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The asymptotic steady state behavior of an elastic–perfectly plastic structure under cyclic loading may be
determined by time consuming incremental time-stepping calculations. Direct methods, alternatively,
have a big computational advantage as they attempt to find the characteristics of the cyclic state right
from the start of the calculations. Most of these methods address an elastic shakedown state through
the shakedown theorems and on the basis of mathematical programming algorithms. In the present
paper, a novel direct method that has a more physical basis and may predict any cyclic stress state of
a structure under a given loading is presented. The method exploits the cyclic nature of the expected
residual stress distribution at the steady cycle. Thus, after equilibrating the elastic part of the total stress
with the external load, the unknown residual stress part is decomposed into Fourier series whose coef-
ficients are evaluated iteratively by satisfying compatibility and equilibrium with zero loads at time
points inside the cycle and then integrating over the cycle. A computationally simple way to account
for plasticity is proposed. The procedure converges uniformly to the true cyclic residual stress for a load-
ing below the elastic shakedown limit or to an unsafe cyclic total stress, which may be used to mark the
regions with plastic straining inside the cycle. The method then continues to determine whether the
applied loading would lead the structure to ratcheting or to regions that alternate plastically. The proce-
dure is formulated within the finite element method. A von Mises yield surface is typically used. Exam-
ples of application of one and two dimensional structures are included.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Structures, subjected to elevated repeated thermo-mechanical
loading, are, nowadays forced to operate beyond their elastic limit.
The integrity assessment of such structures is an important task for
the structural engineer. Examples of structures, operating under
such loading conditions may be found in mechanical engineering,
like pressure vessels, aircraft gas propulsion engines, general
machinery. In civil engineering such situations arise in construc-
tions like dams, pavements, offshore platforms, buildings and
bridges under seismic actions.

The complete response of a structure, which is subjected to a
given thermo-mechanical loading and exhibits inelastic time inde-
pendent plastic strains, is quite complex. The reason of the com-
plexity is the need to perform calculations over the lifetime
history of the structure. The computation of the whole loading
history, however, leads to lengthy and expensive incremental
calculations, especially for structures with a high degree of redun-
dancy. Therefore, it is very useful to develop computational
approaches for straightforward calculations of the possible stabi-
lized state under repeated thermo-mechanical loading.
ll rights reserved.

: +30 210 7721604.
iopoulos).
Direct methods offer this alternative. Based on the fact that for
scleronomic or rheonomic stable materials [1] such a stabilized
cyclic state exists, they search for this asymptotic state right from
the start of the calculations.

The most well known cyclic state is the elastic shakedown. The
search for this state is based on the lower [2] and upper bound
[3] shakedown theorems of plasticity. Although originally for elas-
tic–perfectly plastic material behavior and first order theory, exten-
sions were made to cater for hardening and second-order effects
[4], as well as for dynamic loadings [5]. More recently, the theorems
were extended to structures with poroplastic material behavior [6].

The formulation of these problems is normally done using
mathematical programming (MP). Efficient procedures like a non-
linear Newton-type algorithm [7] or the interior point methods
(IPM) (e.g. [8–10]) are employed to estimate the shakedown load
factor, with various applications to engineering problems (e.g.
[11,12]).

Recently Garcea and Leonetti [13], within the MP formulation,
arc length techniques have been used instead of the IPMs.

Much fewer approaches that are not based on MP also exist in
the literature. One such approach uses internal variables each of
which correspond to an inelastic mechanism (e.g. [14,15]). A more
recent procedure, which has a better physical understanding, is
the Linear Matching Method (LMM), originally introduced in [16].

http://dx.doi.org/10.1016/j.cma.2012.03.004
mailto:kvspilio@central.ntua.gr
http://dx.doi.org/10.1016/j.cma.2012.03.004
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Fig. 1. Cyclic loading state.

Fig. 2. Corresponding pairs of stresses and plastic strain rates on convex yield
surface.
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The method is a generalization of the elastic compensation method
([17,18]) and is based on matching a linear problem to a plasticity
problem. A sequence of linear solutions, with a spatially varying
moduli, are generated that provide upper bounds that monotoni-
cally converge to the least upper bound, which coincides with
the collapse load [19] or the shakedown load [20].

