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The Residual Stress Decomposition Method for Shakedown (RSDM-S) is a new iterative direct method to
estimate the shakedown load in a 2-dimensional (2D) loading domain. It may be implemented to any
existing finite element code, without the need to use a mathematical programming algorithm. An
improved and enhanced RSDM-S is proposed herein. A new convergence criterion is presented that
makes the procedure almost double as fast. At the same time, the procedure is formulated in a
3-dimensional (3D) polyhedral loading domain, consisting of independently varying mechanical and
thermal loads. Using a cyclic loading program that follows the outline of this domain, it is shown that
there is hardly any increase in the computational time when passing from a 2D to a 3D domain.
Finally, keeping the efficiency, using an alternative cyclic loading program, an automation of the
approach to any n-dimensional loading domain is presented. Examples of application are included.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

A major task in civil and mechanical engineering is the estima-
tion of the load carrying capacity of a structure or a component
under variable loadings. Structures, like buildings, bridges,
pavements, nuclear reactors, aircraft propulsion engines, etc., dur-
ing their lifetime, are subjected to loads (live load, heavy traffic,
seismic action, internal pressure, thermo-mechanical loads, etc.)
acting in a varying manner. This type of cyclic mechanical and
thermal loading leads often these structures beyond the elastic
limit, resulting to plastic straining.

The asymptotic cyclic behavior of an elastic-perfectly plastic
structure under cyclic loading may be determined by time con-
suming incremental time-stepping calculations. Direct methods,
alternatively, have a big computational advantage as they attempt
to find directly this cyclic asymptotic state. Such states are guaran-
teed for structures made of stable material [1].

There are a few direct methods, proposed in the literature,
among which one may mention the work presented in [2,3] which
forms a sequence of elastic solutions using as a modified loading an
update of initial strains computed through an update of internal
variables. This method is the basis of a recently presented direct
method [4]. Approaches based also on a series of elastic analyses
produced by modifying, iteratively, the modulus of elasticity, form
another class of direct methods. Among them one should mention
the Linear Matching Method (LMM) [5,6]. An incremental-iterative
procedure, that appears to work well in cases of alternative plastic-
ity but not for cases of ratcheting, was proposed in [7] and has been
implemented in a commercial code. Very recently, a numerical
scheme is presented, based on the conditions of the asymptotic
state linked with a specific trial and projection operation, to esti-
mate the plastic strain increments [8].

A direct method, which is known as the Residual Stress Decom-
position Method (RSDM), was presented in [9,10]. The method can
predict the long-term cyclic state, either it is shakedown or reverse
plasticity or incremental collapse, of an elastic perfectly-plastic
structure when subjected to a given cyclic loading history. The
approach is based on physical arguments that have to do with
the expected cyclic nature of the residual stresses. The residual
stresses are decomposed into Fourier series with respect to time
and the coefficients of these series are calculated iteratively by sat-
isfying equilibrium and compatibility at time points inside the
cycle.

When, on the other hand, the loading history is unknown, for a
structure to be safe and serviceable, safety margins, e.g.
shakedown limits, have to be estimated so that it fails neither
due to incremental collapse (often referred to as ratcheting) nor
due to reverse plasticity that leads to low cycle fatigue. A direct
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shakedown analysis is the only way to provide this information.
For small displacements and elastic-perfectly plastic solids the
shakedown analysis is based on two different approaches, the
lower bound [11] or the upper bound [12] shakedown theorems.
The extensions of these two theorems to cover thermal loadings
were given in [13,14], respectively.

Attempts to consider geometric nonlinearities appeared in the
literature (e.g. [15,16]). Conditions to extend the static theorem
to elastic-perfectly plastic cracked bodies have been presented in
[17]. Limited kinematic (e.g. [18]) and nonlinear kinematic harden-
ing has been also addressed (e.g. [19]). Recent developments on the
subject have appeared in [20,21] in the framework of the bipoten-
tial theory. Non-associated plasticity has also been discussed (e.g.
[22,23]). Polizzotto, has discussed the shakedown theorems in
the context of gradient plasticity theory [24,25].

The two shakedown theorems form the basis of the big majority
of the existing numerical procedures to estimate the shakedown
load. They are formulated as mathematical programming (MP)
problems whose scope is to find the minimum or maximum value
of an objective function (normally the loading factor) which is sub-
jected to various static or kinematic constraints. Linearization,
mainly of the yield surface, has led to some early solutions using
linear programming algorithms (e.g. [26,27]). More recent contri-
butions have appeared along the same line (e.g. [28–30]). If the
constraints are not linearized and are kept in their original form
(nonlinear), the problem can be formulated as a nonlinear (NLP)
programming problem. The discretization of the continuum by a
large number of finite elements and the big number of constraints
often lead to the solution of large size optimization problems. Var-
ious numerical techniques have been developed to solve these
problems. Among these one could mention the reduced basis tech-
nique [19,31] or algorithms based on Newton iterations [32]. The
evolution of the interior point algorithms (IPM) to solve large scale
optimization problems led to the extensive formulation and solu-
tion of limit and shakedown analysis problems using these algo-
rithms or related techniques (e.g. [33–43]).

One may also find some alternative approaches in the litera-
ture for the evaluation of the shakedown load. Such an approach
is based on the work presented in [2], whose application using
the finite element method (FEM) may be found in subsequent
publications (e.g. [44]). Reverse plasticity and collapse load solu-
tions have been shown to provide upper bounds to the shake-
down load [45]. The LMM has also been used to estimate the
shakedown load of a structure (e.g. [5,46]). In [47] a solution
is proposed, based on the LMM, to estimate a possible shake-
down load when friction slip occurs between a rigid surface in
contact with an elastic body, subjected to cyclic loading. A quite
involved strategy, equivalent to a fictitious incremental strain
driven elastoplastic problem, and applied for a von Mises type
of material, has been presented in [48]. The numerical perfor-
mance of this approach is compared against the IPMs in [49].
An analogous methodology, involving more general yield criteria,
was proposed in [50].

