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Abstract: It is a well established experimental fact that slippage of reinforcement may sometimes play an important role in the response
of cyclically loaded reinforced concrete �RC� structures, especially in cases of beam-column subassemblages. In the past, analyses with
2D plane or 3D solid finite elements that assume a nonlinear bond-slip relationship to describe an arbitrary response of the interface have
only been performed using elements connecting concrete nodes with discrete reinforcement nodes. This modeling exhibits restrictions in
the bar topology, which can be removed only with embedded reinforcement formulations. In the present work, a 3D solid element, based
on a simple smeared crack one-parameter model that describes concrete’s triaxial stress-strain behavior is extended for cases of cyclically
loaded RC structures, allowing embedded reinforcement slippage. This modeling is combined with an existing bond-slip mathematical
description to give stable numerical results. The proposed procedure is applied successfully in a long anchorage rebar test, as well as two
cases of bond critical exterior and interior column-beam joints, and numerical results compare well with existing experimental data.
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Introduction

In order to evaluate the behavior of reinforced concrete �RC�
structures, it is essential to be able to predict their response under
any type and level of loading. To this end, the finite-element
method of analysis may be used. For such an analysis to be real-
istic, one must take into account all aspects of the nonlinear
behavior of RC including slippage of reinforcement, which can
significantly affect the overall response, especially for high load
levels, such as earthquake imposed ground acceleration �CEB
1996�. Numerical modeling should take into account these effects
in order to produce realistic predictions of strength, stiffness, and
seismic energy dissipation capacity.

The main advantage of employing a computationally more
expensive three-dimensional �3D� solid finite element for RC
analysis is that it can take into account any triaxial stress state
developed in almost all types of RC structures as well as modes
of failure �e.g., brittle shear failure� that are not easily predicted
by simpler methods. In such an analysis, there are three aspects
that need to be considered: �a� modeling of concrete; �b� the ma-
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terial model to describe the behavior at the interface; and �c�
modeling of reinforcement within the concrete mesh.

An extensive literature review regarding concrete modeling
can be found elsewhere �ACI 1997�. Smeared cracking appears to
be the most popular method to analyze concrete structures by
finite elements. According to this method, it is assumed that when
a crack forms normal to the maximum principal tensile stress,
stiffness is reduced perpendicularly to the crack plane �Rashid
1968�. Several issues regarding mesh sensitivity due to strain lo-
calization �Bazant 1976� have been treated with the use of various
methods �localization limiters�, for example, the nonlocal con-
tinuum formulations of Bazant �1984�.

In regard to �b�, a thorough literature review up to 1996 can be
found in CEB �1996�. Eligehausen et al. �1983�, after performing
experiments on a large number of bars embedded in concrete
for a small length, developed a model that can describe the
local bond stress-slip relationship for arbitrary slip histories. In
Filippou et al. �1983�, a fourth order polynomial for unloading
and reloading in the opposite direction is introduced. Lowes et al.
�2004� present a bond-slip model that can take into account
the status of the surrounding concrete �stress and damage� with
the use of appropriate modification factors.

As far as �c� is concerned, the two major approaches are those
with discrete or embedded reinforcement formulations, the most
popular of the two being the former. Some of the more recent
works using the first approach are by Coronelli and Mulas �2001�
and Rabczuk et al. �2005� who present such methods for 2D
analyses of structures under monotonic loading.

As far as embedded formulations are concerned, which are the
ones adopted in the present work, Elwi and Hrudey �1989� de-
velop an approach for simulating an embedded reinforcement bar
inside a 2D concrete element. Slip along the bar is calculated
using the slippage at additional degrees of freedom �d.o.f.� intro-
duced at each bar node. Applications following this approach on

RC structures under static monotonic loading were performed in
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3D by Barzegar and Maddipudi �1997� with a cubic relation be-
tween bond stress and slip and in 2D by Kwak and Filippou
�1997� with a trilinear one. Hartl �2002� develops two distinct
formulations: An embedded bar allowing slip and an alternative
embedded bar formulation named as “supplementary interface
model,” which considers the two materials as two substructures.
He only implements the second method in a finite-element code.

