q|}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}_{p}\right|}\left\{\left[1-\frac{\vec{d} \cdot\left(\vec{r}-\vec{r}_{p}\right)}{\left|\vec{r}-\vec{r}_{p}\right|^{2}}\right]^{-1 / 2}-\left[1+\frac{\vec{d} \cdot\left(\vec{r}-\vec{r}_{p}\right)}{\left|\vec{r}-\vec{r}_{p}\right|^{2}}\right]^{-1 / 2}\right\} \\
& \simeq \frac{|q|}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}_{p}\right|}\left\{\left[1+\frac{\vec{d} \cdot\left(\vec{r}-\overrightarrow{r_{p}}\right)}{\left|\vec{r}-\vec{r}_{p}\right|^{2}}\right]^{1 / 2}\left[1-\frac{\vec{d} \cdot\left(\vec{r}-\vec{r}_{p}\right)}{\left|\vec{r}-\vec{r}_{p}\right|^{2}}\right]^{1 / 2}\right\} \\
& \simeq \frac{|q| \vec{d} \cdot\left(\vec{r}-\vec{r}_{p}\right)}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}_{p}\right|^{3}}=\frac{\vec{p} \cdot\left(\vec{r}-\overrightarrow{r_{p}}\right)}{4 \pi \varepsilon_{0}\left|\vec{r}-\overrightarrow{r_{p}}\right|^{3}}
\end{aligned}
$$

Otion kávopt xpyiso tav tpoospfissen $(S \ll 1):(1 \pm S)^{-1} \simeq 1 \mp \hat{S}$ kan

(37)

$$
\phi_{p} \simeq \frac{\vec{p} \cdot \vec{R}}{4 \pi \varepsilon_{0} R^{3}} \equiv \frac{\overrightarrow{p_{0}} \cdot \vec{l}_{R}}{4 \pi \varepsilon_{0} R^{2}}, \overrightarrow{l_{R}} \equiv \frac{\vec{R}}{R}
$$

$$
\begin{equation*}
\phi_{P O n}=\sum_{j} \frac{\vec{P}_{j} \cdot \vec{R}_{j}}{4 \pi \varepsilon_{0} R_{j}^{3}} \tag{38}
\end{equation*}
$$

 Erajuyion:

$$
\begin{equation*}
\phi_{\text {Pon }}(\vec{r}, t)=\int_{V} d V^{\prime} \frac{\vec{P}(\vec{r}, t) \cdot\left(\vec{r}-\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \tag{39}
\end{equation*}
$$

. $2^{\text {OS }}$ tpotor (qoptia riofuons)

 In xuppor, סesquiveren tav Karavopaí ρ_{p} koil 6_{p} 6To v/kú μ i'6o. Dujain:

$$
\varphi_{p}(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \rho_{P} \frac{\left(\vec{r}^{\prime}, t\right) d V^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|}+\frac{1}{4 \pi \varepsilon_{0}} \oint_{S(V)} d S^{\prime} \varepsilon_{p}\left(\vec{r}_{s}^{\prime}, t\right)
$$

 ETIчavias xcipo, finu $\delta_{n}^{\prime}, \nabla^{\prime} \cdot \vec{p} /\left|\vec{r}-\vec{r}^{\prime}\right|=\nabla^{\prime}\left(\vec{p}^{\prime} /\left|\vec{r}-\vec{r}^{\prime}\right|\right)-\vec{p}_{0}^{\prime} \nabla^{\prime}\left|\vec{r}-\vec{r}^{\prime}\right|^{-1}$ घxou

TAK

$$
\begin{aligned}
& \phi_{p}(\vec{r}, t)=-\frac{1}{4 \pi \varepsilon_{0}}\left[\int_{V} \nabla_{V}^{\prime}\left(\frac{\vec{p}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right) d V^{\prime}-\int_{V} \vec{p}_{0}^{\prime} \nabla^{\prime}\left(\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right) d V^{\prime}-\oint_{S(V)} \frac{\overrightarrow{d S^{\prime}} \cdot \vec{P}_{s}^{\prime}}{\left|\vec{r}-\vec{r}_{s}^{\prime}\right|}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\vec{P}^{\prime} \cdot\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} d V^{\prime}
\end{aligned}
$$

ótuas TgIKá Ttephivapt.
ATIA MONTEAA YTIONOTIEMOY THE TTOAOEHE
a. Mojawon jófes kimons Stoprupírou njekzooviou kata' znv Etifpaan evós appuoviko ny trzelkó ritsiou
 Tn infthpovion pajas M_{e}, Titt n μ er aspariaun' Sórapen Eivan $M_{e} \frac{d^{2} \xi}{d t^{2}}$, svá