A numerical approach, which was called RSDM-S has appeared
recently [51–53]. It may be used for the evaluation of the shake-
down load of elastic-perfectly plastic structural elements under
cyclic thermo-mechanical loading. The basis of the method, both
from the conceptual as well as the implementation points of view,
is the RSDM. Since, now, only the variation intervals of the loads
are known, the problem is converted to an equivalent prescribed
loading problem, drawing any time curve crossing these intervals.
The RSDM-S consists of two different iteration loops, one inside the
other and has been formulated for two loads that may vary either
proportionally or independently. Starting from a high load factor, a
descending sequence of loading factors is established and the
shakedown load factor is calculated when the iterative procedure
converges to a solution where the constant term is the only non-
zero term of the Fourier series.

The efficiency of the RSDM-S and RSDM to provide shakedown
boundaries as well as to unveil unsafe conditions in 2-dimensional
loading domains was recently demonstrated in [54].

In the present work, the RSDM-S method is enhanced by a dif-
ferent convergence criterion, inside the inner loop, that makes the
method run faster, even more than 40%. Moreover, the method is
formulated for a 3-dimensional loading domain consisting of two
mechanical and a thermal load. It is shown that the extension from
a 2-D to a 3-D loading domain hardly influences the amount of
computational time to estimate the shakedown load factor as
opposed to the IPM algorithms where the time is shown to double
[55]. Finally, it is shown how the method may be automated to
cater for any n-dimensional loading domain.

The paper is organized in the following way: In Section 2 a proof
of an existing theorem makes possible to realize the arbitrariness
of the cyclic loading program that passes through the vertices of
the convex loading domain; in Section 3 the enhanced RSDM-S
procedure, in the form of a flow chart, with the new convergence
criterion, formulated in a 3-D thermomechanical loading domain
and assuming a von Mises yield criterion, is presented. The signif-
icant faster convergence of the enhanced approach is demon-
strated through examples of 2-D loading domains in Section 4. In
Section 5 the method is applied to a 3-D polyhedral loading
domain using a cyclic loading program that passes consecutively
from all its vertices. Finally, in Section 6 an alternative cyclic load-
ing path combined with a combinatorial algorithm shows how the
whole procedure may be automated for an n-dimensional domain.

2. Theoretical considerations

Let us suppose a structure is subjected to independently varying
cyclic loads that have the same period T. Although the theory may
be applied to any number of loads, for reasons of visualization, a
maximum of three loading (3-D) domain that consists of two
mechanical and a thermal load will be demonstrated (Fig. 1(a)).
Such a cyclic loading may be represented in the loading space
as a closed loop (Fig. 1(b)). Let us further suppose that each load
has a minimum and a maximum value of variation. Without any
loss of generality, the minimum of all the loads will be considered
zero. The maximum of each of the loads, denoted by starred quan-
tities, together with the origin may define a convex (hyper-) cuboid
(Fig. 1(b)). Thus, the cyclic loading will be contained inside this
cuboid.

In response to this loading the structure that consists of an
elastic-perfectly plastic material will develop a stress that may
be decomposed into two parts; an elastic part assuming purely
elastic material behavior and a residual stress part to account for
plasticity:

rðsÞ ¼ relðsÞ þ qðsÞ ð1Þ
where s ¼ t=T denotes a time point inside the cycle.

The structure is discretized, following a standard procedure,
into a finite number of elements that are interconnected at a dis-
crete number of nodal points situated on their boundaries. Bold
letters are herein used for vectors and matrices. The stress and
strain vectors are evaluated at the Gauss points (GPs) of the finite
elements (FE).

The strain rates, on the other hand, may be decomposed into the
following parts:

_eðsÞ ¼ _eelðsÞ þ _ehðsÞ þ _eelr ðsÞ þ _eplðsÞ ð2Þ
where _eelðsÞ is the elastic straining due to both the mechanical and
the thermal loading [52]. _ehðsÞ denotes thermal strain rates that
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Fig. 1. (a) Structure with applied thermomechanical loads, (b) 3-D loading domain.
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may be calculated from the temperature distribution using the coef-
ficient of thermal expansion. The last two parts of (2) come from the
inelastic behavior with the very last one being the plastic strain rate
vector.

The following relations may be written between strains and
stresses:

_relðsÞ ¼ D � _eelðsÞ
_qðsÞ ¼ D � _eelr ðsÞ
_eplðsÞ ¼ _k @f

@rðsÞ

ð3Þ

with f being a convex yield surface, containing the stresses’ origin,
and _k the plastic multiplier and D the material matrix.

A stress state may be either inside or on the yield surface. A
state of stress r inside the yield surface is a safe stress for which
f ðrÞ < 0, whereas if it is either on the yield surface or inside is
an allowable stress state for which f ðrÞ 6 0.

For two stress states r;q one may write the following inequality
due to the convexity of the yield surface [56]:

f ðbrþ ð1� bÞqÞ 6 bf ðrÞ þ ð1� bÞfðqÞ ð4Þ
where 0 6 b 6 1.

Since q = 0 is a safe state of stress one may write:

f ðbrÞ 6 bf ðrÞ ð5Þ
where for a homogeneous yield function f, as, for example, a von
Mises yield criterion, equality holds.

Also, related to the convexity of the yield surface is the Druck-
er’s postulate of stability [1]. In [57] it is proved that a structure
whose material obeys Drucker’s postulate will reach, after many
cycles of loading, an asymptotic state in which the stresses and
strain rates gradually stabilize and become also cyclic having the
same period with the applied loads [58].