As far as cyclic actions are concerned, Lowes �1999� and
Fleury et al. �1999� perform 2D analyses of joints using a bond
element of zero width to connect concrete and steel nodes. A fiber
RC element that allows for bar slipping has been presented
in Monti and Spacone �2000�, Limkatanyu and Spacone �2003�,
and Ayoub �2006� to analyze RC columns. Girard and Bastien
�2002� present an application with 20-node hexahedral finite ele-
ments with discrete reinforcement bars to analyze a RC column.
The interface is described with a bilinear model with kinematic
hardening.

It is clear that a discrete bar modeling instead of an embedded
one, arbitrarily within the concrete finite-element mesh, exhibits
too many restrictions for the analyst. Nevertheless, although the
formulations for partially bonded embedded reinforcement have
appeared since Elwi and Hrudey �1989�, no analyses of RC struc-
tures under cyclic loading using 3D solid finite elements with
embedded bars are known to the authors to have been presented
in the literature up to date.

In the present work, a simple smeared crack material model
for 3D solid concrete elements �Kotsovos and Pavlovic 1995�
that requires only the uniaxial compressive concrete strength fc

as input, with a crack strategy employed by Spiliopoulos and
Lykidis �2006� that proved to give stable numerical results as-
suming full bond conditions, is adopted. This crack strategy is
herein combined with the embedded reinforcement formulations
with slip �Barzegar and Maddipudi 1997� and the bond-slip
mathematical description of Eligehausen et al. �1983�. Despite
all the types of high nonlinearity of the problem at hand, the
procedure proves to be numerically stable. It is then applied to a
reinforcing bar embedded in concrete and two RC joints, all sub-
jected to cyclic loading. Results show that this combination
proves to give much more realistic predictions compared to those

Fig. 1. Modification of concrete material matrix Dc according to the
due to first crack, additional loss of stiffness along x� axis due to sec
obtained by analyses that do not allow slippage of reinforcement.
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Material Modeling

Concrete
The 3D constitutive behavior of concrete is divided in two sepa-
rate states: �I� before macrocracking and �II� after macrocracking.

For state I, where concrete exhibits a small degree of nonlin-
earity, it is assumed that the behavior is essentially isotropic and
that under pure hydrostatic stress, concrete only develops hydro-
static strains, whereas under deviatoric stress, concrete develops
both hydrostatic and deviatoric strains. The constitutive relations
depend only on the concrete uniaxial compressive strength fc

�Kotsovos and Pavlovic 1995�. Unloading and subsequent reload-
ing follow the initial stiffness slope using a criteria that compares
the current deviatoric stress with the highest deviatoric stress pre-
viously experienced by the material.

The hydrostatic and deviatoric stresses serve also as a means
to describe concrete failure resulting in macrocracking �state II�
represented in the three-dimensional principal stress space by an
open and convex failure surface, also depending on the parameter
fc as given by Kotsovos and Pavlovic 1995.

A smeared crack model within the framework of the finite-
element method is used to simulate the effect of cracking in the
structure. At a Gauss point �GP�, when the failure surface is
exceeded for the first time, a crack perpendicular to the maximum
tensile stress is formed resulting in a subsequent modification
of the stiffness, indicating no resistance perpendicular to the
crack and small shear resistance on its plane modeled with the use
of a shear retention factor �. Should a second crack form at the
same GP, then further modification will take place, leaving resis-
tance only along the line of intersection of the two planes. In case
a third crack forms, then a complete loss of the load carrying
capacity occurs. All the various modifications of the material ma-
trix Dc, which relates the incremental stresses with strains, are
shown in Fig. 1, where G and � are the tangential Lamé’s con-
stants that may be determined for the current stress state using
once again fc only. A more extensive description may be found in
Kotsovos and Pavlovic �1995� as well as Spiliopoulos and Lykidis
�2006�.

The fully brittle nature of the above material description raises

ed crack approach: uncracked material, loss of stiffness along z� axis
rack, loss of stiffness along all axes due to third crack
smear
ond c
issues regarding mesh inobjectivity due to strain localization
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�Bazant 1976�. All successful analyses in terms of realistic pre-
dictions presented to date with the use of this model have used a
coarse mesh with elements having a size from 5 to 20 cm. Lim-
iting the element size to this range seems to provide results that
match well with experimental evidence.