 Geyifa 24)

$$
M_{e} \frac{d^{2} \xi}{d t^{2}}+M_{e} \frac{d \xi}{d t}+k^{3}=e E(t)
$$

Euiv घloxjoupt coxionios: $z=\operatorname{Re} z_{\omega} e^{-j \omega t}, E=\operatorname{Re} E_{\omega} e^{-j \omega t}$ oric ε n eqircurn ficion:

$$
-M_{e} \omega^{2} z_{\omega}-j \omega M M_{e} \delta_{\omega}+k \xi_{\omega}=-e E_{\omega} \quad \stackrel{\mid}{\mid} \rightarrow \ominus
$$

otione, o yatioins ins perakimons, firenar:

$$
\xi_{\omega}=\frac{-e}{M_{e} \omega^{2}+j \omega \mid H_{e}-K} E_{\omega}
$$

$$
\hat{\xi}_{\omega}=\frac{-e / M_{e}}{\omega^{2}-\omega_{0}^{2}+j \omega \delta} E_{\omega}
$$

Kue से 261

$$
\begin{equation*}
\xi(t)=\operatorname{Re}\left(\frac{-e / M_{e} E_{\omega} e^{-j \omega t}}{\omega^{2}-\omega_{0}^{2}+j \omega \delta}\right) \tag{40}
\end{equation*}
$$

 exoupt fia one trojuron:

$$
\begin{align*}
& P(t)=-R_{e}\left(\frac{e^{2} n_{p} / M_{e} E_{\omega} e^{-j \omega t}}{\omega^{2}-\omega_{0}^{2}+j \omega \delta}\right) \\
& P_{\omega}=\varepsilon_{0} \frac{\omega_{e}^{2} E_{\omega}}{\omega_{0}^{2}-\omega^{2}-j \omega_{0} \delta} \quad \mu t \quad \omega_{e}^{2} \equiv \frac{e^{2} n_{p}}{\varepsilon_{0} M_{e}} \tag{41}
\end{align*}
$$

otrou aue kajsinal buxviona mjórpanos njeknpoviar - nupirav. Ey'ósov, rapo, $\vec{D}_{\omega}=\varepsilon_{0} \vec{E}_{a}+\vec{P}_{\omega}$ Exoupe 2giux',

$$
\begin{equation*}
D_{\omega}=\varepsilon_{0}\left(1+\frac{\omega_{e}^{2}}{\omega_{0}^{2}-\omega^{2}-j \omega \delta}\right) E_{\omega} \equiv \varepsilon_{0} \varepsilon_{r}(\omega) E_{\omega} \tag{42}
\end{equation*}
$$

$$
\begin{align*}
\varepsilon_{r}(\omega) & =1+\frac{\omega_{e}^{2}}{\omega_{0}^{2}-\omega^{2}-j \omega \delta} \tag{43}\\
& \equiv \varepsilon_{r}^{\prime}(\omega)+j \varepsilon_{r}^{\prime \prime}(\omega)
\end{align*}
$$

$$
\begin{equation*}
\varepsilon_{r}^{\prime}(a)=1+\frac{\omega_{p}^{2}\left(\omega_{0}^{2}-\omega^{2}\right)}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \delta^{2}}, \varepsilon_{r}^{\prime \prime}(a)=\frac{\omega_{p}^{2} \omega \delta}{\left(\omega_{p}^{2}-\omega^{2}\right)^{2}+\omega^{2} \delta^{2}} \tag{44}
\end{equation*}
$$

 ouxvinms njekpiani itfiou, n enipertion Tjugajg in porata Siyodn'ann iou kavo Evá To Yavadinu' fripos Tiw avavaka' inv avacxtilun' frispoon rav fenivar (α 'djofo 200δ)

 rox ins akeißela,

$$
\omega_{\varepsilon^{\prime \prime} \rightarrow \max }^{2}=\left(\omega_{p}^{4}+\delta^{4}\right)^{1 / 2}-\delta^{2} \simeq \omega_{p}^{2} \mu \alpha^{\prime}
$$

μ Ikpó δ. Mapa mpaijs reDion úz To:

