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SUMMARY

Most of the �nite element analyses of reinforced concrete structures are restricted to two-dimensional
elements. Three-dimensional solid elements have rarely been used although nearly all reinforced concrete
structures are under a triaxial stress state. In this work, a three-dimensional solid element based on a
smeared �xed crack model that has been used in the past mainly for monotonic static loading analysis
is extended to cater for dynamic analysis. The only material parameter that needs to be input for this
model is the uniaxial compressive strength of concrete. Steel bars are modelled as uniaxial elements
and an embedded formulation allows them to have any orientation inside the concrete elements. The
proposed strategy for loading or unloading renders a numerical procedure which is stable and e�cient.
The whole process is applied to two RC frames and compared against existing experiments in the
literature. Results show that the proposed approach may adequately be used to predict the dynamic
response of a structure. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: dynamic analysis; non-linear RC analysis; smeared crack model; 3D solid �nite
element; seismic loading; RC concrete frames

1. INTRODUCTION

The �nite element non-linear analysis of reinforced concrete (RC) structures under dynamic
loading can be a powerful tool for predicting their behaviour in order to evaluate the safety
levels of design. To get an overall estimation, especially for framed structures, one may
use approaches based on either concentrated plasticity methods (plastic hinges) or distributed
plasticity ones (�bre models). Nevertheless, for a more realistic prediction any structure should
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be considered as three dimensional, and therefore triaxial stress–strain behaviour is more
appropriate.
Smeared cracking is the most widely used way to describe the cracking processes in concrete

structures modelled by �nite elements. The description of cracking in concrete is done within
the framework of damage mechanics. The �xed crack model assumes that when a crack
forms normal to the maximum principal tensile stress its orientation remains �xed throughout
the analysis [1]. Another approach that assumes rotation of crack orientation due to residual
tensile stress if concrete is considered as quasi-brittle is the rotating crack model [2, 3]. The
more sophisticated microplane model assumes that the material is characterized by a relation
between stress and strain components on planes of various orientations. One of its latest
versions [4, 5] uses four material parameters which, however, increase the computational cost
considerably [6].
It is a well-known fact that all materials with a descending branch of the stress–strain

relationship exhibit a strain localization which is not compatible to the continuum mechanics
assumptions made in a �nite element formulation. This makes the predictions to be mesh
dependent (i.e. a �ner mesh results in smaller ultimate limit loads) [7]. In order to alleviate
this problem various localization limiters have been presented in the literature. Among the
most well known limiters are (a) the crack band model [8] that uses a mesh-dependent
softening modulus and may be expressed through the fracture energy that is considered to be
a material parameter; (b) the non-local continuum model which assumes that the stress and
strain are subjected to spatial averaging over a �nite neighbourhood of a point [9], and (c)
the gradient model which incorporates higher-order gradients into the constitutive law [10].
A simpler smeared crack model has been developed by Kotsovos and Pavlovic [11], based

on experimental tests of concrete under multiaxial stress states [12], where cracking is treated
as a complete sudden loss of stress [13]. This model, therefore, ignores any e�ect of material
strain softening both in tension and compression. It is stated that a falling branch is a direct
result of the control of crack propagation imposed by the machine in the course of testing
[14, 15]. The only parameter needed for this model is the strength that can be obtained
experimentally with a simple uniaxial cylinder compressive test. For mesh dependency in
connection to �ner meshes, it is argued that the experimental conditions under which the
constitutive relations were derived limit the size of a �nite element to be no less than two
or three times the size of the maximum aggregate in the concrete mix and therefore no
consideration of �ner meshes is needed.
In the literature, almost all the static cyclic loading analyses of reinforced concrete struc-

tures, even for three-dimensional problems, use two-dimensional plane �nite elements or �bre
beam elements; for example, among the more recent ones are References [16–18]. There
have appeared, however, some that have used three-dimensional solid elements, for example
References [19, 20].
As far as dynamic analysis is concerned, the published work refers almost exclusively to

