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a b s t r a c t

The elastoplastic nonholonomic analysis of frames is a nonlinear procedure inwhich themagnitude of the
structural loading is incrementally modified using a proportional load factor, in accordance with a certain
sequence of predefined loading patterns. It is an attempt by the structural engineering profession to
estimate the strength as well as the deformations of framed structures under a given loading. In this work
an analysis based on the forcemethod andmathematical programming is presented. An elastic –perfectly
plastic material is assumed and conventional plastic hinges of zero length are used tomodel the plasticity
effects. The basis of the approach is the formulation of the incremental problem as a convex parametric
quadratic programming (PQP) problembetween two successive plastic hinges. A novel numerical strategy
is proposed that uses a fictitious load factor to convert the PQP problem to a QP one. The solution of
the QP problem, by an effective standard algorithm, establishes a feasible direction on which the true
solution lies. The real solution is then found, simply on the demand of the formation of a new plastic hinge
that is closest to open. Possible plastic unstressing is automatically accounted for. The approach is first
developed for pure bending behaviour and is then extended to cater for moment/axial force interaction.
Examples of application undermonotonic, variable, and cyclic loading conditions are included. Thewhole
procedure appears to be stable, robust, and computationally efficient as it requires much less time than
the alternative displacement based direct stiffness method.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Elastoplastic analysis is an important procedure to determine
the capacity of a structure beyond its elastic limits. In the course
of this analysis, the external loads are continuously applied with
more and more structural components yielding. A series of elastic
analyses are therefore generated by modifying the mathematical
model of the structure to account for reduced resistance of yielding
components. The procedure consists of the superposition of these
analyses and stops when the structure cannot carry any further
load and becomes unstable, or until a predetermined load limit is
reached. Thus a good estimate of the strength of the structure as
well as of its ductility can be made.
In an early work, Maier [1] has shown that quadratic

programming (QP) provides a unified theoretical framework for
the elastoplastic analysis of frames. In the context of holonomic
plasticity various QPs for total quantities are written down taking
into account perfectly plastic, work-hardening or even softening
behaviour. An incremental form of a QP in terms of kinematic
variables also appears in the samework. Duality QPs are presented
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in a subsequent paper [2]. The formulation of the problem as a
parametric linear complementarity problem (PLCP) has been given
by Maier [3]. Linear programming (LP) is the main ingredient
to solve such problems and a numerical solution based on the
Simplexmethod has appeared in De Donato andMaier [4] together
with some examples and an extension to include non-proportional
loading.
Smith [5] and Maier et al. [6], almost at the same time,

proposed numerical solutions of the PLCP problem based on the
Simplex method and enforcing complementarity at each pivotal
step, thus, restricting the variables to enter the basis. With slight
modifications of the algorithms, they managed to extend the
solutions to the case of nonholonomic plasticity. Extension to
piecewise proportional loading is also reported in [6].
In an attempt to provide general purpose computer programs

Franchi and Cohn [7] produced a rather involved PLCP based
algorithm and applied it to a single storey plane frame. Kaneko [8]
used the same formulation but worked directly on incremental
quantities and was able to assess nonholonomic plasticity without
having to make any computational adjustments (as in [5,6]).
Wakefield and Tin-Loi [9] applied this method to grillages
and multi-storey frames. Formulations based on PLCP have
also recently been employed by Cocchetti and Maier [10] and
Tangaramvong and Tin-Loi [11,12] to account for local softening
behaviour.

http://www.elsevier.com/locate/engstruct
http://www.elsevier.com/locate/engstruct
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All the aforementioned procedures for the elastoplastic analysis
of frames are based on mathematical programming (MP). One
should only note here, that in the context of the evaluation of the
limit load of frames only, Marin-Artieda and Dargush [13] have
presented an approach that uses the Linear Matching method,
which is not formulated within MP but appears to have difficult
convergence properties. A more thorough presentation of the
approach together with improved convergence appeared quite
recently in Barrera et al. [14].
Although MP provides an ideal mathematical framework

for encoding the basic theory of elastic–plastic structures, the
solutions schemes referred to, as above, generally involve large
number of variables and constraints (Tin-Loi and Wong [15]). For
this reason the, displacement based, direct stiffness method has
been used almost exclusively and all commercial programs are
based on it (e.g. SAP2000 [16]). Following thismethod, an event-to-
event strategy is employed which takes into account the reduction
of the resistance whenever a plastic hinge occurs or the increase in
the resistance of a plastic hinge whenever local unloading occurs
by re-formulating and re-decomposing the stiffness matrix.
The main issue in the elastoplastic analysis of frames is

the requirement of a statically admissible and safe distribution
of stresses throughout the whole structure. The most natural
formulation therefore appears to be within the framework of the
force method of analysis, since equilibrium may be expressed
accurately as a linear combination of the hyperstatic forces and
the applied loading. On the contrary, if one uses the displacement
method of analysis, a degree of approximation is needed (Pereira
et al. [17]). Nevertheless, the displacement method has been
almost exclusively in use, because it is easier to automate.
The main problem with the force method towards this

automation is the way to pre-select the hyper-static forces, which
are the main unknowns. Approaches to deal with this problem are
to set up a displacementmethodbased environment and transform
it to a force method based one, using algebraic methods (Damkilde
and Høyer [18]). This transformation, of course, involves a degree
of approximation.
It has been realized, quite early (e.g. Spillers [19]), that graph

theory and the graph representation of a frame may provide a
direct way to automate the force method. It may be proved that,
for a ‘planar graph’ there is a unique number of closed loops
called cycle basis. Spiliopoulos [20] has proposed a relatively easily
programmable algorithm which constructs such a basis using a
minimum path technique between two nodes of a graph. This
algorithm has been used together with LP for the optimum plastic
design of framesundermonotonic or variable loading (Spiliopoulos
[20,21]).
In this work, the numerical solution of the small displacement