Shakedown is a favorable asymptotic state such that, provided
the load margins are below a threshold, the structure adapts itself,
after some initial plastic straining, to a purely elastic behavior.
Conditions for shakedown are given by Melan’s theorem [11].
The theorem is composed of the following two statements [59]:

(a) The structure will shake down under a cyclic loading if there
exists a time-independent distribution of residual stresses �q
such that, under any combination of loads inside prescribed
limits, its superposition with the elastic stresses rel, i.e.
rel þ �q, results in a total safe stress state at any point of
the structure,

(b) Shakedown never takes place unless a time-independent dis-
tribution of residual stresses can be found such that, under all
the possible load combinations, the sum of the residual and
elastic stresses constitutes an allowable stress state.
The following theorem is useful in the numerical investigation
for the shakedown threshold [60]:

‘‘If a structure shakes down under a cyclic loading containing all
the vertices of the convex loading domain X then it shakes
down for any loading path contained in X”.

A proof, which highlights some important issues, is presented
next:

Let us consider a stress point at some cyclic loading path inside
the convex domain. We may write the elastic solution at this point
as a linear combination [61] of the elastic solutions at its vertices:

rel ¼ b1rel
1 þ b2rel

2 þ � � � þ bsrel
s ð6Þ

where b1 þ b2 þ � � � þ bs ¼ 1 and bi P 0; with i ¼ 1; . . . s, where s is
the number of vertices of the convex loading domain, and rel

i are
the elastic stresses at each vertex of this domain.

Since by the hypothesis, a cyclic loading that passes through the
vertices of the loading domain at different time points causes the
structure to shake down, according to Melan’s theorem, a residual
stress �q constant in time, and therefore common at all the vertices,
will exist, such that the total stress at each vertex will be a safe
state of stress:

f ðrel
i þ �qÞ < 0; i ¼ 1; . . . s ð7Þ

This residual stress may be combined with rel to give:

f ðrel þ �qÞ ¼ f ðb1rel
1 þ b2rel

2 þ � � � þ bsrel
s þ �qÞ

¼ f ½b1rel
1 þ b2rel

2 þ � � � þ bsrel
s þ ðb1 þ b2 þ � � � þ bsÞ�q�

ð8Þ

using the first property of the coefficients bi
Ps

i¼1bi ¼ 1
� �

.
By grouping them, one can write the above expression as:

f ðrel þ �qÞ ¼ f ½b1ðrel
1 þ �qÞ þ b2ðrel

2 þ �qÞ þ � � � þ bsðrel
s þ �qÞ�

6 b1f ðrel
1 þ �qÞ þ b2f ðrel

2 þ �qÞ þ � � � þ bsf ðrel
s þ �qÞ

ð9Þ

The above inequality is justified through the use of the general-
ized form of the convexity inequality (4), often called Jensen’s
inequality, which may be proved by induction. Thus, we conclude:

) f ðrel þ �qÞ < 0 Q :E:D: ð10Þ
where use of the inequalities (7) and the non-negative nature of the
bi was made.

A 2-D dimensional loading cuboid is a rectangle, i.e. s = 4 (22).
For a 3-D loading domain (Fig. 1(b)), s = 8 (23). For an n-
dimensional loading domain (n-cuboid) one can envisage that the
number of vertices will be equal to the combination of the loads
in all possible ways. Thus, one may write:
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s ¼ n

0

� �
þ n

1

� �
þ � � � n

k

� �
þ � � � n

n

� �
¼

Xn
k¼0

n

k

� �
¼ 2n ð11Þ

where n
k

� �
¼ n!

k!ðn� kÞ! is the binomial coefficient and the expres-

sion above is a standard binomial formula that may be found in any
mathematics handbook (e.g. [62]).

The construction of a prescribed cyclic loading program that
may pass through the vertices of the 3-D loading domain may be
seen in Fig. 2. We may see inside one period T the time variation
of the three loads that follow the consecutive movements from
each vertex to the next (Fig. 1(b)): 0 ! P�

1 ! ðP�
1;

h�Þ ! ðP�
1; P

�
2; h

�Þ ! ðP�
1; P

�
2Þ ! P�

2 ! ðP�
2; h

�Þ ! h� ! 0. The loading
vector may thus be expressed, through its maximum values:

PðsÞ ¼
P1ðsÞ
P2ðsÞ
hðsÞ

8><
>:

9>=
>; ¼

P�
1 � a1ðsÞ

P�
2 � a2ðsÞ

h� � a3ðsÞ

8><
>:

9>=
>; ð12Þ

where the ai denote time functions.
3. An enhanced RSDM-S procedure

The RSDM-S [51] has its roots in the RSDM [9] which is a direct
method that can be used to determine the kind of asymptotic cyclic
state (ratcheting, or reverse plasticity, or shakedown) for a given
cyclic history, without following cumbersome time-stepping
calculations.

The main idea of the RSDM is to decompose the sought cyclic
residual stresses in the asymptotic cycle to Fourier series (13),

qðsÞ ¼ 1
2
a0 þ

X1
k¼1

fcosð2kpsÞ � ak þ sinð2kpsÞ � bkg ð13Þ

Differentiating (13) with respect to time, one may get an
expression for their derivatives:

_qðsÞ ¼ 2p
X1
k¼1

ð�k sinð2kpsÞ � ak þ k cosð2kpsÞ � bk

( )
ð14Þ

It is proved that the Fourier coefficients ak;bk; a0 may be found
in an iterative way through the evaluation of these derivatives.
This evaluation is performed by satisfying, at cycle time points,
equilibrium, with zero loads, and compatibility [9].

Focusing now on shakedown, the two statements of Melan’s
theorem define, for a prescribed cyclic loading, the limit cycle
which is a transition cycle between one with plastic straining
and one without plastic straining. It may be proved [59] that the
residual stress distribution of this cycle is unique, being indepen-
dent of the preceding deformation history.