plane problems. Agrawal and Jaeger [21] have used plane stress elements to compare the
peak values response under seismic loading with existing test data for a shear wall spec-
imen. NUPEC [22] has performed seismic ultimate dynamic response tests and its results
for a shear wall specimen have been compared by Inoue et al. [23] who analysed it as a
quasi-three-dimensional structure composed of plane elements. The same specimen has been
analysed by Ile and Reynouard [24] using a crack band model together with two-dimensional
plane elements. Mazars et al. [25] developed an equivalent two-dimensional reinforced
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concrete model using lattice meshes for concrete and reinforcement bars and uniaxial consti-
tutive laws based on continuum damage mechanics and plasticity. The analysis results of this
model were also compared with NUPECs experimental data. A fracture energy-based rotating
crack model was used by Han et al. [26] to analyse a shear wall and a plane frame structure
with two-dimensional plane elements. Results were compared with shaking table experimen-
tal data. Kwan and Billington [27] analysed post-tensioned concrete bridge piers using plane
elements. Only works of Faria et al. [28] and the very recent works of Mirzabozorg and
Ghaemian [29] are known to the authors to have used a three-dimensional concrete element
to analyse dams. Damage models having relatively few material parameters are proposed.
A critical issue in the non-linear analysis of RC structures is non-convergence and in case of

convergence, it should be towards a realistic solution. In this work, the 3D solid �nite element
of Reference [11] that uses the uniaxial compressive strength as the only material parameter,
as aforementioned, forms the basis to simulate the response of RC structures under dynamic
loading. Preliminary results of this work were reported in Reference [30]. This model, in the
case of monotonic loading, has given good predictions of failure loads. A crack strategy is
proposed herein, which may handle in a most natural way the possible opening or closure of
cracks. This procedure appears to have good convergence characteristics and its combination
with the Newmark numerical integration method leads to a stable numerical process. This
process is applied to the seismic analyses of two structures, for which experimental results
exist, and shows good prediction of their dynamic response.

2. BRIEF REVIEW OF THE CONCRETE MODELLING

The concrete modelling used by Kotsovos and Pavlovic [11] will be brie�y described in the
following.

2.1. Constitutive modelling
The three-dimensional constitutive behaviour of concrete prior to macrocracking, when con-
crete su�ers a noticeable loss of continuity, may be described with reference to the octahedral
stress which may be decomposed into a hydrostatic �0 and a deviatoric part �0. The following
assumptions are made concerning their corresponding strains �0 and �0:

• Under pure hydrostatic stress, concrete only develops hydrostatic strains �0h.
• Deviatoric stress–strain relationships are almost independent of the applied hydrostatic
stress.

• Under deviatoric stress, concrete also develops hydrostatic strains �0d, the values of which
depend on the level of hydrostatic stress. This is the only signi�cant form of coupling
between the deviatoric stress and volume change.

• The behaviour is essentially isotropic.
• Unloading and subsequent reloading follow the initial sti�ness slope (Figure 1).

In view of the above, the stress–strain relationship may be written in the following form:

�0 = �0h + �0d =
�0 + �id
3Ks

�0 =
�0
2Gs

(1)
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Figure 1. Measured and analytical stress–strain concrete behaviour during loading,
unloading/reloading under triaxial compression.

where �id(�0; �0; fc) is an equivalent internal hydrostatic stress that accounts for the coupling
and fc is the uniaxial compressive strength of concrete; Ks(�0; fc) and Gs(�0; fc) are secant
bulk and shear moduli, respectively, should such a coupling not exist (i.e. they are obtained
ignoring �id). Expressions for �id ; Ks, and Gs may be derived through curve �tting of
experimental uniaxial, biaxial and triaxial data.
Since �id is a pure hydrostatic correction, expressions (1) are equivalent to the following

relations in global co-ordinate directions:

�ij=
�ij + �id�ij
2Gs

− 3�s
Es
(�0 + �id)�ij (2)

where Es(�0; �0; fc) and �s(�0; �0; fc) are secant Young’s modulus and Poisson’s ratio derived
from Ks and Gs, using standard formulae of linear elasticity:

Es =
9KsGs
3Ks +Gs

�s =
3Ks − 2Gs
6Ks + 2Gs

(3)

Since the component of the non-linear deformation of concrete under �0 is considerably
larger than under �0 [31], if we denote by max �0 the deviatoric stress at each point on the
stress–strain curve, then elastic unloading=reloading occurs whenever during a loading program
the deviatoric stresses �0 become less than max �0 (Figure 1, e.g. points A or B).
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Figure 2. Intersection of failure surface for concrete with plane formed by space diagonal
and one of the principal axes.