elastoplastic analysis of frames, using the force method is
presented. The material is considered elastic rigid-plastic with
nonholonomic behaviour, whereas the adopted model is a plastic
hingemodel of zero length. The basis of the formulation consists in
decomposing the increments of the stress resultants in two terms,
one due to the indeterminacy of the structure and one due to the
increments of the load. The problem is cast, not as the solution
of a PLCP, but as a direct solution of the parametric quadratic
program (PQP) at the beginning of each incremental loading step,
the parameter being the incremental load factor. A novel numerical
strategy is proposed which, by employing a fictitious load factor,
converts the solution of this PQP to the solution of a simple QP.
This QPmay be solved using standard algorithms (e.g. Goldfarb and
Idnani [22]). Possible plastic unstressing, in a stepwise-holonomic
fashion, is automatically detected by the solution of the fictitious
problem. One may, thus, predetermine the direction on which the
real solution of the current incremental step lies. This solution is
then found merely on the demand that a new plastic hinge forms.
a b

Fig. 1. Proportional loading: (a) limit load analysis, (b) prescribed loading analysis.

Fig. 2. Rotations and moments at member’s ends.

The procedure is formulated with respect to proportional or
piecewise proportional loading. Since bending is the prevailing
mode of deformation for framed structures, in the Sections 2–
4 of the present paper, the procedure is developed under the
assumption of a pure bending behaviour. The essential features
of the method are also discussed in these sections. In Section 5
the procedure is extended to include also the effects of the axial
force. Examples of application appear in Section 6 that indicate
the effectiveness of the method for either monotonic loading,
loading scenarios or cyclic loading. The computational efficiency
of the procedure compared to the direct stiffness method is also
demonstrated.

2. Governing equations for pure bending

Let us suppose that a frame, whose material behaves as
elastic–perfectly plastic, is subjected to a proportionally changing
loading pattern of the form

P = Pin + γ · rP (1)

where, using bold letters to represent vectors and matrices
throughout, Pin is an initial loading state, γ is a proportional
loading parameter which controls the further application of
loading, rP is the unit vector along the direction of the loading
pattern (Fig. 1). Either for the case of a limit analysis or a prescribed
loading analysis, rP may be directly computed. In the prescribed
loading case, for a particular branch, with initial and final loading
states Pin and Pf respectively, rP = (1/‖PL‖) · PL, where PL =
Pf − Pin (Fig. 1(b)).
In response to the external loading, every member of the

structure, which is defined as a line/curve lying between two
nodes, develops two rotations at its ends, relatively to a local axis
defined by its chord; these rotations may be decomposed into an
elastic and a plastic component (plastic hinge approach) (Fig. 2).
Onemaywrite the elastic rotations in termsof the endmoments

using the member’s flexibility matrix:{
θel1
θel2

}
=

`

6EI
·

[
2 1
1 2

]
·

{
m1
m2

}
(2)

where ` and EI are the member’s length and bending stiffness.
By grouping all the individual flexibility matrices of the

structure in a block-diagonal matrix Fm, one may write for all the
elastic rotations and the end moments of the frame:

θel = Fm ·m. (3)
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Fig. 3. Rigid-plastic behaviour and plastic unstressing.
Due to the nonlinear (elastoplastic) behaviour, the solution
will be acquired in incremental steps. At the end of such a step,
an increment of the applied loading will create an increment of
moments which may be determined, using the force (or mesh)
description:

1m = Bm ·1p+1γ · Bo,m · rP . (4)

The first term is due to the indeterminacy of the structurewithp
being a set of hyperstatic forces, called a statical basis. These forces
may be introduced in the structure by making cuts at each closed
loop of the indeterminate frame and converting it to a determinate
one. The second term is due to the equilibriumwith the increment
of the applied loads expressed through the increment 1γ of the
proportional load factor.
The increments of the total rotations will then be given by:

1ψ = 1θel +1θpl. (5)

From the principle of static kinematic duality (SKD), the
conjugate to the hyperstatic forces discontinuities at the cuts are
related to the above increments of rotations through thematrixBTm.
Closing these cuts provides uswith the conditions of compatibility,
as was first proposed by Maxwell:

BTm ·1ψ = 0. (6)

Eq. (3) may be used to compute1θel. By combining (4) and (5),
Eq. (6) becomes:

BTm · Fm ·
[
Bm ·1p+1γ · B0,m · rP

]
+ BTm ·1θ

pl
= 0. (7)

Depending on whether the bending moment that has reached
the plastic capacity m∗ of a cross section causes tension or
compression at the bottom side of a cross-section (pre-selected
‘‘positive’’ fiber, Fig. 2) we may have positive or negative plastic
rotations with reference to the local coordinate system of the
member, respectively. So, in general, one may write:

(8)

where 1θ+
∗
and 1θ−

∗
are positive numbers and constitute the

elements of1θ∗.
Assuming rigid plastic behaviour, the relationship between a

bending moment and its corresponding plastic rotation, whether
we have further loading, or plastic unstressing (nonholonomic
behaviour), may be seen in Fig. 3, andmay be expressed by a single
equation (complementarity relation) as follows:

yT ·1θ∗ = 0 where y ≥ 0, 1θ∗ ≥ 0 (9)
where y∗ =
{
y+∗
y−∗

}
collects the plastic potentials at every cross

section that are defined in Fig. 3.
If we denote bymk−1 themoments of the previously converged

incremental step, the non-negativity of the plastic potentials
makes possible to express the static admissibility condition of the
bending moments at the current incremental step k as:

y∗ + NT · (1m+mk−1) = m∗ (10)

where m∗ =
{
m+∗
m−∗

}
collects the plastic capacities of the cross

sections in positive and negative bending, respectively (Fig. 3).
Eqs. (7)–(10), combined with (4), may serve as the Karush–