 Hjuciov uns $\omega_{p}^{2}+\omega_{0}^{2}\left(\right.$ fa $\left.\mu \mu k_{p}^{\prime} \delta\right)$:

$$
\omega_{\varepsilon^{\prime} \rightarrow 0}^{2}=\frac{\dot{a}_{p}^{2}+\delta^{2}+2 \omega_{0}^{2} \pm\left[\left(a_{p}^{2}+\phi^{2}\right)^{2}+4 \omega_{0}^{2} \delta^{2}\right]^{1 / 2}}{2}
$$

 njfinpoviar of mipipajar fizorssipouons Boptar akivmar lónar [ato in oxtion (42)]:

$$
\begin{equation*}
D_{\omega}=\varepsilon_{0}\left(1-\frac{\omega_{e}^{2}}{\omega^{2}}\right) E_{\omega} \equiv \varepsilon_{0} \varepsilon_{H}(\omega) E_{\omega} \tag{45}
\end{equation*}
$$

$$
M_{e} \frac{d^{2} \vec{r}}{d t^{2}}=-e\left[\vec{E}(t)+\frac{d \vec{r}}{d t} \times \vec{B}_{0}\right]
$$

 आadouaios $n_{e}: \frac{d^{2} \vec{P}}{d t^{2}}=-e n_{e} \frac{d^{2} \vec{\xi}}{d t^{2}}=-e n_{e} \frac{d^{2} \vec{r}}{d t^{2}}=\frac{e^{2} n_{e}}{M_{e}}\left[\vec{E}(t)+\frac{1}{e n_{e}} \frac{d \vec{P}}{d t} \times \overrightarrow{B_{0}}\right]$ ${ }_{n}$, av poisoupt Th buxvionna Lurmor $\vec{\omega}_{c} \equiv \frac{e \vec{B}_{0}}{\mathrm{Me}}$

$$
\begin{aligned}
& \frac{d^{2} \vec{P}}{d t^{2}}=\varepsilon_{0} \frac{e^{2} n_{e}}{M_{e} \varepsilon_{0}}\left[\vec{E}(t)-\frac{M_{e}}{e^{2} n_{e}} \times \frac{\overrightarrow{d P}}{d t}\right]=\varepsilon_{0} \omega_{e}^{2} \vec{E}(t)-\vec{\omega}_{c} \times \frac{d \vec{P}}{d t} \\
& \frac{d^{2} \vec{P}}{d t^{2}}+\overrightarrow{\omega_{c}} \times \frac{d \vec{P}}{d t}=\varepsilon_{0} \omega_{e}^{2} \vec{E}(t) \quad \text { (*) Bjiाt 6rjiv }(2 \vec{f})
\end{aligned}
$$

Me xprion φ oboriaiv $\partial \alpha$ kroput Todh

$$
\begin{equation*}
\omega^{2} \vec{P}_{\omega}+j \omega \overrightarrow{a_{c}} \times \vec{P}_{\omega}=-\varepsilon_{0} \omega_{e}^{2} \vec{E}_{\omega} \tag{46}
\end{equation*}
$$

$$
\begin{aligned}
& -\omega^{2} \vec{\omega}_{c} \vec{P}_{\omega}=-\varepsilon_{0} \omega_{e}^{2} \vec{E}_{\omega^{0}} \vec{\omega}_{c} \\
& \omega^{2} \vec{\omega}_{c} \times \vec{P}_{\omega}+j \omega \vec{\omega}_{c} \times\left(\vec{\omega}_{c} \times \vec{P}_{\omega}\right)=-\varepsilon_{0} \omega_{e}^{2} \vec{\omega}_{c} \times \vec{E}_{\omega} \quad \text { '' }^{\prime} 160 \delta \text { vapa }
\end{aligned}
$$

$$
\omega^{2} \vec{\omega}_{c} \times \vec{P}_{\omega}+j \omega\left[\left(\vec{\omega}_{c} \cdot \vec{p}_{\omega}\right) \vec{\omega}_{c}-\omega_{c}^{2} \vec{P}_{\omega}\right]=-\varepsilon_{0} \omega_{e}^{2} \vec{\omega}_{\omega} \times \vec{E}_{\omega} \quad b^{\prime} \text { tTions } 100 \text { dovana }
$$