The octahedral stresses also serve as a means to describe concrete failure which may be
represented in the three-dimensional principal stress space by an open and convex failure
surface. The form of such a failure surface can be seen in Figure 2, indicating the very small
strength of concrete under tensile stresses (positive axes refer to compressive stresses).
The projection of the failure surface on the deviatoric plane which is normal to �0 results

in a curve which is the locus of the ultimate deviatoric stress �0u. This ultimate stress may
be calculated from �0 and �, where � is the rotational angle that the deviatoric stress, taken
as a vector, forms with one of the projected stress principal axes on the deviatoric plane.
For a given state of stress the quantities �0; �0; � may be calculated:

�0 = 1
3 I1

�0 =
√
(2�20 − 2

3 I2)

cos 3� = −
√
2
�30
J3

(4)

where I1 and I2 are the �rst and second invariants of the stress tensor, whereas J3 is the third
invariant of the deviatoric stress tensor sij=�ij − �0�ij.
It is an experimentally documented fact that when compressive stresses reach certain values,

concrete starts to increase its volume. Due to concrete in-homogeneity, such a localized re-
gion under compression then tends to expand against the surrounding material. The con�ning
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concrete therefore introduces in the localized region lateral compressive stresses, which, in
turn, for equilibrium to be maintained, make the surrounding regions develop tensile stresses.
This has an e�ect of increasing the strength of the localized region while the tensile stresses
in the surrounding region eventually turn this state of stress into having one of its principal
components tensile. This, as can be seen from Figure 2, leads to the reduction of the strength
of the surrounding region and macrocracking takes place.

2.2. Numerical modelling of cracking

A smeared �xed crack model within the framework of the �nite element method is used to
simulate the e�ect of cracking on the structure as the load is applied in small increments.
Then, the increments of stresses at a Gauss point are found from the increments of strains
through the adopted D-matrix (bold letters denote vectors and matrices):

��=D�U (5)

So for an uncracked Gauss point
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��x
��y
��z
��xy
��xz
��yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2G + � � � 0 0 0
� 2G + � � 0 0 0
� � 2G + � 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��x
��y
��z
��xy
��xz
��yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where �= �E=((1 + �)(1− 2�)).
Since the relations are in incremental form, the above material constants are tangent ones.

They may be evaluated [11] by di�erentiation from the secant material constants and are
functions of �0; �0.
When the failure surface at a Gauss point has been exceeded for the �rst time a crack

perpendicular to the maximum tensile stress is formed. Suppose that the plane of the crack
is OAB (Figure 3). Then for the local axis z′, which is perpendicular to this plane, the cor-
responding sti�nesses are zeroed, whereas a small shear is allowed to be transmitted in this
plane denoted by 	G. The shear retention factor 	 is set equal to 0.1, mainly for conver-
gence, simulating, however, in a way, some ‘aggregate interlock’ that has also been veri�ed
experimentally. The incremental stress–strain relationship then looks like the following:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��′
x

��′
y

��′
z

��′xy
��′xz
��′yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2G + � � 0 0 0 0
� 2G + � 0 0 0 0
0 0 0 0 0 0
0 0 0 G 0 0
0 0 0 0 	G 0
0 0 0 0 0 	G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��′x
��′y
��′z
��′xy
��′xz
��′yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7a)

If a tensile state of stress is reached for the second time, then the plane that is perpendicular
to the direction of the new maximum principal tensile stress together with the previous plane
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Figure 3. Local axes for one and two cracks at a Gauss point.

leaves only sti�ness along the intersection of the two (Figure 3 line AB or the direction y′′).
Thus, the incremental stress in terms of the incremental strains along these Cartesian axes
(x′′y′′z′′) is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��′′
x