Steel
The Menegotto Pinto �1973� model is adopted. This model has
proved to give realistic predictions for steel bar behavior, since it
accommodates the Bauschinger effect, observed under large load
reversals.

Interface
The numerical modeling of the interface behavior is performed
using the mathematical description of Eligehausen et al. �1983�.
Typical experimental and analytical bond stress ��b�−slip �s�
relationships are presented in Fig. 2. The positive monotonic en-
velope OABCD �or the negative OA1B1C1D1�, consisted of an
ascending branch �OA�, a constant stress part �AB�, a descending
branch �BC�, and a constant friction branch �CD�, is the basis on
which the behavior is determined for any given slip history. The
envelope can be fully described by the values s1, s2, s3, �1, and �3

and no reductions to them to account for damage are considered
in this work. For this reason, there could be an overestimation of
the predicted strength, for example as shown in Fig. 2 where the
typical experimental response gives a smaller strength after one
cycle.

In Eligehausen et al. �1983�, it is proposed that the first branch
�OA� is described by Eq. �1�

�b = �1� s

s1
��

�1�

This function of bond stress has an infinite initial slope and
therefore no explicit way to form the initial stiffness matrix exists.
For this reason, it is more convenient to use a parabola according
to Eq. �2�

�b = �1�2 −
s � s

�2�

Fig. 2. Typical bond stress-slip relationship of a reinforcement bar
embedded in concrete, experimental curves and corresponding
analytical prediction with the assumed model
s1 s1
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Although this modification has never been mentioned in the
literature, it has been used in the Fedeas Library �2006�. By
choosing the parabola �Eq. �2�� instead of the exponential func-
tion �Eq. �1��, the nonlinearities are underestimated in the first
branch, something that is a small penalty if predictions at large
slip values are sought.

The rest of the branches that comprise the monotonic envelope
are linear relations between bond stress and slip. Reverse loading
is performed initially using the elastic tangent stiffness up to the
point where a bond stress equal to the value of friction stress � f of
the opposite sign is reached. A constant friction branch � f is then
followed until it meets the monotonic envelope of the opposite
sign. A complete load cycle can be seen in Fig. 2.

In this work, the current friction bond stress � f is evaluated
according to the expression

� f = �3 · min�1.00,
smax

+ − smin
−

s2
+ − s2

− � �3�

where smax
+ , smin

− =maximum positive and minimum negative
slips, respectively, exhibited up to the current state, and s2

+,
s2

−=corresponding s2 values for the positive and negative mono-
tonic envelopes, respectively.

Reinforcement Modeling

Rebar Meshing

In the present approach, 27-node solid finite elements with
3�3�3 GP are used for concrete, whereas three-node embedded
truss elements with three GP model steel bars.

In RC modeling with 3D solid finite elements, it is very con-
venient for the analyst to be able to model bars using their end
coordinates, without explicitly stating the discretization of the bar
into the concrete finite-element mesh. Barzegar and Maddipudi
�1994�, continuing the work of Elwi and Hrudey �1989�, have
developed a method to perform this task. This approach has been
followed in Spiliopoulos and Lykidis �2006� as well as in the
present work.

Embedded Reinforcement Allowing Slip
Formulations

Different approaches regarding the development of the relevant
formulations have been presented in the literature �Elwi and
Hrudey 1989; Barzegar and Maddipudi 1997; Hartl 2002�. Fol-
lowing an analogous approach, in this section, the equations are
derived in a general form for parent concrete brick elements and
embedded reinforcement consisting of truss elements. An addi-
tional d.o.f. representing slip is assumed for each of the truss
nodes.

A steel bar slips through concrete by a relative displacement s,
which is added to the parent concrete element’s displacements uc

in order to determine the actual displacement field ur, which de-
forms a bar having direction cosines l1, m1, n1

ur = uc + s with uc = �l1 m1 n1� · �uc,x

uc,y

uc,z
� �4�
Strain at any given point of the bar can be expressed as
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�r =
dur

dl
=

duc

dl
+

ds

dl
= �c,r +

ds

dl
�5�

Assuming that d are the parent element’s nodal displacements,
axial strain �c,r at any given point of the bar can be calculated
from global concrete strains �c

�c,r = T* · �c = T* · Bc · d

with

T* = �l1
2 m1

2 n1
2 l1m1 m1n1 l1n1� �6�

where Bc are the shape function derivatives for the parent con-
crete element.