The numerical procedure RSDM-S is actually an iterative transi-
tion process to this cycle. In every iteration (l) the loading domain
τ1 τ2 τ3

P1, P2, θ

P1
*

P2
*

0 τ*

θ
*

τ4

1 

Fig. 2. Individual cyclic load var
(Fig. 1(b)), and in effect the cyclic loading program (Fig. 2), is mul-
tiplied by a loading factor cðlÞ. This may be accounted for in the
purely elastic part of eqns. (1) and (2), which may now be written
as:

rðsÞ ¼ cðlÞrelðsÞ þ qðsÞ ð15Þ

_eðsÞ ¼ cðlÞð _eelðsÞ þ _ehðsÞÞ þ _eelr ðsÞ þ _eplðsÞ ð16Þ
With an initial high value, the load factor is sequentially

decreased by shrinking the loading domain in a continuous way,
until the conditions of the limit cycle are reached [51].

The decomposition of the residual stresses in Fourier series of
Eq. (13) provides a natural way to implement the transition to
the limit cycle. Thus, the ending phase of the procedure is when,
in the course of iterations, the only remaining terms of the Fourier
series are the constant terms a0:

As a starting point for the procedure one can use the cycle time
point, where one of the loads attains its maximum value, whereas
the others are zero (e.g. s� in Fig. 2). Having assumed a von Mises
type of material, the effective stresses of the elastic stresses corre-
sponding to this load value (P�

1) at all the GPs may be calculated;
the ratio of the uniaxial yield stress rY to the minimum non-zero
of these effective stresses may serve as an initial load factor cð1Þ

since this selection, guarantees, at least for this cycle time, that
all the elements of the structure will be plastic, rendering cð1Þ not
only far above the shakedown but even the limit load factor [51].

The flow chart of the suggested procedure may be seen in Fig. 3.
As one may realize, it consists of two iterative loops one inside the
other. The Greek letters j and l are used to denote an iteration of
the inner and the outer loop respectively. They both have 1 as the
initial values.

At an iteration j a total stress is found that consists of an exist-
ing estimate of the residual stresses together with the multiplied
by the current loading factor elastic stresses, which are evaluated
from the contributions of the two mechanical and the thermal
load. If more loads act on the structure they could be easily accom-
modated here. For the thermal load, in particular, the stresses are
calculated using (17)

rel
h� ¼ D � B � rh� � D � eh� ð17Þ

where rh� is the vector of nodal displacements due to the peak of the
thermal load that may be calculated from (18), with B being the
strain-displacement compatibility matrix in a FE environment and
K being the standard stiffness matrix:

K � rh� ¼
Z
V
BT � D � eh�dV ð18Þ

where the thermal strains eh� , in (17) and (18), are calculated pro-
portional to the temperature h�, through the coefficient of thermal
expansion.
τ

1 1

τ5
τ6 τ7

τ8

iation over one time period.
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Fig. 3. Flow chart of the enhanced RSDM-S.
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The equivalent stress �rðjÞ is used to check whether the total

stress (vector OC
�!

in Fig. 4) exceeds the yield surface. Since no exact

knowledge of the plastic strain rate _eplðjÞ (Fig. 4) is needed, the
amount of plastic straining is equivalenced [9] with the plastic

stress vector rðjÞ
pl which is part of the radial vector OC

�!
and its mag-

nitude is determined from the magnitude of OC
�!

, proportionally
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Fig. 4. Estimation of the plastic straining inside an iteration.
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through the ratio n (Fig. 3). After applying this procedure to every
Gauss point (GP) an equivalent plastic nodal vector is added to the
nodal forces due to the mechanical and thermal loads to give _R0ðsÞ
(whose expression may be seen in Fig. 3), which is then used to
provide an estimate of the rate of the residual stresses _qðsÞ at
the cycle point s. Both these two expressions may be derived by
combining Eqs. (16) and (3) and the fact that the residual stress
rates are self-equilibrated (see, for example, [9,51]). Here again
these two expressions would be augmented if more loads are
applied.

The calculations are carried over for every cycle point and, by
performing numerical time integration over all the cycle points,
an update of the Fourier coefficients leading to an update of the
residual stresses is obtained.

An update of the function u which is the sum of the norms of
the coefficients ak and bk in front of the trigonometric parts of
the Fourier series is then calculated. This is checked against the
previous iterate of u and if it is found to be within a specified tol-
erance, we exit the inner loop [63]. The fact that two consecutive
values of u are virtually the same, leads to the conclusion that
aðjþ1Þ
k ! aðjÞ

k ;bðjþ1Þ
k ! bðjÞ

k which, in view of (14), guarantees that
the residual stress rate solution has been stabilized, for the current
loading factor. This is a new convergence criterion which, keeping
the same accuracy, leads to a substantial reduction of the inner
loop iterations as compared to the one adopted in the original pub-
lication [51] where the converged solution was judged on the
updates of the full expressions of the residual stresses, including
the constant terms.

The value of u, being always positive, is then used to decrease
the loading factor and thus perform the outer loop iterations which
stop when the value of u becomes virtually zero. This may be
expressed through the following double inequality, which is also
a different criterion to the one used in the original RSDM-S [51]:

tol < uðcðlÞÞ < tolþ d ð19Þ
One obtains accurate results for a value of tol � 10�3 with d

being an error tolerance, e.g. 10�4.
A convergence parameterx is needed (Fig. 3) so that the proce-

dure always guarantees to converge. The numerical strategy is to



Fig. 6. Geometry, loading and finite element mesh of the frame.

Table 1
Material properties of the frame.

Young’s modulus E = 200 GPa
Poisson’s ratio m = 0.3
Yield stress rY = 100 MPa
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start the procedure with the convergence parameter x = 1. For
many numerical examples, this normally leads to a monotonic con-
vergence, from above, to the shakedown load.