The method was further extended beyond shakedown, both
theoretically [21] and numerically [22], to provide an upper bound
estimation of the ratchet boundary for a loading that can be
decomposed into constant and time varying components. Recently,
to approach this boundary, an addition of a lower bound calcula-
tion to the LMM upper bound ratchet analysis was proposed
[23]. A numerical procedure, based also on the splitting of constant
and time varying loading was presented in [24,25]. Recently also, a
simplified method to find the ratchet boundary was suggested
[26], based on the fictitious yield surface proposed in [27].

Although important to find this boundary, it is equally important
to be able to determine the long-term effects that a given cyclic
loading will have on the structure. To this end, an alternative to
the cumbersome incremental procedure, a method called Direct Cy-
cle Analysis (DCA) has been suggested in [28] and has been imple-
mented in the commercial program Abaqus [29]. This method is
based on assuming that the displacements at the steady cycle will
become cyclic. One then proceeds to decompose them into Fourier
series whose coefficients are evaluated in an iterative way by link-
ing them with the coefficients of the Fourier series of the residual
load vector. This vector is evaluated as in an incremental procedure,
and static admissibility is enforced by leading it to zero. The proce-
dure, although involved, appears to be suited for the cases of alter-
nating plasticity but fails to converge for loadings that are close to
ratcheting [29], as, due to the assumed cyclic displacement behav-
ior, has the inherent inability to predict such a case.

The present work proposes a Direct Method that may be used to
estimate the long-term behavior of an elastic–perfectly plastic
structure under a given cyclic loading. It has its roots on a simpli-
fied way to predict creep cyclic stress states [30,31]. The method
addresses the physics of the steady cycle which furnishes the cyclic
nature of the residual stresses. It may be called the Residual Stress
Decomposition Method (RSDM) and is based on decomposing the
expected residual stresses in Fourier series inside the cycle of load-
ing. The coefficients of the Fourier series are evaluated in an itera-
tive way by integrating the residual stress rates over the cycle.
These rates have been found by satisfying equilibrium and compat-
ibility at time points inside the cycle. Plastic straining is accounted
for in a novel way by adding the elastic and the residual stress at
the cycle points. If the sum exceeds the yield surface, the plastic
strain rate effect is estimated through the stress in excess of the
yield surface. These stresses provide then input, as equivalent no-
dal forces, for iteration. When the plastic strain rates stabilize, in
the form of a converged residual stress vector, the procedure stops.
Any of the three different cases, shakedown, alternating plasticity
or ratcheting, may, equally easily, be realized. The procedure is ap-
plied to a typical one and a two dimensional structure subjected to
different loading cases. Results show a stable and computationally
efficient procedure with uniform convergence characteristics.

2. Cyclic stress state

Consider a body of volume V and surface area S. Let us assume
that on a part of S zero displacement conditions are applied and on
another part of S the structure is subjected to a mechanical loading,
of the form:

PðtÞ ¼ Pðt þ nTÞ; ð1Þ

where P(t) = {P1(t),P2(t), . . . ,Pn(t)}; t is a time point inside a cycle, T
is the period of the cycle, n = 1,2, . . ., denotes number of full cycles.
Such a loading constitutes a cyclic loading state. A loading tra-
jectory of such a state in a two dimensional loading domain may
be seen in Fig. 1.

Let us suppose that our structure is made of an elastic–perfectly
plastic material. Concentrating at a particular time point s ¼ t

T in-
side the cycle, the structure develops a stress field rij(s) that may
be decomposed in two parts: one, assuming a completely linear
elastic material behavior, denoted by rel

ij ðsÞ, which equilibrates
the external loading and one which is a self-equilibrating residual
stress system qij(s), due to inelasticity. Thus one may write:

rijðsÞ ¼ rel
ij ðsÞ þ qijðsÞ: ð2Þ

At the same time, the corresponding strain rates may also be
decomposed into two parts:

_eijðsÞ ¼ _eel
ij ðsÞ þ _eij;rðsÞ: ð3Þ

The residual strain rate _eij;rðsÞ consists not only of the plastic strain
rates _epl

ij ðsÞ but also of an elastic strain rate part _eel
ij;rðsÞ which is nec-

essary so that total strain compatibility is maintained. Thus Eq. (3)
may be written as:

_eijðsÞ ¼ _eel
ij ðsÞ þ _eel

ij;rðsÞ þ _epl
ij ðsÞ: ð4Þ

The first two strain rate components are given in terms of their cor-
responding stress rates, where differentiation is meant with respect
to s. For the third component, i.e. the plastic strain rate, an associ-
ated flow rule with a yield surface f has been assumed:

_eel
ij ðsÞ ¼ Cijkl _rel

klðsÞ;
_eel

ij;rðsÞ ¼ Cijkl _qklðsÞ;

_epl
ij ðsÞ ¼ k

@f
@rijðsÞ

ð5Þ

with Cijkl the tensor of elastic constants.
Based on the convexity of the yield surface (Fig. 2), two states of

stress and their corresponding plastic strain rates obey Drucker’s
postulate for stable materials:
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ðrij � rij� Þ _epl
ij P 0 ðrij� � rijÞ _epl

ij� P 0: ð6Þ

It may be proved [32] that under the loading described above and
for such a material behavior, Drucker’s postulate leads to the exis-
tence of a steady cycle in which the stresses and the strain rates
gradually stabilize and remain unaltered on passing to the next cy-
cle [27]. Thus the stresses and strain rates become periodic having
the same period T with the loading [33]. This cyclic state, in a real
structure, will be reached after the application of many cycles.

The evolution of a simple uniaxial cyclic straining (Fig. 3) re-
veals each of the three different possible asymptotic states that
have been classified in [34]:

(a) For relative low load amplitudes, the structure shakes down
elastically, i.e. the behavior appears to be purely elastic
(Fig. 3(a)). This may be asymptotically described by:
σmax

σmin

σ

Fig.
_epl;cs
ij ¼ lim

n!1
_epl

ij ðsÞ ¼ 0; ð7Þ
where cs stands for cyclic steady state.

(b) For certain patterns and levels of loading, plastic strain
increments appear to be alternating in sign over the cycle
and tend to cancel each other, thus the total deformation
remains low. This phenomenon is called alternating or
reverse plasticity and failure may occur due to low-cycle fati-
gue (Fig. 3(b)). This asymptotically may be described as:
_epl;cs
ij ðsÞ ¼ lim

n!1
_epl

ij ðsÞ– 0;

Depl;cs
ij ¼

Z 1

0

_epl;cs
ij ðsÞds ¼ 0:

ð8Þ
(c) For certain patterns and levels of loading, the plastic strain
increments in each load cycle are of the same sign resulting
to total strains and thus displacements to be large so that the
structure becomes unserviceable. This situation is called
incremental collapse or ratcheting (Fig. 3(c)). The asymptotic
behavior is described by:
(a) (b)

(c)

ε

σ

σmax

σmin

ε

σ

σmax

σmin

3. (a) Shakedown, (b) alternating plasticity and (c) incremental collapse.
_epl;cs
ij ðsÞ ¼ lim

n!1
_epl

ij ðsÞ– 0;

Depl;cs
ij ¼

Z 1

0

_epl;cs
ij ðsÞds – 0:

ð9Þ
Another consequence of the Drucker’s postulate is that the stress
distribution in the steady cycle does not depend upon any initial
condition, prior to the first cycle, and is unique in those regions
where we have non-vanishing plastic strain rates ([27,33]).
3. Residual stress decomposition

Since the total stress rij(s) will, asymptotically, become cyclic,
and the elastic stress rel

ij ðsÞ, that equilibrates the cyclic loading, is
obviously also cyclic, the residual stress qij(s) will become also cyc-
lic. Thus one may decompose them in Fourier series. We may write
(see, for example, [35]):

qijðsÞ ¼
a0;ij

2
þ
P1
k¼1
ðak;ij cos 2kpsþ bk;ij sin 2kpsÞ: ð10Þ

Thus to determine the residual stress distribution one has to evalu-
ate the various Fourier coefficients of (10).