Assuming that the slip field along the bar is expressed through
the truss element’s shape functions Nr and the slip at the truss
element’s nodes uslip, the slip at any point may be expressed in the
form of Eq. �7�

s = Nr · uslip⇒ �7�

ds

dl
=

dNr

dl
· uslip = Br · uslip �8�

It should be noted at this point that in reinforced concrete when a
crack forms, the local slip distribution of an intersecting rein-
forcement bar could certainly not be predicted accurately by the
smeared crack approach in which cracks are assumed smeared
over the volume sampled by a GP. For this reason, the use of the
shape functions of Eq. �7� for a cracked finite element might not
be very accurate for the estimation of the bond state locally, but it
could give meaningful results for the overall rebar behavior in the
corresponding structural members.

Eq. �5� can be written as

�r = 	T*Bc Br
� d

uslip
� = B* · d* �9�

Having found the solution at step t equilibrating an external
force vector Rt applied on all concrete nodes, and/or any external
loading Pt applied on the interface nodes �e.g., prestressing�, the
incremental form of the virtual work principle may be used to
obtain the solution at step t+�t


Vr

���r · �	r + �	r�dVr +
L

��s · ��b + ��b�dL

+
Vc

���c
T · ��c + ��c�dVc = ��dT · Rt+�t + ��uslip

T · Pt+�t

�10�

with Vr, Vc=steel and concrete volumes, respectively, and
L=external surface area of the bar.

The increments of stresses may be found from the increments
of the corresponding strains and slip displacements using the tan-
gent material properties

��c = Dc · ��c �	r = Er · ��r ��b = k · �s �11�

with Or the bar section perimeter, Ar the bar section area and l its

length, the expressions for dVr and dL are
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dVr = Ar · dl dL = Or · dl �12�

Substituting the above as well as Eq. �9� in Eq. �10�, we get


l

	��B*�d*�T · Er · �B*�d*� · Ar

+ ��Nr�uslip�T · k · �Nr�uslip� · Or
dl

+
l

	��B*�d*�T · 	r · Ar + ��Nr�uslip�T · �b · Or
dl

+
Vc

��Bc · �d�T	�c + Dc · �Bc · �d�
dVc

= ��dT · Rt+�t + ��uslip
T · Pt+�t �13�

Using Eq. �9� for B*, grouping similar terms and taking into
account that this equation holds for any virtual displacement vec-
tor � ��d

��uslip
�, Eq. �13� can be finally written as

��Kcc + Krr,c Kcr

Krc Krr + Kbb
� · � �d

�uslip
� + �Qc,r

Qb
�� = �Rt+�t

Pt+�t
�
�14�

Fig. 3. Effect of cracking on the interface. sbc=slippage before
cracking, sac=slippage after cracking. �a� Slipped bar inside element
before cracking; �b� residual forces caused by cracking; and �c�
deformation of element due to residual forces and effect on bar
slipping.
with
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Kcc =
Vc

Bc
T · Dc · BcdVc

Krr,c =
l

Bc
TT*TErArT

*Bcdl

Kcr = Krc
T =

l

Bc
TT*TErArBrdl �15�
the additional d.o.f. along the reinforcement mesh. Each actual
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Krr =
l

Br
TErArBrdl Kbb =

l

Nr
TkOrNrdl �16�

Qc,r =
Vc

Bc
T · �cdVc +

l

Bc
TT*T	rArdl

Qb =
l

Br
T	rArdl +

l

Nr
T�bOrdl �17�

For the general case of multiple bars nrs inside the concrete ele-
ment, Eq. �14� takes the form
�
Kcc + �

i=1

nrs

Krr,c,i Kcr,1 Kcr,2 . . . Kcr,i . . . Kcr,nrs

Krc,1 Krr,1 + Kbb,1 0 . . . 0 . . . 0

Krc,2 0 Krr,2 + Kbb,2 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

Krc,i 0 0 . . . Krr,i + Kbb,i . . . 0

. . . . . . . . . . . . . . . . . . . . .