��′′
y

��′′
z

��′′xy
��′′xz
��′′yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 2G + � 0 0 0 0
0 0 0 0 0 0
0 0 0 	G 0 0
0 0 0 0 	G 0
0 0 0 0 0 	G

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��′′x
��′′y
��′′z
��′′xy
��′′xz
��′′yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7b)

Because of the crack induced anisotropy for the last two cases, the stress–strain matrix,
expressed in local axes, is transformed to global orientations using the standard co-ordinate
system transformation laws.
If a new tensile stress occurs at the same Gauss point for a third time, then we have a

complete loss of carrying capacity of the Gauss point.

3. PROPOSED NUMERICAL STRATEGY

A single crack approach (SCA) has been used by Kotsovos and Spiliopoulos [32] in analyses
of reinforced concrete structures with crack closure. According to this strategy, the load is
applied in relatively large steps and for convergence reasons only one crack is allowed to open
or close inside a Newton–Raphson iteration. The check for the state of loading or unloading
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at a Gauss point is determined at the beginning of the load step and remains �xed until
convergence. Also, operations concerning closing or opening of cracks are done separately
inside the load step. The �rst part of the load step deals exclusively with the closure of the
cracks that are due to closing, whereas the second part of the load step caters only for the
possible opening of new ones.
In the present paper, a new numerical strategy for the crack opening and closure is pro-

posed. According to this strategy, which in the sequel will be called uni�ed total crack ap-
proach (UTCA), the crack history of an integration point is treated in a uni�ed way without
separating the crack opening=closure in an iterative Newton–Raphson procedure. The check
for loading or unloading at a Gauss point is done inside an iteration. Thus, the possibility of
a Gauss point being in two di�erent loading states inside a loading step is also included. The
whole procedure, therefore, presents a more natural way of treating the non-linear process and
therefore alleviates problems encountered with SCA [30].
According to the proposed procedure, if we denote by j an iteration inside an incremental

load step we can get an increment of displacements, using the tangent sti�ness matrix of the
previous iteration. Focusing on a Gauss point

1. The increments of strains are evaluated from the increments of the displacements

�U(j) =Bc�u(j) (8)

where Bc is the compatibility matrix of the concrete element.
2. The total strains are calculated from the strains of the previous iteration

U(j) = U(j−1) + �U(j) (9)

3. A prediction of stresses is made using the material matrix of the previous iteration

�(j)pr = �(j−1) +D(j−1)�U(j) (10)

From the predicted state of stress the quantities �(j)0 ; �
(j)
0 and �(j)0u may be calculated.

A correction of stress occurs depending on whether the Gauss point was at the previous
iteration cracked or uncracked.
For an uncracked Gauss point, all the di�erent possibilities may be traced in Figure 4.
If �(j)0 is found larger than �(j)0u , something which normally happens when tensile stresses

have developed, a new crack forms normal to the direction of the maximum principal tensile
stress �I . This stress is put to zero without the other two principal stresses being a�ected.
This has an e�ect to produce residual stresses:

��r =T−1
� ·

⎧⎪⎨
⎪⎩

−�I
0
0

⎫⎪⎬
⎪⎭ (11)

where T−1
� is the inverse transformation matrix from the principal stress axes to the initial

x; y; z axes.
At the same time the material matrix in terms of the local crack’s axis is established using

Equation (7a). The transformation of this matrix to the global axes, denoted by D(j)cr , updates
the material matrix D(j) to be used in the next iteration.
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Figure 4. Flow chart for the stress correction at an uncracked Gauss point.

For a Gauss point that remains uncracked an elastic stress prediction is performed:

��(j)el:pr = Del�U(j)

�(j)el:pr = �(j−1) + ��(j)el:pr
(12)

where Del is the material matrix that contains the initial material constants.
Next it has to be determined whether the Gauss point is in a condition of previously loading

(�(j−1)0 ¿ max �0) or unloading (�
(j−1)
0 ¡ max �0).