It could happen however, especially when starting from a high
initial value that an overshooting of the shakedown factor occurs.
This means that the procedure bypasses the predefined tolerance
tol for u. To deal with the overshooting, a numerical convergence
scheme is followed, which is depicted in Fig. 5. Thus, a loading fac-
tor cðlþ1Þ is evaluated at the current iteration l + 1 for which
uðcðlþ1ÞÞ < tol; this cannot be accepted (inequality (19)) and the
convergence factor is continuously halved until we get a loading
factor for which uðcðlþ1ÞÞ > tol. In some other case an even bigger
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Fig. 7. Independent cyclic load variation over one ti
overshooting may result to even negative value of cðlþ1Þ (Fig. 5);
the same strategy by halving x is followed till we get a positive
value of cðlþ1Þ which also satisfies uðcðlþ1ÞÞ > tol.

It should be noted here that when the conditions for shakedown
have been reached, the plastic stress vector, as expected, also
approaches zero, within some tolerance, at all the cycle points [51].

4. 2-D loading domain examples

The numerical efficiency of the enhanced RSDM-S is demon-
strated in a couple of examples consisted of a frame and a contin-
uous beam subjected to two independent loads. Both the examples
are modelled using quadrilateral continuum elements. Two differ-
ent loading domains are considered that show the versatility of the
approach.

4.1. Frame example

The first example is the frame of Fig. 6. The frame is assumed
homogeneous, isotropic, elastic-perfectly plastic, having the mate-
rial data shown in Table 1. The finite element mesh discretization
1
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of the frame, shown also in Fig. 6, consists of 400 eight-noded, iso-
parametric elements with 3 � 3 Gauss integration points. The
frame is subjected to two uniformly distributed loads P1ðsÞ and
P2ðsÞ, applied on the external faces of AB and BC, respectively.
0.4

0.6

0.8

1

P 2
4.1.1. Standard loading domain
A rectangular loading domain is considered with the two loads

varying independently (Fig. 7), having maximum values P�
1 ¼ 3 and

P�
2 ¼ 1, respectively, while their minimum values are equal to zero

[51].
This example has been investigated in [39] using an edge-based

smoothed finite element method (ES-FEM) and a primal-dual
shakedown algorithm, and in [49] using a strain driven strategy.
In those applications, however, the loading domains have one or
both the minimum values different to zero unlike the loading
domain used here, where the minimum values are both assumed
zero. This more general kind of loading domain will be studied in
the next section.

A prescribed loading in the time domain that passes through
the four vertices of the rectangle, in a consecutive manner (Fig. 7
(b)), may be defined using the time functions a1ðsÞ;a2ðsÞ of Fig. 7
(a).

For this problem, the initial convergence parameter x, in the
process of the iterations, had to be halved twice, for the procedure
to converge to the final shakedown factor which was found equal
to 2.47.

A number of 175 iterations were required to converge. The
amount of CPU time needed to solve this problem, for an Intel Core
i7 at 2.93 GHz with 4096 MB RAM, was around 160 s.

On the other hand, using the old convergence criterion, conver-
gence was achieved after 280 s (CPU time), with 354 iterations [51].
Thus, it is realized that using the proposed enhanced procedure
there is a significant acceleration (about 43%).

The convergence of the two procedures, the old and the new
one, may be seen in Fig. 8. For better illustration reasons, the com-
mon 10 first iterations are not plotted.
0

0.2

0 0.6 1.2 1.8 2.4 3
P1 

Fig. 9. Loading domain of the frame example.
4.1.2. Loading domain with different than zero origin
A rectangular loading domain is considered herein with the two

loads P1ðsÞ and P2ðsÞ varying independently, between the values
½1:2;3� and ½0:4;1� respectively (Fig. 9).
A prescribed loading in time domain that passes through the
four vertices of the rectangle, in a consecutive manner, may be
defined using the following equations:

PðsÞ ¼ P1ðsÞ
P2ðsÞ

� �
¼ P�

1a1ðsÞ
P�
2a2ðsÞ

� �
where the time functions a1ðsÞ;a2ðsÞ are :

a1ðsÞ ¼ �9:6s2 þ 4:8sþ 0:4; a2ðsÞ ¼ 0:4; s 2 ½0;1=4�
a1ðsÞ ¼ 1; a2ðsÞ ¼ �9:6s2 þ 9:6s� 1:4; s 2 ð1=4;1=2�
a1ðsÞ ¼ �9:6s2 þ 9:6s� 1:4; a2ðsÞ ¼ 1; s 2 ð1=2;3=4�
a1ðsÞ ¼ 0:4; a2ðsÞ ¼ �9:6s2 þ 14:4s� 4:4; s 2 ð3=4;1�

ð20Þ

In this case P�
1 ¼ 3, P�

2 ¼ 1 and 0:4 6 a1ðsÞ;a2ðsÞ 6 1 (see
Fig. 10).

For this example, the initial convergence parameter x, in the
process of the iterations, had to be halved twice, for the RSDM-S
to converge to the final shakedown limit which was found equal
to 3.91.

The comparison between the enhanced RSDM-S solution and
those of different analysis methods in the literature, are shown
in Table 2. It may be seen that they match quite well.

4.2. Symmetric continuous beam under distributed load

A symmetric three-span continuous beam under uniform loads
is considered next. Due to symmetry, only half of the beam is ana-
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Fig. 11. Geometry, loading and finite element mesh of the continuous beam.

Table 2
Comparison of numerical results of the frame.

Author Shakedown factor

Garcea et al. [48] 3.925
Tran et al. [39] 4.006
Pham [64] 4.015

Present 3.91

Table 3
Material properties of the symmetric con-
tinuous beam example.

Young’s modulus E = 180 GPa
Poisson’s ratio m = 0.3
Yield stress rY = 100 MPa
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lyzed (Fig. 11). This is a relatively large scale problem since its
finite element discretization consists of 800 eight-noded, iso-
parametric elements with 3 � 3 Gauss integration points (Fig. 11).
The beam is assumed homogeneous, isotropic, elastic-perfectly
plastic, having the material data of Table 3.