$\left.j \omega \vec{\omega} \overrightarrow{\omega_{c}} \times \vec{P}_{\omega}+-\frac{\varepsilon_{0}}{\omega_{0}^{2}}{ }^{2} \vec{E}_{\omega} \cdot \overrightarrow{\omega_{c}}\right) \vec{\omega}_{c}+\omega_{c}^{2} \overrightarrow{P_{\omega}}=-j \varepsilon_{0} \omega_{e}^{2} \frac{\vec{\omega}_{c}}{\omega} \times \overrightarrow{E_{\omega}}$ n ontoia ${ }^{1}$ jow $2 n s$ (40)
firteres:

$$
\begin{align*}
& -\varepsilon_{0} \omega_{e}^{2} \vec{E}_{\omega}-\omega^{2} \vec{P}_{\omega}+\varepsilon_{0} \frac{\omega_{e}^{2}}{\omega^{2}}\left(\vec{E}_{\omega} \vec{\omega}_{c}\right) \overrightarrow{\omega_{c}}+\omega_{c}^{2} \vec{P}_{\omega}=-j \varepsilon_{0} \frac{\omega_{e}^{2} \omega_{c}}{\omega} \times \vec{E}_{\omega} \\
& \left(\omega_{c}^{2}-\omega^{2}\right) \vec{P}_{\omega}=-\omega_{e}^{2} \vec{E}_{\omega}-\frac{\omega_{e}^{2}}{\omega^{2}} \vec{\omega}_{c}\left(\vec{\omega}_{c} \cdot \vec{E}_{\omega}\right)-j \frac{\omega_{e}^{2} \vec{\omega}_{c}}{\omega} \times \vec{E}_{\omega} \\
& \vec{P}_{\omega}=\varepsilon_{0}\left[\frac{\omega_{e}^{2}}{\omega_{c}^{2}-\omega^{2}} \vec{E}_{\omega}-\frac{\omega_{e}^{2} \vec{\omega}_{c}}{\omega^{2}\left(\omega_{c}^{2}-\omega^{2}\right)}\left(\vec{\omega}_{c} \vec{E}_{\omega}\right)-j \frac{\omega_{e}^{2}}{\omega\left(\omega_{c}^{2}-\omega^{2}\right)} \vec{\omega}_{c} \times \vec{E}_{\omega}\right] \tag{47}
\end{align*}
$$

 TVVio Eival kazà in disiavon ? 2 Lote $\vec{\omega}_{c}=\vec{i}_{7} \omega_{c}$):

$$
\begin{aligned}
& D_{\omega, x}=\varepsilon_{0}\left[\left(1-\frac{\omega_{e}^{2}}{\omega^{2}-\omega_{c}^{2}}\right) E_{\omega, x}-j \frac{\omega_{c}^{2} \omega_{c}}{\omega\left(\omega_{c}^{2}-\omega_{c}^{2}\right)} E_{\omega, y}\right] \\
& D_{\omega, y}=\varepsilon_{0}\left[\left(1-\frac{\omega_{e}^{2}}{\omega^{2}-\omega_{c}^{2}}\right) E_{\omega, y}+j \frac{\omega_{e}^{2} \omega_{c}}{\omega\left(\omega^{2}-\omega_{c}^{2}\right)} E_{a, y}\right] \\
& D_{\omega, z}=\varepsilon_{0}\left(1-\frac{\omega_{e}^{2}}{\omega^{2}}\right) E_{\omega, z}
\end{aligned}
$$

n, 62 poopin mivakav,

$$
\begin{equation*}
\vec{D}_{\omega}=\varepsilon_{0} \varepsilon_{r}(\omega) \cdot \overrightarrow{E_{\omega}} \tag{48}
\end{equation*}
$$

$$
\stackrel{\rightharpoonup}{\varepsilon_{r}}(\omega) \equiv\left(\begin{array}{ccc}
\varepsilon_{r+1}(\omega) & -j \varepsilon_{r g}(\omega) & 0 \\
j \varepsilon_{r g}(\omega) & \varepsilon_{r 1}(\omega) & 0 \\
0 & 0 & \varepsilon_{r 11}(\omega)
\end{array}\right) \text { (49) }
$$

$$
\begin{equation*}
\varepsilon_{r l}(\omega)=1-\frac{\omega_{e}^{2}}{\omega^{2}-\omega_{c}^{2}} \tag{50a}
\end{equation*}
$$

$$
\varepsilon_{r\| \|}(\omega)=1-\frac{\omega_{e}^{2}}{\omega^{2}}
$$

 $\pm j \varepsilon_{r g}(\omega)$ rou jivonar ario in oxton:

$$
\begin{equation*}
\varepsilon_{r g}(\omega)=\frac{\omega_{e}^{2} \omega_{c}}{\omega\left(\omega^{2}-\omega_{c}^{2}\right)} \tag{508}
\end{equation*}
$$

$$
\frac{n_{j} \text { knoviar }}{M_{e} d \vec{P}=e d \vec{P} \times \overrightarrow{B_{0}} d t}
$$