If we differentiate (10) we get:

_qijðsÞ ¼ 2p
P1
k¼1
fð�kak;ijÞ sin 2kpsþ kbk;ij cos 2kpsg: ð11Þ

Expanding Eq. (11) we may get:

_qijðsÞ ¼ 2pf�a1;ij sin 2psþ ð�2a2;ijÞ sin 4psþ � � � þ ð�kak;ijÞ
� sin 2kpsþ b1;ij cos 2psþ ð2b2;ijÞ cos 4psþ � � �
þ ðkbk;ijÞ cos 2kpsg: ð12Þ

If we multiply (12) by sin2kps and then integrate over a cycle,
using the orthogonality properties of the trigonometric functions,
we may find that a typical coefficient of the cosine series is given
by:

ak;ij ¼ �
1

kp

Z 1

0
f½ _qijðsÞ�ðsin 2kpsÞgds: ð13Þ

If now we multiply (12) by cos2kps and carry over the same proce-
dure we get for a coefficient of the sine series:

bk;ij ¼
1

kp

Z 1

0
f½ _qijðsÞ�ðcos 2kpsÞgds: ð14Þ

On the other hand, if we integrate (11) over a cycle, we get the fol-
lowing expression:Z 1

0
_qijðsÞds ¼ qijð1Þ � qijð0Þ ¼

a0;ij

2
ð1Þ þ

P1
k¼1

ak;ijð1Þ
� �

� a0;ij

2
ð0Þ þ

P1
k¼1

ak;ijð0Þ
� �

; ð15Þ

where Eq. (10) at the beginning and at the end of the cycle was
used. With all the coefficients known at the beginning of the cycle
and the coefficients of the cosine series also known, from (13), at
the end of the cycle, the constant term at the end of the cycle
may be evaluated using (15):

a0;ij

2
ð1Þ ¼ a0;ij

2
ð0Þ þ

P1
k¼1

ak;ijð0Þ
� �

�
P1
k¼1

ak;ijð1Þ þ
Z 1

0
_qijðsÞds: ð16Þ

The Fourier coefficients appear explicitly on the lhs and implicitly
(through _qij) on the rhs of Eqs. (13), (14), and (16). They are already
cast in the following form of the nonlinear system of equations:

x ¼ gðxÞ; ð17Þ
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where x is the vector of the unknown Fourier coefficients.
The system (17) may be solved iteratively (see, for example,

[36]). In each iteration the derivative of the residual stresses, at
time points inside the cycle, must be evaluated. This can be accom-
plished by satisfying equilibrium and compatibility at these points.
For a general structure, the finite element method may be used to
this end.
O

D

Fig. 4. von Mises yield surface and radial return type of mapping.
4. Evaluation of derivative rates

Let us suppose that our structure is discretized, in the standard
way, into a finite number of elements which are assumed to be
interconnected at a discrete number of nodal points situated on
their boundaries.

Letting bold letters be used for vectors and matrices, we denote
by _r the vector of the rates of the displacements of the nodal points
of the discretized structure at some cycle time s. We may then ex-
press the strain rates at the Gauss integration points (GPs), using
Eq. (18):

_e ¼ B � _r ð18Þ

Using the discretized form of Eqs. (2)–(5) we may write for the
residual stress rates also at the GPs:

_q ¼ D � ð _e� _eel � _eplÞ; ð19Þ

where D is the elasticity matrix (inverse of Cijkl), _eel is the vector of
the elastic strain rates having solved the structure assuming linear
elastic behavior, and _epl is the vector of plastic strain rates.

Since the strain rates are kinematically admissible, the residual
stress rates are self-equilibrated, and fixed supports have been as-
sumed, one may write, for a virtual strain field d _e, using the Prin-
ciple of Virtual Work (PVW):Z

V
d _eT � _qdV ¼ 0; ð20Þ

where a superscript (T) stands for the transpose of a vector or a
matrix.

With the substitution of (18) for the corresponding virtual dis-
placement rates, and (19) in (20), we get:

d _rT �
Z

V
BT � D � ðB � _r� _eel � _eplÞdV

� �
¼ 0: ð21Þ

Since this equation must hold for any d _r [37] we may write:
Z

V
BT � D � BdV

� �
� _r ¼

Z
V

BT � _reldV þ
Z

V
BT � D � _epldV ð22Þ

or equivalently:

K � _r ¼ _R þ
Z

V
BT � D � _epl dV ð23Þ

Where K is the stiffness matrix and _R is the rate vector of the exter-
nal forces acting on the structure at a specific cycle time s.