4.2.1. Standard loading domain
The rectangular loading domain of Fig. 7 was considered first.

The loads vary in the domain P1 2 ½0; P�
1� and P2 2 ½0; P�

2� where
P�
1 ¼ 1 and P�

2 ¼ 2 [51].
This example has also been treated in [48,64] using a different

loading domain, that has its origin different to zero, to the one
employed here. This particular load domain will be studied in
the next section.

A prescribed loading in the time domain that passes through
the four vertices of the rectangle, may be defined by using the
same time functions a1ðsÞ;a2ðsÞ of Fig. 7.

For this example, the initial convergence parameter x, in the
process of the iterations, had to be halved three times, for the pro-
cedure to converge to the final shakedown factor which was found
equal to 0.191. Once again although the starting point was quite
high as compared to the final result, the initial descent was rapid
in just 12 iterations, as shown in Fig. 12.

The convergence of the enhanced RSDM-S, based on the new
criterion, and its comparison with the old one, may be seen in
Fig. 12. For a better illustration of the comparison, the first 10 iter-
ations are not plotted.

A number of 65 iterations were required to converge, whereas
100 iterations were needed with the old criterion [51]. The amount
of CPU time needed to solve this problem was around 220 s which
is around 40% faster.

4.2.2. Loading domain with different than zero origin
A rectangular loading domain is considered (Fig. 13) with the

two loads varying independently, as P1 2 ½1:2;2�; P2 2 ½0;1�.
A prescribed loading in the time domain that passes through

the four vertices of the rectangle, in a consecutive manner, may
be defined by using the following time functions a1ðsÞ;a2ðsÞ
(Fig. 14):
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a1ðsÞ ¼ �6:4s2 þ 3:2sþ 0:6; a2ðsÞ ¼ 0; s 2 ½0;1=4�
a1ðsÞ ¼ 1; a2ðsÞ ¼ �16s2 þ 16s� 3; s 2 ð1=4;1=2�
a1ðsÞ ¼ �6:4s2 þ 6:4s� 0:6; a2ðsÞ ¼ 1; s 2 ð1=2;3=4�
a1ðsÞ ¼ 0:6; a2ðsÞ ¼ �16s2 þ 24s� 8; s 2 ð3=4;1�

ð21Þ
In this case P�
1 ¼ 2, P�

2 ¼ 1 and 0:6 6 a1ðsÞ 6 1; 0 6 a2ðsÞ 6 1
(Fig. 14).

For this example, the initial convergence parameter x, in the
process of the iterations, had to be halved three times, for the
RSDM-S to converge to the final shakedown limit which was found



Fig. 15. Convergence of the RSDM-S towards the shakedown factor for the continuous beam problem.

Table 4
Comparison of numerical results of the sym-
metric continuous beam.

Author Shakedown limit

Garcea et al. [48] 3.244
Tran et al. [39] 3.377
Pham [64] 3.264

Present 3.177

Table 5
Material properties of the plate.

Young’s modulus E = 208 GPa
Poisson’s ratio m = 0.3
Yield stress rY = 360 MPa
Coefficient of thermal expansion 5 � 10�5 �C�1
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equal to 3.177. Less than 50 iterations were required for this prob-
lem to converge (Fig. 15). In the insert of the figure, one may see,
after the initial descent, the last iterates towards the shakedown
value.

The shakedown factor obtained by the enhanced RSDM-S, and
its comparison with the results of different analysis methods, is
shown in Table 4. It may be seen that there is a good
agreement.
L

L

D 

P2(τ) 

θ1

Fig. 16. Geometry, and finite element discretization of th
5. 3-D loading domain example

Let us consider the holed square plate of Fig. 16 subjected to a
three-dimensional loading consisting of a thermal load, i.e. a tem-
perature difference DhðsÞ between the edge of the hole and the
edge of the plate, and two uniformly distributed mechanical loads
P1ðsÞ and P2ðsÞ. The plate is assumed homogeneous, isotropic,
elastic-perfectly plastic with the material data of Table 5.

Concerning the geometrical characteristics of the plate, the ratio
between the diameter D of the hole and the length L of the plate is
equal to 0.2 and the ratio of the thickness d of the plate to its length
is equal to 0.05. For this study L = 20 cm has been chosen.
P1(τ) 

d 

θ0

e plate subjected to mechanical and thermal loading.



Fig. 17. Three - dimensional load domain.

Fig. 19. Shakedown domain in three-dimensional loading space.

Table 6
Numerical results of shakedown analysis in three-dimensional loading space.

(P1* , P2* , Dh*) P1/rY P2/rY rt/2rY

(1,0,0) 0.7 0 0
(0,1,0) 0 0.7 0
(0,0,1) 0 0 1.002
(1,1,0) 0.522 0.522 0
(1,0,1) 0.566 0 0.196
(1,1,1) 0.448 0.448 0.156
(1,0.5,1) 0.507 0.254 0.176
(1,0.5,0.5) 0.547 0.274 0.048
(1,1,0.5) 0.484 0.484 0.042
(0.5,0.5,1) 0.388 0.388 0.269
(0.5,1,0.5) 0.275 0.549 0.048
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Due to the symmetry of the structure and the loading, only one
quarter of the plate is analyzed. The finite element mesh dis-
cretization of the plate is also shown in Fig. 16. Ninety-eight,
eight-noded, iso-parametric elements with 3 � 3 Gauss integration
points were used.

The variation of the temperature with radius r has the same log-
arithmic distribution as in [52]:

hðr; sÞ ¼ h0 þ
DhðsÞ � ln 5D=2

r

	 

ln 5

ð22Þ

The above relation describes the temperature variation inside
the plate giving a value of h1ðsÞ ¼ h0 þ DhðsÞ around the edge of
the hole ðr ¼ D=2Þ and h1 ¼ h0 at the outer edges of the plate
ðr ¼ 5D=2Þ. The temperature h0 is assumed to be equal to zero. It
should be noted that, in the results, rt denotes the maximum
effective thermal elastic stress due to the fluctuating temperature.