Kuhn–Tucker relations that lead to the solution of the following
quadratic program (QP) at every incremental step k:

Minimize z(1p) =
1
2
·1pT · (BTm · Fm · Bm) ·1p

+1γk · (BTm · Fm · Bo,m · rP )
T
·1p

Subject to: (NT · Bm) ·1p ≤ (m∗ − NT ·mk−1)−1γk · (NT · Bo,m · rP )

(11)

with1γk being the increment of the load factor at the current step.
It appears that a more accurate numerical solution may be

achieved if each constraint is divided by its corresponding plastic
capacity so that the right-hand side of (10) is equal to one. So the
QP to be solved is:

Minimize z(1p) =
1
2
·1pT ·

(
BTm · Fm · Bm

)
·1p

+1γk · (BTm · Fm · Bo,m · rP )
T
·1p

Subject to: (MT
∗
· Bm) ·1p ≤ e−MT

∗
·mk−1 −1γk · (MT∗ · Bo,m · rP )

(12)

where

with Nc being the total number of critical sections. The product
BTm · Fm ·Bm is the flexibility matrix of the structure for the selected
set of the hyperstatic forces, and eT = {1 1 · · · 1} is a column
vector.
The way to solve this QP problemwill be discussed in Section 4.

Here, we should note that, the product of the Lagrange multipliers
of the optimal solution with M∗ provides the increments of the
plastic rotations,1θ∗.
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a b

Fig. 4. (a) Typical cycle basis and shortest path cantilevers, (b) Self equilibrating system of forces.
a b c

Fig. 5. Mesh base formation.
Fig. 6. Fictitious (ρ), and true incremental load factors (1γ ).

3. Selection of the hyperstatic forces

The automation of the process depends on the selection of the
hyperstatic forces which is called statical basis. An algorithm has
been published (Spiliopoulos [20], where more details may be
found), which finds such a basis by selecting a set of independent
cycles which is equal to Betti’s number for planar graphs. Each
frame is such a graph (Fig. 4(a)) and Betti’s number is equal to
µ − ν + 1 where µ, ν are the number of members and nodes
that compose the graph. The ground is represented by an extra
node and extra members are used to connect this node to each
foundation node.
This algorithm is easy to implement because it is based on
initially setting the lengths of each member (not in the Euclidean
sense) equal to 1. The procedure then starts from the node that
has the maximum number of members incident to it, finds the
minimum path between the ends of each of the members, not by
going along the member but going around it. The minimum path
together with the generator member forms a cycle candidate to
enter the mesh basis. It will enter the mesh basis if the following
admissibility rule is satisfied:
‘‘The length of the path is less that 2*(nodes along the path-1)’’.
If this rule is satisfied the cycle enters the basis and all the

members of this cycle get the length of 2.
As an example of a cycle basis formation, the procedure that

was just described is used to establish a cycle basis in the sub graph
(Fig. 5(a)) that has been extracted from amain graph. Starting from
node k, the cycle klmk is selected (Fig. 5(b)) using km as a generator
member and all the lengths of the members of the cycle take the
value of 2. There is noway of re-entry in the basis of this cycle, since
the admissibility rule is not satisfied. By picking up a nextmember,
e.g. (mn), a next cycle may be selected to enter the basis (Fig. 5(c)).
There are cases of complicated graphs that this simple processmay
break down, but there are remedies to overcome this problem [20].
By making a cut at each cycle, one may establish a pair of two

unknown forcesXo, Yo along the x and ydirections and anunknown
bendingmomentMo at the point of the cut, with coordinates xo and
yo. These are the three indeterminate entities for the cycle at hand
(Fig. 4(b)). The bending moment at any cross section i along the
cycle with coordinates xi and yi, are given by:

mi = (±)
[
(yo − yi) (xi − xo) −1

]
·

{Xo
Yo
Mo

}
(13)

where the positive or the negative sign depends on whether the
mesh orientation coincides with the member orientation, that
the cross section belongs to, or not. By filling in the appropriate
positions the matrix Bm may be formed.
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Fig. 7. Various types of failure criteria considering bending moment & axial force interaction.
3.1. Equilibrium with external forces

Equilibrium with the applied loading is accomplished through
the use of cantilevers, which mark the quickest way to the ground
of the points of application of the loads (Fig. 4(a)). For a cross
section i located along this way, the bending moment m is given
by:

mi = (±) [(ya − yi) (xa − xi)] ·
{
Px
Py

}
(14)

with xa and ya the coordinates of the point where the concentrated
loads are applied.
The positive sign in the parenthesis is valid if the orientations

of themember that this section belongs to, and the direction of the
cantilever, coincide.
Using (14) for all the critical sections and all the loads, the

matrix Bo,m may be constructed.
Distributed loading of a member may be approximated by

splitting it into a set of finite elements of equal length, and applying
statically equivalent point loads at their nodes. For a more precise
implementation of the distributed loading, one may include an
additional term in Eq. (3) that corresponds to the free elastic
rotations (see for example, [5]).

4. Proposed numerical strategy

The QP problem (12) is a parametric one, since, although the
basic unknowns are the hyperstatic forces 1p, the parameter
1γk should also be supplied. This parameter may be estimated
requiring that each load increment ends with the formation of a
new plastic hinge.
In this work, a novel numerical strategy to solve directly the QP

problem (12) is suggested. Starting with an initial value of γ = 0
and k = 1, the following steps describe this strategy:
1. Adopt a ‘‘fictitious’’ small initial value for1γk = ρ.
2. Solve the QP problem (12) and obtain a ‘‘fictitious’’ set of incre-
ments of hyperstatic forces 1p̃ and, using the Lagrange multi-
pliers of the optimal solution, a set of ‘‘fictitious’’ increments of
plastic rotations1θ̃∗. The QP algorithm [22] is used.