Plastic strain rates _epl will develop only at the GPs at which the
total stress (Eq. (2)) exceeds the yield surface. A return mapping
algorithm may be used to estimate, numerically, these rates. This
procedure is generally quite involved [38] and is based on the clos-
est point projection [39].

We have devised here a procedure that is easy to implement for
a von Mises yield surface that is considered herein. Analogous pro-
cedures could be applied for other yield surfaces. Let us suppose
that the total stress vector OC

�!
, which is the sum of the elastic

stress vector and the residual stress vector (Fig. 4), exceeds the
yield surface. According to the closest point projection [39], the
returning, on the yield surface, stress vector �D � _epl is CB

�!
, with
the plastic strain rate _epl directed along BC
�!

(Fig. 4). We use, in-
stead, CA

�!
, i.e. �rp, as the returning vector, which is easy to find

by performing a ‘radial return’ type of mapping along the known
line OC

�!
. The vector rp is interlinked to _epl (in the sense that they

are both either equal to zero or different to zero) and, thus, consti-
tutes an alternative ‘‘measure’’ for it.

5. Numerical procedure

Based on the aforementioned theoretical aspects one may write
down a numerical procedure, which we call the Residual Stress
Decomposition Method (RSDM). The procedure may be visualized
in Fig. 5.

We solve for the external loading and its cycle rate assuming
elastic behavior, and obtain, for each cycle point s, the elastic stress
rel(s) and the elastic stress rate _relðsÞ at each Gauss point (GP) of a
continuum finite element.

Supposing a known distribution of the values of the Fourier
coefficients aðlÞ0 ; aðlÞk ; bðlÞk , (initial distribution may be taken as
zero) we perform the following operations inside an iteration l:

1. For a given cycle point s compute q(l)(s), at each GP, using
(10).

2. Evaluate, at each GP, the total stress r(l)(s).
3. Check for every GP if �rðlÞðsÞ > rY and, in this case, calculate

the excess amount rðlÞp ðsÞ.
4. Assemble for the whole structure the rate vector of the nodal

forces _R0ðsÞ (Eqs. (22) and (23)).
5. Solve the equilibrium equation (Eq. (23)) and obtain _rðlÞðsÞ.
6. Evaluate for every Gauss point the residual derivative rate

_qðlÞðsÞ using (19).
7. Repeat steps 1–6 for every cycle point.
8. Perform numerical integration over the cycle points and

update the Fourier coefficients using the vector form of
equations of (13), (14), and (16).

9. Evaluate an update of the residual stress vector q(l+1)(s)
using (10).

10. Check the convergence between two successive iterations
against a predefined tolerance using the Euclidean norm of
the residual stress vector.

In case of non-convergence go to step 1 and repeat the steps;
otherwise the procedure has converged, and a cyclic state solu-
tion has been achieved.

Once a cyclic stress state has been reached we look at
rcs

p ¼ rðlÞp ¼ rðlþ1Þ
p which was evaluated during the last iteration.

We may determine the nature of the obtained solution, for each
GP, by evaluating the following integral over the cycle:



Fig. 5. Flowchart of the RSDM.
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ai ¼
Z 1

0
rcs

p;iðsÞds; ð24Þ

where i spans the components of the vector rcs
p ðsÞ.

Three different cases may exist depending on the value of ai.

(a) If ai – 0, a state of ratcheting exists at this GP.
If ai = 0, we check the value rcs

p;iðsÞ for every cycle point s.
(b) If rcs

p;iðsÞ – 0, the Gauss point is in a state of reverse plasticity,
since this must hold for pairs of cycle points of equal value
but of alternating sign.

(c) Otherwise rcs
p;iðsÞ ¼ 0, the point has remained either elastic

or has developed an elastic shakedown state.

If all the Gauss points are either elastic or in a state of elastic
shakedown, then our structure under the given external loading,
will also shake down. On the other hand, should sufficient GPs
be in a state of ratcheting, at the steady state, our structure will un-
dergo incremental collapse. This, numerically, may be easily man-
ifested by the singularity of the stiffness matrix, which can be
evaluated just at the end of the converged steady cycle, by zeroing
the elasticity matrix D at the ratcheting GPs.
4
V(t)

2L 60o60o

321

H(t)

L

Fig. 6. Three bar truss example.
6. Examples

Finite element programs that implement the above procedure
were written for one dimensional and two dimensional structures.
Results will be shown here for a three-bar truss and a holed plate
under in plane loads. A value of 10�4 for the tolerance proved quite
accurate to stop the iterations.