The loads vary independently in the three-dimensional loading
domain of Fig. 17 having the following variations:

P1 2 ½0; P�
1�; P2 2 ½0; P�

2�; Dh 2 ½0;Dh��
where the maximum values are P�

1 ¼ P�
2 ¼ Dh�.
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Fig. 18. Time functions variation, over one period correspo
In the same figure one can see, starting from the origin, the suc-
cessive movement that passes through the eight vertices of the
loading domain that may define a prescribed loading. This loading
may be realized in the time domain by the following expression:

PðsÞ ¼
P�
1a1ðsÞ

P�
2a2ðsÞ

Dh�a3ðsÞ

8<
:

9=
;, where the time functions

a1ðsÞ;a2ðsÞ;a3ðsÞ are (Fig. 18):
/8  5/8  6/8  7/8 1

e (τ)

P1

τ-8 

4τ2+64τ-15 

-64τ2+96τ-35
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θ∇

nding to the three-dimensional load domain of Fig. 17.
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a1ðsÞ¼0; a2ðsÞ¼�64s2þ16s; a3ðsÞ¼0; s2 ½0;1=8�
a1ðsÞ¼0; a2ðsÞ¼1; a3ðsÞ¼�64s2þ32s�3; s2 ð1=8;2=8�
a1ðsÞ¼�64s2þ48s�8; a2ðsÞ¼1; a3ðsÞ¼1; s2 ð2=8;3=8�
a1ðsÞ¼1; a2ðsÞ¼1; a3ðsÞ¼�64s2þ48s�8; s2 ð3=8;4=8�
a1ðsÞ¼1; a2ðsÞ¼�64s2þ64s�15; a3ðsÞ¼0; s2 ð4=8;5=8�
a1ðsÞ¼1; a2ðsÞ¼0; a3ðsÞ¼�64s2þ96s�35; s2 ð5=8;6=8�
a1ðsÞ¼�64s2þ96s�35; a2ðsÞ¼0; a3ðsÞ¼1; s2 ð6=8;7=8�
a1ðsÞ¼0; a2ðsÞ¼0; a3ðsÞ¼�64s2þ112s�48; s2 ð7=8;1�

ð23Þ
In Table 6 one may see the resulted shakedown factor for some

specific ratios of P�
1=P

�
2=Dh

�.
Finally, the 3D shakedown domain of the problem is shown in

Fig. 19. It should be mentioned that each solution for different
fixed ratios P�

1=P
�
2, represents a fixed angle u in the P1 � P2-plane.

Thus, the results may be presented as a sequence of two dimen-
sional plots. In Figs. 20, 21, two-dimensional plots of the results
obtained by RSDM-S, for different fixed ratios P�

1=P
�
2, are presented.

Plotting the results in the three planes, the horizontal plane
(Fig. 22) or either of the two (due to the symmetry) vertical ones
(Fig. 23), one may see the results of the RSDM-S for a two-
dimensional loading case consisted of a mechanical and a thermal
or of two mechanical loads. These results are in perfect agreement
with the results of the method that was formulated for 2-
dimensional loading [52].

The CPU time needed for the RSDM-S to converge, for a typical
case of P�

1 ¼ P�
2 ¼ Dh�, was about 50 s on the same, as above, proces-

sor. A total number of 40 time points proved enough to describe
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Fig. 21. Shakedown domains in pl
the total 3D loading domain. In Fig. 24 one may see a typical con-
vergence behavior of the RSDM-S i.e. for the fixed ratios
P�
1=P

�
2=Dh

� ¼ 1. The initial value of x ¼ 1 was sufficient for
convergence.

An important observation is that both the CPU time and the
iterations needed for the RSDM-S to converge in the case of 3D
loading domain, are of the same order with the ones required for
the case of the 2D loading domain [52]. On the contrary, for the
problem solved through the use of an IPM algorithm, there is a sig-
nificant increase of the running time between the two cases, since
the number of variables and the number of constraints, in the
three-dimensional loading case are virtually twice the number in
the two-dimensional case [55].
6. Generalization for n-dimensional loading domain

As it may also be seen by the proof in Section 2, the theorem of
König and Kleiber [60] is not associated with any specific form of a
cyclic loading. Thus, one may use any prescribed cyclic loading,
which passes through the vertices that define the loading domain,
as long as it is on or within the boundaries of this domain. One
would expect, of course, a non-uniqueness of the residual stresses
of the limit cycle for the different prescribed loadings.

The cyclic loading used so far, follows the boundaries of the
domain and it may be automated for 2D and 3D loading domains.
In cases, however, of more than three independent loads, this
automation becomes more difficult.

We enter the discussion towards this automation, by consider-
ing an alternative cyclic loading program for a 2D loading domain,
which may be seen in Fig. 25(a). This loading comprises of a move-
ment going from the origin to each vertex and coming back, before
moving to the next vertex. The time functions that may describe
such movement, inside a period, can simply be sine functions
(Fig. 25(b)). For s1 ¼ s2 ¼ s3 ¼ 1=3, these functions may be written
as:

aðsÞ ¼
sinð3psÞ; s 2 ½0;1=3�
sinð3ps� pÞ; s 2 ð1=3;2=3�
sinð3ps� 2pÞ; s 2 ð2=3;1�

8><
>: ð24Þ

To reach all the three vertices of the loading domain, each of
these time functions are multiplied by either P�

1 or P�
2, separately,

or simultaneously (Fig. 25(b)).
Equivalently moving from the origin and back to each of the

seven vertices in a 3D loading domain (Fig. 26(a)), an alternative
cyclic loading program to the one proposed previously, may be
0.8 1

P1/P2=1/0.5

P1/P2=1/0.2

anes for fixed ratios (P1*/P2*).
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seen in Fig. 26(b). The sine time functions that divide, equally and
consecutively a period, in this case, take the form:
aðsÞ ¼

sinð7psÞ; s 2 ½0;1=7�
sinð7ps� pÞ; s 2 ð1=7;2=7�
sinð7ps� 2pÞ; s 2 ð2=7;3=7�
sinð7ps� 3pÞ; s 2 ð3=7;4=7�
sinð7ps� 4pÞ; s 2 ð4=7;5=7�
sinð7ps� 5pÞ; s 2 ð5=7;6=7�
sinð7ps� 6pÞ; s 2 ð6=7;1�

8>>>>>>>>>>><
>>>>>>>>>>>:

ð25Þ

In order to reach the seven vertices of the 3D loading domain,
we may see from Fig. 26(b) that the first three time functions are
multiplied by the maximum values of the three loads, the next
three by their combination under pairs and the last one by all three
of them.