3. Normalize the increments of the ‘‘fictitious’’ set of hyperstatic
forces and plastic rotations:

1p′ =
1
ρ
·1p̃ and 1θ′

∗
=
1
ρ
·1θ̃∗. (15)

4. Evaluate the corresponding incremental bending moment dia-
gram using (4), normalized with respect to ‘‘ρ’’:

1m′ = Bm ·1p′ + Bo,m · rP . (16)
5. Find the correct1γk as theminimum1γi,k that produces a new
either positive or negative plasticization of a critical cross sec-
tion i:
mi,k−1 + (1γi,k) ·1m′i = m

+

∗,i or

mi,k−1 + (1γi,k) ·1m′i = −m
−

∗,i (17)

for i = 1, 2, . . . ,Nc , where Nc is the total number of critical
sections

6. Find the increments of the bendingmoments and the plastic ro-
tations:
1m = 1γk ·1m′ and 1θ∗ = 1γk ·1θ

′

∗
. (18)

7. Update the load factor and the various static and kinematic vari-
ables:
γk = γk−1 +1γk
mk = mk−1 +1m
θelk = Fm ·mk
θ
pl
k = θ

pl
k−1 +1θ

pl

ψk = θ
el
k + θ

pl
k

(19)

where use of (8) is made.
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a b

c

Fig. 8. (a) Search direction for plasticization from elastic state (b), (c) Further plasticization (1) or unloading (2).
Fig. 9. Frame’s geometry, mechanical properties, loading, and critical section
numbering.

The displacements at the loaded points may be found using
SKD between rotations and displacements:

uk = BTo,m ·ψk. (20)

8. Return to step 1 and repeat the process for k = k + 1, until
either
(a) no solution of theQPmay be found,meaning a collapse state
has been reached and γk is the limit load factor, or

(b) if we have a prescribed loading case and (a) has not oc-
curred, the process stops if |γk − ‖PL‖| ≤ ρ, meaning we
have reached the end of the current branch.

The algorithm automatically detects whether at the beginning
of the incremental stepwe have further plasticization of an already
plasticized critical section (point A, Fig. 3, movement along the
direction (1) on the yield plane) or local unloading (direction (2)).
This is determined from the value of the corresponding Lagrange
multiplier, which is readily available after the solution of the
‘‘fictitious’’ QP problem: in the case where this value is positive
we have further loading, or if the value is zero we have plastic
unstressing.
A physical explanation on the use of a ‘‘fictitious’’ starting load
factor is that it enables one to establish a feasible direction on
which the incremental step lies, whose true length is then found on
the grounds of the formation of a new plastic hinge. The procedure
may be pictured for two steps on a force–displacement diagram
(Fig. 6).

5. Extension to bending moment and axial force interaction

The method presented above may be extended to cases with
stress resultant interactions, the commonest of which is between
bending moments and axial forces.
For fully plasticized orthogonal steel sections, this interaction

is generally known to be represented by the symmetric, quadratic
and convex curve given by the following equation:

|m|
m∗
+

(
n
n∗

)2
= 1 (21)

wherem∗ and n∗ represent the section’s bendingmoment and axial
force bearing capacities.
The above yield curve may be approximated by a finite set of

‘‘ζ ’’ independent linear equations for each of the four quadrants:

f (m, n) = (±)s1 ·
m
m∗
+ (±) s2 ·

n
n∗
− 1 = 0 (22)

with the positive or negative signs in the parentheses depending
on the particular quadrant.
We have ‘‘ζ ’’ distinct couples of (s1, s2).
The simplest linearization (ζ = 1), consists of the four lines

shown dashed in Fig. 7. For the AISC LRFD criterion [23], on the
other hand, ζ = 2.
Now, at every critical cross-section, one should supply, besides

the bending moment, the axial force also. Eqs. (13) and (14) can be
found to take the form:

(23)

(24)
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Loading scenario

V
er

ti
ca

l l
oa

d 
(k

N
)

Horizontal load (kN)

Fig. 10. Loading scenario’s coordinates for each analysis step, plasticization/local unstressing sequence, quantitative bending moment diagrams (units: kN, m).
with

cosϕ =
xf − xs√

(xf − xs)2 + (yf − ys)2
and

sinϕ =
yf − ys√

(xf − xs)2 + (yf − ys)2

where (xs, ys) and (xf , yf ) are the coordinates of the two ends of
the member that the critical section i belongs to (Fig. 4(b)) and the
positive signs hold under the same assumptions as in Section 3.
Elastic axial elongations will now appear besides the elastic

rotations, so that (3) will now look like:

qel = F̄ · Q (25)
where

with Fn relating the elastic axial elongations at the two critical
sections at the ends of the member with the corresponding axial
forces, through its axial flexibility, `/EA.
Collecting all the bending moments and axial forces of the

critical sections in the matrices m and n we may write at the
current incremental step k:
mk = 1m+mk−1 and nk = 1n+ nk−1 (26)
where1m and1nmay be computed with the aid of Eqs. (23) and
(24):{
1m = Bm ·1p+ (1γk) · Bo,m · rp
1n = Bn ·1p+ (1γk) · Bo,n · rp

}
→ 1Q = B̄ ·1p+1γk · B̄o · rp (27)
where .

The generalized plastic displacement now at a critical section
i consists of two components; a plastic rotation and an axial
discontinuity, which may be computed with the help of (22):

1qpli =
{
1θ

pl
i

1δ
pl
i

}
= 1λi ·

∂ f
∂Q i
= 1λi ·

{
s1/m∗i
s2/n∗i

}
. (28)

Collecting the plastic rotations at the top and the axial disconti-
nuities at the bottom, of all the critical sections, one may form

1qpl =
{
1θpl

1δpl

}
.