6.1. Three bar truss

This truss structure (Fig. 6), which was analytically studied in
[40], paves the way of the physical understanding of the approach.

All the elements of the truss have an equal cross sectional area
of A = 5 cm2 and are made of steel having material data of Young’s
modulus E = .21 � 105 kN/cm2 and a yield stress ry = 40 kN/cm2.
The length L is taken equal to 300 cm.

A simple two node plane truss element was used to analyze the
structure. The numerical procedure presented above for a contin-
uum, was slightly altered to suit the needs of this one-dimensional
stress problem. The geometry of this symmetric structure renders
the residual stresses for the inclined bars 1, 3 equal to the ones of
bar 2, but of opposite sign.
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(load case c – ratcheting).



0

5

10

15

20

25

0 1 2 3 4

V
ar

ia
tio

n 
of

 P
y

(k
N

/c
m

)

Time (t/T)

Fig. 16. Load variation with time over four periods (load case a).

192 K.V. Spiliopoulos, K.D. Panagiotou / Comput. Methods Appl. Mech. Engrg. 223–224 (2012) 186–198
The truss was subjected to concentrated cyclic loads V(t), H(t)
which were applied at node 4. Three cases of loading have been
considered which lead to three different cyclic steady states.

(a) The first cyclic loading case has the following variation with
time (Fig. 7)

VðtÞ ¼ 300 sin2ðpt=TÞ; HðtÞ ¼ 0;

The procedure predicts that the structure will shakedown. A confir-
mation of this is also provided by the computed, by the procedure,
constant in time steady state residual stress (Fig. 8(a)). In Fig. 8(b)
one may also see that the total stress inside the cycle nowhere ex-
ceeds the yield stress. Moreover, this stress distribution coincides
with the one that was calculated from a time-stepping commercial
program (Abaqus [29]), showing that the computed residual stress
(Fig. 8(a)) is the actual one.

(b) The second cyclic loading case has the following variation
with time (Fig. 9)

VðtÞ ¼ 300 sinð2pt=TÞ; HðtÞ ¼ 0:

For this loading the RSDM predicts an alternating plasticity stea-
dy state. The distribution of the cyclic residual stress predicted
for the middle bar inside the steady cycle may be seen in
L
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only elastically, the middle bar suffers plastic strain rates, of
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also equal to the total area under the curve, Fig. 11) equal to
zero.

(c) In the third cyclic loading case both the vertical and the hor-
izontal load vary with time (Fig. 12):
Fig. 20. Local alternating plasticity mechanism fo
VðtÞ ¼ 400 sin2ðpt=TÞ; HðtÞ ¼ 220 sinð2pt=TÞ:

The variation of the predicted steady state residual stress inside a
cycle for the middle bar may be seen in Fig. 13.

The values of the parameters ai, i = 1, 2, 3, for all the three bars,
turn out to be different than zero. This loading case will lead the
r load case b. (a) RSDM and (b) Abaqus [29].
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structure to ratcheting, since the non simultaneous plasticization
of all the bars inside the steady cycle (Fig. 14) constitutes an incre-
mental collapse mechanism.

6.2. Square plate with a circular hole

The second example of application is a benchmark example, and
is a plane stress problem of a square plate having a circular hole in
its middle. The loading is applied in equal pairs along the edges of
the plate (Fig. 15). Due to the symmetry of the structure and the
loading, we only analyze one quarter of the plate. The geometry
of the plate and its finite element mesh are shown in Fig. 15. The
ratio between the diameter D of the hole and the length L of the
plate is equal to 0.2. Also the ratio of the depth of the plate to
the length L is equal to 0.05. The plate is made of steel with the
following material data: Young’s modulus E = .21 � 105 kN/cm2,
Poisson’s ratio m = 0.3 and yield stress ry = 36 kN/cm2. The above
geometrical and material data are the same as the ones used in
[22].

A case of L = 20 cm has been chosen herein. The finite element
mesh used consists of 98, eight-noded, isoparametric elements
with 3 � 3 Gauss integration points.