Krc,nrs 0 0 . . . 0 . . . Krr,nrs + Kbb,nrs

� · � �d

�uslip
� = �Rt+�t − Qc,r

Pt+�t − Qb
� �18�
where now �uslip is a column vector that includes the slip
displacements for all the embedded bars in the concrete element.
These additional slip d.o.f. are common at the interface of
two adjacent concrete elements �e.g., rebar passing Elements A
and B at Fig. 3�a��. For this reason they need to be present in the
global structure stiffness matrix as separate d.o.f. and they cannot
be condensed after the formation of the local element stiffness
matrix.

If full bond is assumed, Eq. �18� becomes

�Kcc + �
i=1

nrs

Krr,c,i� · �d = Rt+�t − Qc,r �19�

If a concrete element does not contain any rebars, Eq. �18�
becomes

	Kcc
 · �d = Rt+�t − Qc,r �20�

All three kinds of elements corresponding to Eqs. �18�–�20�,
should they exist in the structural model, can be readily used for
the assembly of the global structure stiffness matrix using the
connectivity of the concrete parent element and rebar nodes.

Implementation of the Numerical Procedure

This work has been based on the finite-element code developed in
Spiliopoulos and Lykidis �2006�. Large scale modifications were
performed in the static analyses procedures in order to account for
slippage of the embedded bars. An additional preprocessing
procedure apart from the ones already described for the rebar
meshing was needed to decide the position and correspondence of
bar is followed from its beginning to its end, assigning the new
d.o.f. of uslip �Eq. �18�� for every node formed. The large number
of zeros that inevitably exist in the global stiffness matrix due to
the remote location of the slippage d.o.f., imposed the use of a
sparse storage and handling scheme instead of the skyline algo-
rithm �Bathe 1996� that was used in the previous code.

A direct displacement control �Jirasek and Bazant 2002�, in the
context of a full Newton-Raphson iterative procedure, is used to
obtain the response of the examples presented herein. According
to this procedure, initially all matrices and vectors are partitioned
so that the d.o.f. are separated as “free” and “prescribed” ones.
The “prescribed” d.o.f. include all supports as well as the nodes
on which an imposed displacement is applied, whereas “free”
d.o.f. are all the rest. In the first iteration of an incremental step,
the entire increment of the displacements on the “prescribed”
d.o.f. is applied. In all subsequent iterations, the incremental dis-
placements on these d.o.f. are equaled to zero. Both the norms of
the incremental displacements and reaction forces are compared
for checking convergence of the iterative procedure.

In the present formulation, there are three sources of nonlin-
earities, i.e., concrete, steel, and interface. Possible opening, clo-
sure, and reopening of cracks in concrete may create residual
stresses, which are integrated to equivalent nodal forces in the
first term of the expression of Qc,r �Eqs. �17�� using a strategy
named the unified total crack approach �UTCA� �Spiliopoulos and
Lykidis 2006�. For the steel bars, residual stresses are determined
from the increments of strains, and equivalent nodal forces are
evaluated according to the second term of Qc,r and the first term
of Qb �Eqs. �17��. The residual bond stresses resulting from the
slip increments are integrated in the expression for Qb to give the
residual bond forces, which need to be applied on the interface

d.o.f. in the next iteration.
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The various aspects of nonlinearity, especially for the case
where nonlinear slippage is taken into account, result in a diffi-
culty for the algorithm to converge. Even for monotonic loading,
cracking may cause unloading in certain regions of the interface.
For example, in Fig. 3�a� a bar embedded in a concrete finite
element is assumed to have previously slipped after cracking has
formed in the lower regions. This results in residual forces
�Fig. 3�b�� that tend to deform the element in such a way that
slippage on its left face tends to be increased �sac
sbc� whereas
on the right it tends to be reduced �sac�sbc� �Fig. 3�c��. Focusing
on the right face of the concrete element, if the residual forces are
large enough to cause a negative slip increment, which results in
less total slip compared to the one at the previously converged
step, unloading occurs at the interface and, therefore, new re-
sidual bond forces need to be introduced to the structure in the
next iteration.