With complementarity now holding between 1λi and the
section’s generalized plastic potential (distance from the yield
surfaces of Eq. (22)), the QP program (Eq. (12)) may be written as:

Minimize z(1p) =
1
2
·1pT · (B̄T · F̄ · B̄) ·1p

+1γk · (B̄T · F̄ · B̄o · rp)T ·1p

Subject to: (N̄T · B̄) ·1p ≤ e− N̄T · Qk−1 −1γk · (N̄T · B̄o · rp)

(29)

where ‘‘N̄’’ is a matrix that stores in the appropriate positions
the various coefficients of the left-hand side of the constraints
(Eq. (22)). Depending on the number of the linear segments of
our yield criterion we may have ‘‘ζ ’’ distinct couples of (s1, s2),
i.e. (s1, s2) = {(s11, s21), (s12, s22), . . . , (s1ζ , s2ζ )}. Therefore see
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Fig. 11. Load vs. corresponding displacement curves.
Box I.
Box I, where:

For the simple criterion: ζ = 1, s11 = s21 = 1, whereas for the
ASCI LRFD criterion [23], ζ = 2, s11 = 8/9, s21 = 1, s12 = 1, s22 =
1/2.
The Lagrange multipliers of the optimum solution of (29) provide
the various1λi.
The numerical strategy, presented in Section 4, may now be

modified to take into account the moment/axial force interaction.
So, starting with γ = 0 and k = 1:

1. Adopt a ‘‘fictitious’ small initial value for1γk = ρ.
2. Solve the QP problem (29), and obtain a ‘‘fictitious’’ set of
increments of hyper-static forces 1p̃ and, using the Lagrange
multipliers 1λ̃i of the optimal solution, a set of ‘‘fictitious’’
increments of the generalized plastic displacements 1q̃pl. The
QP algorithm [22] is used.

3. Make a first correction to the fictitious set of hyperstatic forces
1p̃ and the various 1λ̃i. Also, use (28) to evaluate a set of
fictitious1q′pl:

1p′ =
1
ρ
·1p̃

and

1λ′ =
1
ρ
·1λ̃→ 1q′i

pl
= 1λ′i ·

{
s1/m∗i
s2/n∗i

}
.

(30)

4. Evaluate ‘‘fictitious’’ increments of bending and axial forces
using (27):

1Q′ = B̄ ·1p′ + B̄o · rp (31)

and establish the search direction 1Q′i , for each cross section,
to determine its next possible plasticization. This occurs at the
intersection with one of the yield planes (Fig. 8(a)).

5. Find the correct 1γk as the minimum 1γi,k among the non-
active constraints that produces a newplasticization at a critical
section (Fig. 8(a)):

1γi,k =
(αi · ni,k−1 + βi)−mi,k−1

1m′i − αi ·1n
′

i
(32)

for i = 1, 2, . . . ,Nc , where Nc is the total number of critical
sections. Note that parameters (αi, βi) in the above relationmay
be evaluated using Eq. (22):

αi = −
s2
s1
·
m∗,i
n∗,i

and βi =
m∗,i
s1
.
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Fig. 12. Structure’s geometry; members’ & critical sections’ numbering; mechani-
cal properties; external load pattern.

Fig. 13. Collapse mechanism.
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Fig. 14. Load vs. corresponding displacement bearing capacity curves.

For each critical section, 1γi,k is the minimum positive among
all numbers one would get using (32) for each of the four
quadrants of the failure criteria.

6. Find the increments of the bending moments, axial forces and
plastic displacements as:

1m = 1γk ·1m′,
1n = 1γk ·1n′

and 1qpl = 1γk ·1q′pl. (33)
Fig. 15. Frame’s geometry, loading, member & critical section numbering;
mechanical properties.

7. Update the load factor and the various static and kinematic
variables:

γk = γk−1 +1γk

mk = mk−1 +1m
nk = nk−1 +1n

]
→ Qk

θelk = Fm ·mk
δelk = Fn · nk

]
→ qelk = F̄ · Qk

qplk = qplk−1 +1qpl

qk = qelk + qplk .

(34)

The displacements at the loaded pointsmay be found using SKD

uk = B̄T0 · qk. (35)

8. Return to step 1 and repeat the process for k = k + 1, until
either
(a) no solution of theQPmay be found,meaning a collapse state
has been reached and γk is the limit load factor, or

(b) if we have a prescribed loading case and (a) has not
occurred, the process stops if |γk − ‖PL‖| ≤ ρ, meaning we
have reached the end of the current branch.

Once again, the algorithm automatically detects any further
plasticization of an already plasticized critical section (point A on
Fig. 8(b) and (c) — equivalent to themovement along the directions
(1) on the yield plane(s)) or local unloading phenomena (direction
(2)), based on whether the corresponding Lagrange multiplier of
the active constraint is positive or zero, respectively. We should
note here, that, only one constraint will be active when a cross
section is plasticized. Even when further plasticization continues
along a neighbouring constraint (Fig. 8(c)), the previously active
constraint becomes inactive; the neighbouring constraint will
be now the only active constraint which gives rise to plastic
deformations’ increments. The only case where two neighbouring
constraints might be simultaneously activated is when the search
direction (Fig. 8(a)) meets their point of intersection; two nonzero
1λi nowappear for the same cross section. The plastic deformation
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Table 1
Bending moment distribution for each analysis step (units: kN, m).