For a previously loading Gauss point that is further loaded (�(j)0 ¿�
(j−1)
0 ) or a previ-

ously unloading Gauss point that changes its state to loading (�(j)0 ¿ max �0), an initial strain
method [11] is applied and the stress is corrected according to

��r =D(j)(�(j)pr ){U(j)(�(j)pr )− U(j)} (13)

where U(j)(�(j)pr ) is computed according to Equation (2). If a previously unloading Gauss point
continues to unload (�(j)0 ¡ max �0), then no stress correction is needed (��r = 0).
In the last case where a previously loading uncracked Gauss point begins to unload (�(j)0 ¡

�(j−1)0 ), initial elastic properties are restored and the residual stresses are equal to the di�erence
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Figure 5. Flow chart for the stress correction at a cracked Gauss point.

of the elastically predicted stresses and the tangent predicted stresses:

��r = �(j)el:pr − �(j)pr (14)

For a cracked Gauss point the di�erent possibilities may be found in Figure 5.
The total strains normal to all the existing crack directions U(j)N are checked and if any one

of them is found compressive, the crack is assumed to close, the material matrix in the local
crack’s direction is updated using Equations (7a) and (7b) and the transformed to the global
stress directions D(j)cr is set equal to D(j). At the same time the stresses are corrected using
this matrix and the total strains:

��r =D(j)U(j) (15)

In case there is no crack closure the procedure checks whether we have a crack opening
(�(j)0 ¿�

(j)
0u ). If this happens, then the stress correction may be done using Equation (11);

otherwise no stress correction is needed (��r = 0).
For both the cases of the cracked or uncracked Gauss points the stress corrections give

rise to unbalanced forces that are implemented, in the standard way, as a new force vector
applied in the next iteration.
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Figure 6. Embedding a straight steel bar inside concrete.

Twenty seven-node Lagrangian brick elements with 3× 3× 3 Gauss points were used for
the �nite element implementation of concrete behaviour. The well-known fact of mesh in-
objectivity for brittle materials [7] (although not so pronounced when reinforcement exists)
is circumvented using elements having a size of 5–20 cm that have proved to give realistic
results. This is due to the fact that the size of the concrete specimens that were used to
deduce the above-described concrete behaviour is roughly the same as the equivalent volume
that corresponds to a Gauss point. This size of elements therefore serves as a means of a
‘localization limiter’.
Steel bars are modelled as three-noded uniaxial truss elements. The Menegotto–Pinto [33]

model is adopted; this model accommodates the Bauschinger e�ect, observed in steel, under
large load reversals. Inside an iteration of an incremental step, in the standard way, the
incremental strain along the steel bars is used to make an elastic prediction for the stress. If
this stress is found to be larger than the current yield stress, a correction to the stress is made
so that it is brought back on the true stress–strain curve. Equivalent nodal stresses are then
applied so that equilibrium is restored.
Steel bars may be considered to have arbitrary positions inside the concrete elements

(Figure 6). A numerical procedure that takes into account the contribution of such an embed-
ded reinforcement is used. With this procedure for each straight segment of reinforcement only
the end point co-ordinates in the global axes need to be provided by the analyst. The concrete
elements that contain a portion of the bar de�ned through the points P1 and P2 may be found
with the aid of a reverse mapping from the global co-ordinates (x; y; z) to the element natural
ones 
; �; �. A Newton–Raphson procedure is utilized to make this conversion [34]. The point
P1 is contained in a given concrete element if its co-ordinates 
P1 ; �P1 ; �P1 satisfy

|
P1 ; �P1 ; �P1 | 6 1 (16)

Once the element that contains P1 is found, the use of analytic geometry determines the
intersection point Pa of P1P2 with one of the possible six faces of the elements [35]. After
this has been established, P1 becomes Pa and the algorithm is repeated.
Assuming a perfect bond between steel and concrete, the strain inside iteration j of the

incremental step along the steel bar with direction cosines l; m; n may easily be evaluated [36]:

��(j)r; xx = ��(j)xx l
2 + ��(j)yym

2 + ��(j)zz n
2 + 2��(j)xy lm+ 2��

(j)
yz mn+ 2��

(j)
xz ln

= T��U(j) =T�Bc�u(j) =Br�u(j) (17)
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The contribution to the sti�ness matrix of a steel bar inside a concrete element is given by