The various loading cases, used, were taken so as to belong to
different regions below and above shakedown and ratcheting
boundaries, as these have been estimated in [22]. Results are plot-
ted for the most highly stressed points, which depending on the
loading case, are either GP 1 or GP 2, the Gauss points closest to
the cusps of the hole (Fig. 15).
Fig. 22. Abaqus [29] yy-plastic strain variation over the first 5
(a) The first cyclic loading case has the following variation with
time (Fig. 16):

PyðtÞ ¼ 0:65ry sin2ðpt=TÞ; PxðtÞ ¼ 0:

In Fig. 17 the computed by the RSDM steady-state residual stress
distribution is plotted for the GP 2.

The stress distribution is the actual stress distribution as this
may be confirmed in Fig. 18, where the results of the time stepping
program [29] coincide with the results of the RSDM. The steady
state predicted for the structure, by the procedure, is a shakedown
state and this complies with the fact that this loading is below the
shakedown boundary estimated in [22].

(b) The second cyclic loading case has the following variation
with time (Fig. 19):

PyðtÞ ¼ 0:65ry sinð2pt=TÞ; PxðtÞ ¼ 0:

The value of this load, at many cycle points, proves to be well in ex-
cess of the shakedown-reverse plasticity boundary, plotted in [22].
The present numerical procedure (RSDM) also shows that this load-
ing will lead some GPs to local reverse plasticity. In Fig. 20(a) one
may see the local reverse plasticity mechanism predicted by the
RSDM, which compares well with the time-stepping program [29]
that also predicts such a mechanism (Fig. 20(b)).

If we compare the values of the components of the excess vector
rcs

p at GP 2, which is the most highly strained Gauss point of the
structure, we conclude that the most plastically strained direction
is yy. The variation of this component inside the cycle is plotted in
Fig. 21. We may see that plastic straining occurs, alternately, inside
the time intervals [0.06,0.42] and [0.58,0.91] at the steady cycle. At
the same time, one may observe (Fig. 22) the fluctuation around
zero of the plastic strain along the yy direction for the first 50 cy-
cles at this GP of the time stepping program [29].

(c) The third cyclic loading case involves two loads, one con-
stant in time and one varying with time (Fig. 23):

Px ¼ 0:6ry ¼ const;

PyðtÞ ¼ 0:8ry sin2ðpt=TÞ:

The combination of the two loads leads to an excursion well above
the shakedown-reverse plasticity boundary established in [22]. An
alternating plasticity condition is also predicted by the present
numerical procedure (RSDM) for some GPs near the edge of the hole
(Fig. 24(a)). A very good match of this mechanism is observed with
the one found by Abaqus [29] (see Fig. 24(b)). Once again the most
0 cycles at the GP 2 (load case b –alternating plasticity).
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strained GP is GP 2, and the most plastically strained direction is
again yy. Plotting the variation of this component of rcs

p (Fig. 25),
we may see that plastic straining of alternating nature occurs inside
Fig. 24. Local alternating plasticity mechanism fo
the time intervals [0,0.09], [0.39,0.61] and [0.91,1] at the steady cy-
cle. One may now compare the results of a time-stepping program
[29] (Fig. 26). Looking at the plotting of the plastic strains over the
first 100 cycles, one may see that for this loading we have alternat-
ing plastic strains around a non-zero value. The pattern of this
straining does not seem to change as we approach 1000 cycles,
although the mean value drops, thus making it difficult to decide
whether the cumbersome time-stepping program has reached a
steady state solution.

(d) The fourth cyclic loading case also involves two loads, one
constant in time and one varying with time (Fig. 27).

Px ¼ 0:85ry ¼ const;

PyðtÞ ¼ 0:5ry sin2ðpt=TÞ:

This loading, at many cycle points, is above the ratcheting boundary
of [22].

In Fig. 28 one may see the convergence of the RSDM for this
loading case. The uniform convergence of the RSDM is typical for
r load case c. (a) RSDM and (b) Abaqus [29].
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all the loading cases that were considered before, with the present
one requiring the biggest number of iterations.