Applications

Although the examples presented could be analyzed with 2D
plane elements, modeling of reinforced concrete structures with

Fig. 4. Comparison of experimental and analytical stress-slip curves
for the long anchorage tests of Viwathanatepa et al. �1979�

Fig. 5. �a� Embedded reinforcement mesh; �b� concrete and s
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3D solid elements and embedded reinforcement has the advantage
of being straightforward, since all bars are positioned at their
exact location �including stirrups�. Any form of confinement is
then automatically taken into account in the local concrete behav-
ior without any explicit beforehand modification.

The original calibration tests on bars embedded in concrete
for a small length �equal to five times the bar diameter� of
Eligehausen et al. �1983� were reproduced according to the above
procedure by Lykidis and Spiliopoulos �2006�. In the sequel,
applications on a long anchorage push-pull test and two bond
critical beam-column joints under cyclic actions are presented.

Although different properties for bond slip along a bar may be
used, in order to preserve the simplicity that the concrete model
exhibits �since fc is required as concrete’s only material param-
eter�, unique values for the envelope, both in tension and com-
pression, are chosen. On the other hand, the use of a coarse mesh
dictated by the nature of the concrete model, makes choosing
more sophisticated varying bond properties along different parts
of the bar meaningless.

Long Anchorage Specimen

A broad experimental investigation of the bond-slip behavior in
long anchored reinforcing bars was performed in Viwathanatepa
et al. �1979�. Specimen 14, consisting of a db=25.4 mm diameter
bar embedded for a length equal to 25db in concrete, was experi-
mentally tested under simultaneous cyclic push and pull at the
two rebar ends. The loading history was reproduced numerically
by fixing the two concrete faces at the two bar ends and by ap-
plying equal displacement at the corresponding slip d.o.f.

One 3D solid finite element was used for concrete with
an embedded rebar having the following bond-slip properties:
s1=0.75 mm, s2=3.00 mm, s3=10.50 mm, �1=13.50 MPa,
�3=3.50 MPa. These values match well with the ones previously
used for the analysis of this experiment �Ciampi et al. 1982,
Monti et al. 1997, Ayoub and Filippou 1999�.

Despite the fact that only one element is used, the results show
a very good prediction for slip values up to ±1 mm �Fig. 4�. For
larger values, it can be seen that an overestimation of the ultimate
strength is predicted, which can be accredited to the assumption
that no damage is considered in the bond-slip model.

al steel finite element mesh and applied displacement history
tructur
ution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



Corner Beam Column Joint

A RC joint �Fig. 5� for which experimental data exist
�Luiki 1999�, was analyzed by Hartl �2002� and Lykidis and
Spiliopoulos �2006� for monotonic loading. In the test, a cyclic
loading was applied on the joint with the use of a steel beam
girder. The longitudinal bars ending at the joint were designed
with a straight anchorage �Fig. 5�a�� so that the failure mode
would be due to slippage of reinforcement.

The joint is modeled and analyzed under imposed displace-
ments at point B so that a bending moment and shear force are
applied at the right section of the joint �point A�. The experimen-
tal cyclic loading history �shown in Fig. 5�b�� is used in the analy-
sis. The analytical prediction at point A confirms what was also
observed in the experiment: A total displacement up to the value
of 22.30 mm for point A is reached, with intermediate unloading
down to zero and reloading up to the values of 5.00 mm,
14.40 mm, and 19.20 mm.

Seventy-two solid 27-node elements of a size of about
20�20�15 cm are used for the reinforced concrete part of the
specimen. The elements that model the steel beam are of the same
type, but they are considered to be elastic with relatively large
stiffness.

The following assumptions regarding material behavior were
made: Concrete uniaxial compressive strength fc=35 MPa, steel
initial elastic modulus Es=206 GPa, steel yield stress fy =440 and
550 MPa for the two different groups of reinforcing bars.

The bond-slip envelope s1=0.60 mm, s2=0.80 mm,
s3=4 mm, �1=3 MPa, �3=1.5 MPa was chosen to describe the
interface along all bars either in tension or compression without
classifying them as having poor or good bond conditions. These
values are a compromise between the values suggested by
CEB-FIP �1993� and Eurocode 2 for all these cases and the pos-
sible reduction due to damage between cycles.