Member Section 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

1 1 −29.53865 −31.26824 −36.14765 −39.64353 −42.10589 −43.49379 −45.00000 −45.00000 −45.00000
2 22.01398 23.40427 27.29530 30.10161 32.04830 33.37780 34.50878 35.11547 45.00000

2

3 22.01398 23.40427 27.29530 30.10161 32.04830 33.37780 34.50878 35.11547 45.00000
4 27.80468 28.73818 31.24522 32.82406 34.01334 33.74192 34.60057 35.00316 41.14113
5 27.80468 28.73818 31.24522 32.82406 34.01334 33.74192 34.60057 35.00316 41.14113
6 −60.18756 −62.96819 −69.00010 −72.64524 −74.66283 −78.00000 −78.00000 −78.00000 −78.00000

3 7 −14.63945 −15.43390 −16.60849 −17.50000 −17.50000 −17.41926 −16.05116 −15.58804 −10.00806
8 16.58555 17.50000 17.50000 17.50000 17.50000 17.50000 17.28631 17.50000 17.50000

4

9 −45.54811 −47.53430 −52.39161 −55.14524 −57.16283 −60.58074 −61.94884 −62.41196 −67.99194
10 64.13938 66.94652 72.86532 76.15108 78.00000 78.00000 78.00000 78.00000 78.00000
11 64.13938 66.94652 72.86532 76.15108 78.00000 78.00000 78.00000 78.00000 78.00000
12 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000

5 13 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000 −45.00000
14 41.03166 42.06610 45.00000 45.00000 45.00000 45.00000 45.00000 45.00000 45.00000
Table 2
Plasticization/local unstressing sequence & plastic rotations for each analysis step (units: rad).

Member Section 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

1 1 – – – – – – • −0.00057 −0.00977
2 – – – – – – – – •

2

3 – – – – – – – – –
4 – – – – – – – – –
5 – – – – – – – – –
6 – – – – – • −0.00180 −0.00285 −0.01620

3 7 – – – • −0.00068 −0.00068 −0.00068 −0.00068 −0.00068
8 – • 0.00196 0.00338 0.00409 0.00439 0.00439 • 0.00858

4

9 – – – – – – – – –
10 – – – – • 0.00169 0.00533 0.00738 0.03310
11 – – – – – – – – –
12 – – – – – – – – –

5 13 • −0.00111 −0.00396 −0.00538 −0.00631 −0.00742 −0.00965 −0.01110 −0.03060
14 – – • 0.00100 0.00171 0.00205 0.00250 0.00292 0.00977
Table 3
Loading cycle (units: kN).

Loading cycle point P1 P2 P3 P4

1 86.0 43.0 258.0 129.0
2 0.0 0.0 0.0 0.0
3 86.0 43.0 0.0 0.0
4 0.0 0.0 0.0 0.0

increments for this cross section will now be evaluated as the
composition of two vectors [1], one for each yield plane, that are
determined using (28).
The procedures described are stable, robust and computation-

ally efficient. The flexibility matrix is established at the first step
and is decomposed only once. There is no need of any further refor-
mulation or re-decompositionwhenever a newplastic hinge or any
local unloading might take place. The QP program is solved only
once at each incremental step and the step length that marks the
next plasticization is automatically determined without having to
perform unnecessary intermediate elastic steps of fixed length as
would be the case in any of the existing computer packages that
are based on the direct stiffness method.
The parameter ‘‘ρ’’ is a pure number, and does not depend on

the adopted units. Although the procedure is stable for any ‘‘ρ’’,
for good accuracy reasons, its’ value is chosen so as to be able to
capture all possible plasticization events, nomatter how close they
are to each other.

6. Numerical examples

A computer program that follows the above described proce-
dure was written in FORTRAN. The IMSL routine DQPROG [24] was
included to implement the algorithm of [22]. Overall, a value of
ρ = 10−3 to 10−4 has proved sufficient for all examples presented
herein.
Five examples of application are used to demonstrate the

versatility of the proposed procedure. The first four examples
assume a pure bending behaviour. All kinds of inelastic analyses
like monotonic loading, piecewise proportional loading, cyclic
loading and pushover analysis are tested. In the fifth example
moment/axial force interaction is considered. Both the simple and
the AISC LFRD criteria have been applied.
Nonholonomic behaviour is assumed throughout as it was

shown above that it may easily be accounted for and it represents
a more realistic behaviour, despite the fact that most commercial
packages do not have or have improper facilities to accommodate
it (e.g. SAP2000 [16]). The computational efficiency of the
approach is demonstrated on a problem of a relatively large
scale.

6.1. Simple frame under prescribed loading

The frame of Fig. 9 is analyzed as a first example. The bending
stiffness, as well as the bending plastic capacity of the various
members is shown in the same figure.
This examplewas solvedbyhand in Smith andMunro [25]. It is a

prescribed loading case,with the horizontal load being applied first
up to the level of 50 kN, then the vertical load is applied up to the
level of 160 kN with the horizontal load being kept constant, and
finally the two loads are proportionally varied, the horizontal being
decreased to 20 kN,whereas the vertical is increased to 180 kN. The
loading scenario may be seen in Fig. 10. All the important events
are shown in the same figure. It may be seen that a plastic hinge
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Fig. 16. Base shear vs. roof horizontal displacement curve.
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Fig. 17. (a) Structure’s geometry, seismic loads, member numbering. (b) Uniform dead load on beams.
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Fig. 18. (a) Bending moment diagram on collapse (units: kN m). (b) Collapse mechanism.
forms at section 2 first. Then, it unloads at the third step resulting
to a remaining θ

(2)
pl = +3.33E− 02 rad, while another hinge forms

at section 7. At the fifth step, this section unloads resulting to a
remaining θ

(7)
pl = −1.33E − 01 rad, while another hinge forms at

section 4, leaving a θ
(4)
pl = +8.33E− 03 rad, at the end of the sixth

step (see Fig. 10).
The evolution of the bending moments is shown in Fig. 10.