The results for the most strained GP 1 may be seen in Fig. 29,
where plastic straining of the same positive sign inside the cycle
intervals [0,0.22] and [0.78,1] at the steady cycle is observed. Here
we plot the xx direction of rcs

p which corresponds to the largest
plastic straining among the three components. This ratcheting
behavior holds also for quite a few GPs around the structure, with
the higher straining (the GPs with the parameters ai’s having the
bigger values) within the region marked in Fig. 30(a), which defi-
nitely constitutes an incremental collapse mechanism. This mech-
anism is also confirmed by the time-stepping program ([29]) which
diverges after the 47th cycle; at this point, the appearance of the
plastically most highly strained region of the time-stepping pro-
gram (Fig. 30(b)) matches closely the one predicted by the present
procedure (as shown in Fig. 30(a)).

The number of time points inside the cycle should be enough so
that it may adequately represent the applied loading. On the other
hand, for an alternating plasticity case, it may be useful to increase
the time points so that the values of the parameters ai’s (Eq. (24))
approach zero within a small tolerance.

Fifty time points inside the cycle were used for all the examples
considered herein. For the cases of alternating plasticity, the use of
200 points decreased the values of the parameters ai’s by an order
of magnitude.

The RSDM proved to be quite stable, no matter which asymp-
totic behavior was reached. Three terms of the Fourier series were
Fig. 26. Abaqus [29] yy-plastic strain variation at the GP 2 ove
found enough to represent the residual stress distribution. Compu-
tational efficiency, apart from the small number of the Fourier
coefficients, is further enhanced due to the fact that the stiffness
matrix needs to be decomposed only once in the beginning of
the procedure. Thus, within the adopted tolerance, the number of
the iterations ranged from a minimum of 20 for the case of ratchet-
ing of the truss example, to a maximum of 570 for the case of rat-
cheting of the plate example. The amount of CPU-time required to
solve this last case was just 136 s, for an Intel Core i7 at 2.93 GHz
with 4096 MB RAM.
r the first 100 cycles (load case c – alternating plasticity).
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7. Conclusions

This work presents a method, named RSDM, which predicts
whether the continuous application of a given cyclic load would
lead an elastoplastic structure either to safety or to low cycle
Fig. 30. Ratcheting mechanism for load c
fatigue or to excessive inelastic deformations, without having to
resort to cumbersome time-stepping calculations. The method
can be classified as a Direct Method in the sense that it addresses,
directly, the properties of the steady state cycle. The basis of the
method is the cyclic nature of the residual stress in the steady cy-
cle. Therefore, following its decomposition in Fourier series, the
residual stress distribution in the steady cycle is approached
through a computational procedure that approximates the Fourier
coefficients in an iterative manner. Plasticity effects may be easily
implemented by a radial return on the yield surface along the to-
tal stress vector, which is the sum of a purely elastic solution and
the residual stress. After convergence, if the applied loading is
within the shakedown boundary, the evaluated residual stress,
constant in time inside the cycle, coincides with the actual resid-
ual stress. If the loading, on the other hand, is above the shake-
down boundary, the evaluated residual stress renders a steady
state total stress, which is unsafe. The integral of the plastic
straining over the cycle of loading, in the unsafe regions, deter-
mines whether we have regions of alternating plasticity or rat-
cheting. In the latter case, the procedure checks whether the
structure itself will suffer incremental collapse. The whole ap-
proach proved to be numerically stable and computationally
efficient.
ase d. (a) RSDM and (b) Abaqus [29].
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The proposed simple way of assessing the plastic effects makes
possible to use any other yield surface except for the von Mises
yield surface which was used herein for the numerical examples
presented.

Comparing the RSDM with the existing DCA, one may note that
with the DCA, plastic strains over the cycle are estimated in an
incremental way. Iterations lead the plastic strain distribution to
a steady state which, due to the assumptions of the method, can
only be an alternating plasticity steady state. On the other hand,
the RSDM is simpler, since it is a pure iterative method. It is also
more general, as it may predict any steady state, either alternating
plasticity or incremental collapse.

The procedure was developed for an elastic–perfectly plastic
material. It may be extended to account for different material
behaviors (like hardening, etc.)

The method assumes the complete knowledge of the load-
ing history inside the cycle. Nevertheless, it appears to have the
potential to provide also safety margins for any cyclic history in
a given loading domain and work is being done towards this
direction.
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