K(j)r = ArE(j)
∫
S
BTr Br dS (18)

where E(j)r and Ar are the tangential modulus of elasticity and the cross-sectional area of the
steel bar. Thus, the total sti�ness matrix of the reinforced concrete element is

K(j) =K(j)c +
nrs∑
i= 1
K(j)r; i =

∫
V
BTcD

(j)Bc dV +
nrs∑
i= 1
K(j)r; i (19)

where nrs is the number of embedded reinforcements inside a brick element.
A highly modular �nite element code (FE77 [37]) was used as a basis for the implementa-

tion of the above-described procedures. A new module was added in which the
Newton–Raphson iterative procedure with the mathematical description of concrete behaviour,
together with the di�erent approaches regarding the crack strategy were implemented.

4. RC SHEAR WALL UNDER STATIC CYCLIC LOADING

The whole procedure was applied under a static displacement control to a reinforced concrete
shear wall that was considered clamped at its base. The �nite element model of the wall
can be seen in Figure 7(a). The wall was 650mm wide, 1300mm high and 65mm thick.
Steel bars of 8 and 6.25mm diameter with yield strength of 470 and 520MPa were used
as vertical and horizontal reinforcement, respectively. Additional reinforcement with the form
of stirrups (4mm diameter bars, 420MPa yield strength) con�ned the wall edges. Concrete
uniaxial compressive strength was 35.2MPa. The wall was subjected to a series of four
displacement saw-toothed loading cycles between the values of ±5 cm before a continuous
increasing displacement was applied. Results (Figure 7(b)) were compared against existing
experiments [38].
It can be seen that there is good ultimate load prediction together with good prediction at

the ends of the cycles. The ultimate loading analytical prediction that is given by the last
point for which the solution has converged (96 kN) is quite close to the maximum load given
by the experiment (115 kN). Beyond this point the analysis diverges due to the extensive
cracking in the compressive region of the wall.
It is obvious that the prediction of the energy dissipation is relatively poor. If a softening

behaviour with secant unloading was modelled, the resulting dissipated energy could be larger.
It is anticipated, nevertheless, that the dominant mechanism that creates energy dissipation in
cyclic loading is related to the reinforcement. Since the nonlinearities of the steel bars are
modelled accurately, it is expected that the possibility of including a bond-slip e�ect could
enhance the model’s behaviour towards a better dissipated energy prediction.

5. DYNAMIC ANALYSIS

Dynamic equilibrium at any instant of time t may be expressed in the form of the following
equations:

M �u+Cu̇+ f(u)= p(t) (20)
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Figure 7. (a) Finite element modelling of reinforced concrete shear wall; and (b) comparison of
analytical against experimental results under static cyclic displacement on a reinforced shear wall.

with M being the mass matrix, C a Rayleigh damping matrix, and f(u) the vector of internal
forces. The applied loads p(t) are given by

p(t)= −m�ug(t) + pg (21)
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where pg is the external force vector due to the self weight of the structure, m a vector that
contains the masses for all the degrees along the direction of the ground motion and �ug(t)
the ground acceleration.
The self-weight is applied in a static incremental step to �nd an initial displacement vector

u0 as well as the initial internal force vector f0. A few iterations are needed for convergence.
Using the Newmark method, the problem may be converted to a series of static incremental

steps [39]. The incremental load vector is formed according to Equations (22):

�pi = −m��ug; i= −m(�ug; i+1 − �ug; i)

�p̂i = �pi +
(
1
	�t

M+
�
	
C

)
u̇i +

(
1
2	
M+�t

(
�
2	

− 1
)
C

)
�ui

(22)

where i is the incremental step (i=0; 1; 2; : : :) and �; 	 the constants of Newmark’s method.
Inside an incremental step an iterative procedure is performed, which calculates the aug-

mented sti�ness matrix at each iteration j:

K̂(j−1)i+1 =K(j−1)i+1 +
�
	�t

C+
1

	(�t)2
M (23)

where depending on the current state of the concrete Gauss point the tangent sti�ness K(j−1)i+1
may be calculated from Equation (19).
An increment of displacements �u(j) can be obtained from Equation (24):