Results coincide with the ones obtained in [25].
The load–deflection curves for the two loads and the corre-

sponding displacements are shown in Fig. 11.

6.2. Limit analysis of a two-bay frame

The second example of application is the limit analysis of a two
bay frame shown in Fig. 12, with λ being the load factor. Despite
the fact that the loading is monotonic, plastic unstressing occurs.
This example has been solved in the work of Franchi and Cohn [7],
using a rather complex algorithm.
The evolution of the bending moments may be seen in Table 1.

The sequence of plasticization/local unloading events, as well as
the plastic rotations’ values, may be seen in Table 2, where a bullet
(•) symbolizes the activation of the corresponding plastic hinge
at the current step. Local unstressing of a previously activated
hinge is denoted with italics. As it can be seen from Table 2, the
cross section 7 starts unloading at the sixth step and continues
unstressing till the end. On the other hand, the cross section 8
unloads at the seventh step, but reloads at the next step and
remains plasticized through the end. The collapse mechanism
appears in Fig. 13 and the bendingmoment distribution at the state
of collapse in the last column of Table 1.
Finally the various load vs. corresponding deflection curves for

the three loads appear in Fig. 14.
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Fig. 19. Static pushover analyses curves.

6.3. Two-storey frame under cyclic loading

Cyclic loading, which is a special case of prescribed loading, is
chosen as the next application. The example consists of a two-
storey frame that is subjected to horizontal and vertical loads
(Fig. 15). The mechanical properties of the members can be seen
in Fig. 15. Results are presented for L = 1 m.
The loading cycle consists of applying both horizontal and

vertical loads at first, then unloading to zero, then applying
the horizontal loads only, and unloading to zero again. The
maximum values that the loads reach inside the cycle (Table 3)
have been selected so that they are above their corresponding
shakedown values Psh = {P1, P2, P3, P4}sh = {82.296, 41.148,
246.888, 123.444} (units: kN) that have been estimated by
Nguyen and Morelle [26]. The bending moment diagram that
develops inside a cycle may be seen in Table 4. From these results
one realizes the development of plastic hinges at sections 4, 6, 8,
11 and 14 (see Fig. 15) in the first part of the loading cycle which
all eventually unload in the second part, whereas a new plastic
hinge opens at section 1 at the third part of the cycle. These hinges
form an incremental collapse mechanism. Also, in the same table,
one may see the values of the plastic rotations at the end of the
first cycle, as well as their increments over the second cycle. These
increments become constant over the third and subsequent cycles
leading to incremental collapse. The base shear (loads P1 + P2) vs.
roof horizontal displacement curve for the first four loading cycles
may be seen in Fig. 16. Despite the fact of the formation of plastic
hinges very close to each other, the procedure with ρ = 0.0001
is capable of capturing all of them, thus proving the method’s
effectiveness once more.

6.4. Pushover analysis of a multi-storey frame

This example is a static pushover analysis on a five-storey plane
frame, and is presented here to demonstrate the algorithm’s effi-
ciency on relatively large-scale problems of common engineering
practice.
In Fig. 17(a) the structure’s geometry and member numbering

may be seen. The assumed material is S220. In order to achieve a
strong column-weak beam collapse mechanism, sections HEM260
Fig. 20. Frame geometry, member numbering and initial loading coefficients.
(units: kN).

a b

Fig. 21. Collapsemechanismandplasticization/local unstressing sequence for each
criterion: (a) (m/m∗)+ (n/n∗) = 1. (b) AISC LFRD.

(with EI = 65751.0 kN m2,Mp = 555.28 kN m) were assigned
to the columns, and to all beams (including the inclined members)
sections HEB160 (with EI = 5233.2 kNm2,Mp = 77.88 kNm). The
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a

b

Fig. 22. (a) Bending moments distribution on collapse. (units: kN m). (b) Axial
forces distribution on collapse. (units: kN).

earthquake loads were computed according to the EAK 2000 [27]
having linear distribution along the height and are applied at the
level of each floor (Fig. 17(a)), while the dead load for the various
types of beams of the structure may be seen in Fig. 17(b).
For the sake of checking computational efficiency in terms

of the number of constraints, and in order to approximate the
exact locations of plastic hinges along the beams more accurately,
distributed loads are modeled as a finite set of quite close and
equally positioned, statically equivalent point loads. Two types of
beam vertical loading were appointed; beam members 26 to 40
& 46 to 54 were subjected to point loads equivalent to a uniform
loading of magnitude q = 9 kN/m, while members 41 to 45 & 55
to 59 to point loads equivalent to 10 kN/m (see Fig. 17(b)). Due to
this simulation, the structure ends up having a total of 502 critical
sections. Since for each critical section we have two inequality
constraints, this yields a total of 1004 constraints.
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Fig. 23. Horizontal loads vs. corresponding horizontal displacement curves.

Pushover analysis with the proposed method is performed in
the form of a prescribed loading. At first, only the vertical (dead)
loads are applied; then the earthquake loads are added to the
existing load/stress state and are monotonically increased until
collapse occurs.
The best accuracywas acquired byusingρ = 0.0001. Plasticiza-

tion started from the small horizontal beams that are connected to
the exterior column on the right. In the course of the analysis, the
characteristic of a numerical nonholonomic analysis, i.e. the for-
mation of hinges that were loaded, unloaded and reloaded, or per-
manently unloaded, often appeared.
Results show that the plastic hinges develop close to or exactly

at the members’ ends. The values of the earthquake loads that
brought the structure to collapse are shown in Fig. 17(a). The
bending moments’ diagram at the state of collapse, for the whole
structure, appears in Fig. 18(a). The hinges in the final collapse
mechanism may be seen in Fig. 18(b).
The results of the proposed method were compared to those

of a widely used commercial package (SAP2000 [16]), that uses
the direct stiffness method. In order to match the total number of
the critical sections, 256 finite elements were used to model the
problem examined. As one may see from Fig. 19, the base shear
forces versus the roof displacement curves for both the analyses
are almost identical. The collapse mechanism was also identical.
The time required by SAP2000 to solve the problem, with the

default analyses options, may be seen in Table 5. Note that, only
for inverting the stiffness matrix, 13.31 s were needed, while
the total time for calculations was 22.55 s. On the other hand,
using the proposed method, solution was acquired within only
3.78 s. Computations were performed on an Intel Core2 Duo T8100
microprocessor (2.1 GHz), using only one of the CPU’s cores.