Two kinds of analyses were performed, first assuming full
bond and second assuming slipping on longitudinal bars but not
along the stirrups. Results are given in Fig. 6, where it can be
seen that the rigid bond analysis overestimates the overall
strength of the joint, whereas the second analysis allowing slip
gives much more realistic predictions. As far as stiffness is
concerned, it can be seen that although at the beginning �for

Fig. 6. Comparison of analytical predictions versus experimental
measurement. Displacement is measured at the joint connection with
the steel member �point A in Fig. 5�b��.
displacements less than 1 mm�, the predicted matches the ob-
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served one, for slightly larger values initial cracking in the nu-
merical model unrealistically shifts the load displacement curve
to the right, meanwhile retaining large stiffness for a certain
range. This could be due to the limitations of the concrete model,
for which a complete and sudden loss of stress is assumed when
a crack opens �Kotsovos and Pavlovic 1995�. Nevertheless, sub-
sequent global response over the whole sequence of the cycles is
well predicted. The unloading spots near the origin captured by
the direct displacement controlled analysis are due to the initial
cracking.

The predicted cracking pattern, as well as the deformed re-
inforcement mesh during the last converged steps, are presented
in Figs. 7 and 8. In the prediction of the analysis in which rebar
slip was allowed, a slip mechanism inside the joint is revealed
�Fig. 8�b�� together with thick cracks in the area below the joint
�Fig. 7�b��. These characteristics were also observed experimen-
tally by Luiki �1999�. As seen in Figs. 7�a� and 8�a�, this behavior
could not have been predicted by the full bond analysis.

Additionally, in Fig. 9, the bond stress magnitude distributions
along the vertical exterior reinforcement bars are presented for
four points �A to D� on the load history path. It can be seen that

Fig. 7. Prediction of crack pattern analysis: �a� without slippage; �b�
with slippage

Fig. 8. Inside view of reinforcement at the corner regions: �a� analy-
sis without slippage; �b� analysis with slippage
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inside the joint �from 90 cm to 150 cm measured from the bottom
of the specimen�, the bond stress gradually reaches the �1 strength
�curves A and B� and then it deteriorates to �3 �curves C and D�
developing a maximum slippage of about 8.5 mm at the bar end.

Interior Beam-Column Joint

The beam-column connection tested by Del Toro Rivera �1988�
and analyzed by Fleury et al. �1999�, was chosen as a second
application. The joint setup intended to simulate the behavior
of a connection within a multistory frame during an earthquake
�Fig. 10�. The uniaxial compressive concrete strength was
measured fc=40 MPa whereas steel yield strength was fs,�10

=570 MPa, fs,�12=490 MPa, fs,�14=440 MPa, fs,�20=554 MPa,
and steel initial elastic modulus Es=200 GPa.

First, a 200 KN compressive force was applied on the columns
to simulate the vertical loads of the upper floors. The vertical
loads of the considered floor were simulated by imposing a ver-
tical displacement equal to 1.12 mm upon the beam extremities.
Finally, a static horizontal cyclic displacement at the column’s
lower end was applied to simulate the seismic action.

Fifty-six 3D solid elements were used to model the joint, and
reinforcement was embedded within the mesh. The applied dis-

Fig. 9. Bond stress distribution along exterior vertical rebar

Fig. 10. Experimental test of Del Toro Rivera �1988�. All lengths are
in mm.
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placement history of cycles between the values of 13 mm,
26 mm, and 39 mm, as well as the assumed boundary conditions,
may be seen in Fig. 10.