K̂(j−1)i+1 �u(j) =�R(j−1) (24)

�R is the increment of the residual forces, which, at the beginning of the �rst iteration, is
equal to the incremental external force vector �p̂i, whereas for all subsequent iterations, it is
calculated using the internal forces vector f.
The increment of the displacements �u(j) can be used to update the total displacements:

u(j)i+1 = u
(j−1)
i+1 + �u(j) (25)

At the same time, from the increments of the displacements we may get a stress correction
��r and an iterative stress �(j) according to the two �ow charts of Figures 4 and 5 for the
concrete elements. Analogous stress correction and iterative stresses may be derived for steel
elements. Having these stresses we may get an update of the internal forces:

f (j) =
∫
V
BT�(j) dV (26)

with B being either Bc or Br for concrete or steel elements, respectively.
A convergence check is made whether

‖�R(j)‖
‖�p̂i‖ ¡ tol (27)

If Equation (27) is satis�ed, then we update displacements, velocities and accelerations and
proceed to the next incremental step; otherwise iterations continue till convergence.
Choosing a small time step assures stability and accuracy of the solution.
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6. TWO-STOREY RC FRAMES UNDER SEISMIC LOAD

The numerical procedure presented above was tested against existing experimental results
on two-storey reinforced concrete specimens under seismic loading. Two of these frames
(named as L30 and H30) of identical dimensions but of di�erent reinforcement detailing had
been designed according to EC2 and EC8 and tested on the shake table of the Laboratory of
Earthquake Engineering at the National Technical University of Athens. A detailed description
of these tests can be found in a report published in 1997 [40].
According to the experimental data the two ground columns (C1) of these frames have

cross-sectional dimensions of 200× 150mm and a clear length of 2860mm, whereas the two
�rst �oor columns (C2) have a length of 1560mm and the same cross-sectional dimensions
as C1. The two beams B1 and B2 of the ground and the �rst �oor, respectively, have a clear
span of 2200mm and overhangs of 300mm with cross-sectional dimensions of 160× 150mm.
The thickness of the two slabs was equal to 80mm. Details of the reinforcement may be seen
in Table I. The uniaxial concrete compressive strength was estimated to be 50MPa whereas
the steel bars showed a yield limit approximately equal to 500MPa. Frame L30 was designed
to exhibit moderately low ductility using a behavioural factor of q=2:5, whereas the frame
H30 was designed for higher ductility of q=5:0.
The frames were tested under three ground motions of sinusoidal form applied in sequence.

The three accelerograms exhibit a maximum approximate magnitude of one and two times
the magnitude of the design ground acceleration of the frame which was 0:30g. Additional
masses were applied on the two slabs to simulate the live loads. The total weight of each
specimen was approximately 120 kN.
A numerical modelling of these structures can be seen in Figure 8(a). Each structure was

discretized by 27-node brick elements. Nine such elements were used to discretize each of
the bottom columns and eight for each of the top columns. Twelve elements were used
for the discretization of the two beams and 36 for the discretization of each of the two
slabs. Using the embedded formulation it was a relatively easy task to input the steel bars.
The denser reinforcement of stirrups at the critical region of the beam–column joints of the
frame of higher ductility H30 may be seen (Figure 8(b)) compared to the one of the lower
ductility (Figure 8(c)). Because of no signi�cant experimental evidence of cracking in the

Table I. Detailing of reinforcement of the two RC frames.