6.5. Limit analysis of a three-storey frame with {m, n} interaction

The fifth example shows the application of the proposed
algorithm to a 3-storey framewhen considering (m, n) interaction.
This example was first presented as a limit analysis problem by
Cohn & Rafay [28].
The structure’s geometry, loading, member numbering and

section types for each member, may be seen in Fig. 20; the three
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Table 4
Bending moments values inside a cycle; changes of plastic rotations over loading cycles (units: kN, m).

Member Section Bending moments for every loading cycle point θpl at the end of the 1st
cycle

1θpl at the end of the 2nd
cycle

1θpl at the end of each
subsequent cycle

1st 2nd 3rd 4th

1 1 −156.000 −67.108 −162.000 −42.106 – −3.300E−03 −3.300E−03
2 −17.357 −28.961 44.665 −28.942 – – –

2

3 −30.000 −28.397 77.704 −26.442 – – –
4 162.000 9.749 7.152 7.152 2.800E−02 6.600E−03 6.600E−03
5 162.000 9.749 7.152 7.152 – – –
6 −162.000 47.895 −63.401 40.745 −3.090E−02 −6.600E−03 −6.650E−03

3 7 −86.357 49.252 −34.102 39.504 – – –
8 162.000 11.105 146.233 26.339 4.280E−03 3.300E−03 3.305E−03

4 9 12.643 −0.564 −33.039 −2.500 – – –
10 −15.000 1.330 36.000 2.039 – – –

5 11 −81.000 3.252 −30.662 3.298 −2.780E−02 −6.600E−03 −6.650E−03
12 75.643 1.357 29.299 −1.241 – – –

6

13 −15.000 1.330 36.000 2.039 – – –
14 81.000 2.291 2.669 2.669 2.450E−02 6.600E−03 6.600E−03
15 81.000 2.291 2.669 2.669 – – –
16 −81.000 3.252 −30.662 3.298 – – –
Table 5
SAP2000 v.14.0.0 computational time table.

Time for initializing analysis = 0.10
Time for controlling analysis = 3.59
Time for forming stiffness matrix = 0.35
Time for solving stiffness matrix =13.31
Time for calculating displacements = 4.11
Time for determining events = 0.15
Time for updating state = 0.94
Total time for this analysis =22.55

decimal point accuracy is due to conversion from Imperial to S.I.
units.
Two types of analysis were performed; one based on the simple

criterion, as in [28], and one based on the AISC LFRD criterion [23].
The value ρ = 0.001 was used for the fictitious load increment in
both cases.
For the simple criterion case, the limit load factor was found

λc = 1.94177, almost identical with the one given in [28] (λc =
1.952), whereas for the AISC LFRD criterion case, the limit load
factor was λc = 2.06649.
The collapsemechanism and the plasticization sequence for the

two criteria are shown in Fig. 21(a) and (b), where the numbers
correspond to the analysis step inwhich the event takes place. One
may notice the difference in the plasticization sequence between
the two cases. In the AISC LFRD case (see Fig. 21(b)), the critical
section at the right end of member 7 that was plasticized in step
3 is unstressed in step 8, while – in the same step – a new plastic
hinge forms at the upper end of member 3.
The bending moments’ and axial forces’ diagrams on the state

of collapse for each criterion case are shown in Fig. 22(a) and (b),
with the values inside the parentheses corresponding to the AISC
LFRD criterion analysis results.
In Fig. 23, one may see the base shear vs. roof horizontal

displacement curves, for both bending moment and axial force
interaction criteria.
The same example was solved using SAP2000 [16], yielding

identical results (Fig. 23). For the simple criterion, 2.70 s were
required in total, while 1.86 s were required for solving only the
stiffness matrix. On the other hand, using the proposed method,
the total computational time was only 0.047 s. For the AISC
LFRD, 3.17 s were required in total, while 2.19 s were required
for solving only the stiffness matrix. On the other hand, using
the proposed method, the total computational time was only
0.062 s. Computations were performed on an Intel Core2 Duo
T8100microprocessor (2.1 GHz), using only one of the CPU’s cores.

7. Concluding remarks

A force based numerical procedure that deals with the
nonholonomic elastoplastic analysis of frames has been presented.
A relatively simple algorithm is used to select the hyperstatic forces
which are the basic unknowns.
The method is developed within the framework of mathemati-

cal programming. It is formulated as an incremental PQP problem.
The PQP problem is converted to a QP problem through the use of
a fictitious loading step. In this way, a good QP algorithm may be
used for the solution. No extra numerical care needs to be taken,
since plastic unstressing, in a stepwise holonomic way, is naturally
accommodated in the procedure.
The method was first formulated for frame structures of pure

bending behaviour. It was then extended to cater for axial force
effects also. Examples of application for both types of behaviour
have been presented.
The procedure turned out to be accurate, stable and computa-

tionally superior as compared to the direct stiffness method that
is almost exclusively used. It is therefore believed that this could
enhance the use of mathematical programming methods towards
the numerical solution of elastoplastic problems.
The proposed method may be extended to 3D structures.

Material hardening may also be included.
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