The interface for all longitudinal bars inside the core of the
connection and for a length equal to two concrete elements
around it, was assumed to have a nonlinear behavior. In the
remaining lengths, slipping was assumed to be elastic. For sim-
plicity reasons, a unique envelope was chosen to describe the
nonlinear bond stress-slip relationship: �1=18 MPa, �3=3 MPa,
s1=1 mm, s2=3 mm, s3=10 mm. These properties were chosen
as intermediate values of the ones used by Fleury et al. �1999� in
his 2D discrete finite-element implementation where different val-
ues along a bar depending on its position with respect to the core,
its stress state �tensile or compressive�, its estimated level of con-
finement and its bond quality �poor or good� had been suggested
according to formulas given in Fleury �1996�. Especially for �1,
several values near the average of those derived from this inves-
tigation were tested �within a range of ±3 MPa� and 18 MPa was
the one giving the most realistic predictions. This bond strength is
much larger than the one used for the previous application, since
in this example, the confinement of longitudinal bars inside the
joint is much higher due to the column axial load.

Fig. 11. Comparison of analytical predictions versus experimental
measurements for cycles up to ±26 mm

Fig. 12. Comparison of analytical predictions versus experimental
measurements only for cycles ±39 mm
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The resulting force-displacement curves for cycles are pre-
sented in Figs. 11 �cycles ±26 mm� and 12 �cycles ±39 mm�.
Very good agreement with experimental results may be observed
in regard to strength and stiffness up to the intermediate cycles at
26 mm. The analysis allowing slippage especially gives a much
better estimation of the dissipated energy and pinching effect.

For the last cycles at 39 mm, where the structure exhibits high
nonlinearities, both analyses underestimate the specimen’s
strength, something which could be due to the limits of the pro-
posed concrete modeling �see also Spiliopoulos and Lykidis
�2006��. Additionally, although the dissipated energy predicted by
the analysis allowing slip is smaller than the one predicted by the
full bond analysis, curve pinching is much less than the experi-
mental, most probably due to the simplification of using a unique
envelope for all points along the bars inside the joint, not reduced
by damage.

The slip distribution along the middle lower reinforcement bar
inside the beam shows large values in the area inside the joint
�Fig. 13�. Especially for the cycles at ±13 mm, experimental data
on the steel stress distribution are available and they compare
well with those of the analysis �Fig. 14�.

Throughout the experimental test, both well known mecha-
nisms �as classified, for example, in Leon �1990�� of the diagonal

Fig. 13. Bar slippage distribution along beam lower reinforcement
bar at ±26 and ±39 mm cycles

Fig. 14. Steel stress distributions along beam lower reinforcement
bar at ±13 mm cycle
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compressive strut �mechanism I� and the panel truss zone �mecha-
nism II� were observed. Initially, in the cycles when steel has not
yet yielded and slip levels were low, small diagonal cracks
formed inside the joint showing the development of mechanism I.
For cycles of larger displacements, when vertical cracks start to
extend throughout the beam height due to its flexural reinforce-
ment yielding and slipping together with the formation of a num-
ber of smaller diagonal parallel struts throughout the joint, the
second mechanism �II� starts to play an important role.

The predicted crack pattern at the end of the cycles at 39 mm
is shown in Fig. 15. The characteristics of the second mechanism
�II� are well given by the analysis, as shown by the vertical flex-
ural thick cracks at the beam sections near the joint. The diagonal
compression resulting from both mechanisms is also indicated by
the presence of the diagonal cracks.

In the response predicted for the interior joint, the differences
between the analysis with perfect bond and that one with partial
bond are less pronounced than those exhibited in the case of the
exterior joint. This is the result of the fact that the exterior joint
was designed with a limited anchorage length for the longitudinal
bars, making it highly bond critical, whereas the interior one was
designed according to ACI318-83 for ductile failure.

Conclusions

A relatively simple 3D solid finite-element model has been pre-
sented for the analysis of RC structures. The only concrete pa-
rameter required is its uniaxial compressive strength. The model
refines a previously published work to cater for slippage of rein-
forcing bars. The embedded reinforcement with slip formulations,
together with an interface material model that can give a bond
stress prediction for any slip history, seem to bind well in cyclic
loading analyses. Despite the many sources of pronounced non-
linearities regarding modeling of crack opening and closure and
modeling of the bond-slip behavior, the procedure always gives
stable results. It is in favor of the proposed model that although
using few elements with simplifying assumptions regarding the
bond slip properties, meaningful results may be obtained. The
results are in a good agreement with experiments and show that
consideration of slippage of the reinforcement is essential to have
realistic predictions for analyses of RC joints.
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