Stirrups

Specimen Bottom Top Critical Non-critical
name Member steel steel region region

L30 B1 2�12 2�12 �4=130 �4=130
B2 2�8 4�8 �4=175 �4=175
C1 12�8 8�8 �4=55 �4=75
C2 8�8 8�8 �4=55 �4=70

H30 B1 2�8 4�8 �4=40 �4=175
B2 2�8 2�8 �4=40 �4=175
C1 8�8 8�8 �4=30 �4=55
C2 8�8 8�8 �4=30 �4=55
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Figure 8. (a) Layout and mesh of the RC frame; (b) detail of reinforcement at the joint of the frame of
higher ductility; and (c) detail of reinforcement at the joint of the frame of lower ductility.

slabs, these were modelled as elastic. This reduces the amount of computational cost, since
only a coarse discretization is needed and no material non-linearities are accounted for in
that region. Additionally, the extra masses were taken into account by increasing the speci�c
weight of concrete at the slab area by a factor of �ve (5).
An eigenvalue analysis using the initial elastic properties of the two structures showed

time periods for the �rst two modes in the x direction of T1 = 0:229 s and T2 = 0:072 s. These
values, as expected, are lower than the experimental ones (T1; exp = 0:303 s and T2; exp = 0:093 s)
mainly due to some minor cracking that exists, under static loading, in the real structure.
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Figure 9. (a) Base acceleration of shake table for TEST1, TEST2 and TEST3 on specimen L30; (b) �rst
�oor response of specimen L30 under base motion TEST1 and TEST2; and (c) second �oor response

of specimen L30 under base motion TEST1 and TEST2.

A constant damping ratio of 3% for the �rst two modes was used. This value was chosen
after some numerical experimentation with the two specimens to cater for all the energy
dissipation mechanisms that are not included in the material model (for example, perfect
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Figure 10. (a) Base acceleration of shake table for TEST1, TEST2 and TEST3 on specimen H30; (b)
�rst �oor response of specimen H30 under base motion TEST1, TEST2 and TEST3; and (c) second �oor

response of specimen H30 under base motion TEST1, TEST2 and TEST3.
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Figure 11. Collapse of RC frame H30 under the base acceleration of Figure 10(a). White marks indicate
concrete cracking on the external surface.

bond between concrete and steel was assumed). The resulting factors for Rayleigh damping
are 1.255 and 5:227× 10−4, respectively.
The two frames were subjected to the base acceleration shown in Figures 9(a) and 10(a),

respectively (TEST1, TEST2 and TEST3). A time history analysis was performed using a time
step of �t=0:015 s. The parameters for the Newmark numerical integration were 	=0:25
and �=0:5, so that the time integration is unconditionally stable.
Results (Figure 9(b) and (c)) for the frame L30, of lower ductility, show that the model

predicts a realistic response for a dynamic loading approximately equal to the design load of
the structure, which is a minimum requirement from an RC computational analysis. Moreover,
although during TEST2 the structure exhibits considerable non-linear characteristics (extensive
cracking and a large number of reinforcement bars yielding), stable solutions may still be
obtained under a loading which is twice the magnitude of the design value. A deviation from
the experimental results occurs towards the end of TEST2 and the solution diverges after
its end.
The computed response is even closer to the experimental data for the case of specimen

H30 (Figure 10(b) and (c)). The model simulates the response quite well for the �rst two
accelerograms and only diverges in the second cycle of TEST3. It is obvious that the higher
amount of reinforcement provides better stability and accuracy.
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As far as cracking is concerned for both specimens, the predictions of the analyses compare
well with the experimental crack patterns. The deformational mode of failure from the analysis
of specimen H30 (Figure 11), which is similar to that of L30, shows extensive cracking and
yielding of longitudinal and vertical reinforcement mainly at the top and bottom of the ground
�oor columns.
The main reason for the divergence of the calculations is believed to be the fact that the

analysis reaches the limits of the proposed numerical concrete modelling. The smeared crack
approach which assumes a continuous displacement �eld inside an element may not adequately
describe the behaviour of the extensively damaged regions of the reinforced concrete frame
at load levels as large as twice the order of magnitude of the design.

7. CONCLUSIONS

In this work, a relatively simple 3D solid concrete element is used to estimate the dynamic
response of reinforced concrete structures. The simplicity of the model lies in the fact that
the only concrete material parameter that needs to be supplied by the analyst is its uniaxial
compressive strength. A loading–unloading strategy is proposed, which when combined with
this concrete model renders a procedure that produces convergent results, something which is
always di�cult to achieve in the non-linear analysis of reinforced concrete structures. Good
agreement of the numerical results with experimental data is observed.
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