The use of the sine functions for both the 2D and 3D loading
domain contributes, obviously, towards the automation of the
loading program. The above alternative loadings paths are applied
for the example of the holed squared plate of Fig. 16. A 2D loading
case for P�

1 ¼ P�
2 (Fig. 23), and a 3D loading case for P�

1 ¼ P�
2 ¼ Dh�;

obtained, using the same number of time points, virtually the same
0 80 100 120
rations

own factor for the three-dimensional loading case.
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shakedown load of 0:52rY and 0:45rY respectively, that was
obtained with the original load paths of Figs. 7 and 17. For the
3D case, in particular, one may see the convergence behavior of
the two different loading paths, using the same number of 40 time
points, in Fig. 27. As it may be seen, the penalty to pay towards the
automation of the loading program is that the alternative load path
requires a relatively bigger amount of iterations to converge to the
shakedown load.

The discussion above paves the way to generalize for any num-
ber of loads. Thus, for an n-dimensional loading domain, defined by
its origin and m ¼ 2n � 1 vertices, one may write the m sine time
functions for the equal splitting of the period:

alðsÞ ¼ sinðmps� ðl� 1ÞpÞ; l� 1
m

6 s 6 l
m

; l ¼ 1; . . . ;m ð26Þ

Since each vertex of the n-cuboid, except for the origin, corre-
sponds to a combination of the maximum values of each load, it

may be seen from (11) that the first n
1

� �
time functions should

be multiplied by each of these values, the next n
2

� �
time functions
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by their combination every two, the next n
3

� �
by their combina-

tion every three, and so on. These combinations may be retrieved
using any combinatorial algorithm (e.g. [65]). Thus, the whole pro-
cedure in any n-dimensional loading space may be fully auto-
mated. This effective and robust formulation is of particular
importance since, when designing structures, there will be cases
where the number of independent loads would be much higher
than three (e.g. [66,67]). It should also be underlined that the pro-
cedure may be embedded in any existing FE code.

7. Conclusions

An efficient novel iterative numerical procedure, called RSDM-S,
for the shakedown analysis of elastoplastic structures loaded by
independently varying cyclic loads, was presented. The method is
improved and enhanced over the original approach that appeared
recently in the literature and concerned a 2D loading domain.
The following improvements and enhancements have been pre-
sented herein:

� Both approaches, in the course of iterations use two iteration
loops, one inside the other. In the present approach, a new con-
vergence criterion is proposed which reduces the inner loop
iterations with an effect to make the current version twice as
fast.

� The present approach is formulated in a 3D thermomechanical
loading domain, using time functions that follow the outline
of this domain. It has to be noted that very few shakedown
results exist in the literature, for such a domain, although it
may often occur in practice. Extending the dimensions of the
loading domain from 2D to 3D hardly increases the computa-
tional time, which is not the case with any procedure that uses
a MP algorithm, where the computational time more than
doubles.

� Next, a generalization of the procedure is proposed, so that it
applies to any multiple loading domain. As a result of this
domain, a convex hull that consists of vertices that mark all
the possible combinations of the load peaks may be visualized.
A cyclic loading program which visits each vertex and comes
back to the origin is suggested. The use of sine-type time func-
tions that split the period of the cyclic loading, combined with a
combinatorial algorithm represent these visits effectively and
automate the procedure. The approach appears also very effi-
cient with many loads, since, irrespective of their number, the
loads participate just through their corresponding elastic stres-
ses, which are calculated, once and for all, at the beginning of
the algorithm.
References

[1] Drucker DC. A definition of stable material. ASME J Appl Mech 1959;26:101–6.
[2] Zarka J, Engel JJ, Inglebert G. On a simplified inelastic analysis of structures.

Nucl Eng Des 1980;57:333–68.
[3] Zarka J. Direct analysis of elastic–plastic structures with overlay materials

during cyclic loading. Int J Numer Meth Eng 1980;15:225–35.
[4] Hübel H. Simplified theory of plastic zones for cyclic loading and multilinear

hardening. Int J Press Vess Pip 2015;129:19–31.
[5] Ponter ARS, Carter KF. Shakedown state simulation techniques based on linear

elastic solutions. Comput Methods Appl Mech Eng 1997;140:259–79.
[6] Ponter ARS, Chen HF. A minimum theorem for cyclic loading in excess of

shakedown, with applications to the evaluation of a ratchet limit. Eur J Mech A/
Solids 2001;20:539–54.

[7] Maitournam MH, Pommier B, Thomas JJ. Détermination de la réponse
asymptotique d’une structure anélastique sous chargement
thermomécanique cyclique. CR Mec 2002;330:703–8.

[8] Zouain N, SantAnna R. Computational formulation for the asymptotic response
of elastoplastic solids under cyclic loads. Eur J Mech A/Solids 2017;61:267–78.

[9] Spiliopoulos KV, Panagiotou KD. A direct method to predict cyclic steady states
of elastoplastic structures. Comput Methods Appl Mech Eng 2012;223:186–98.

[10] Spiliopoulos KV, Panagiotou KD. The residual stress decomposition method
(RSDM): a novel direct method to predict cyclic elastoplastic states. In:
Spiliopoulos K, Weichert D, editors. Direct methods for limit states in
structures and materials. Dordrecht: Springer Science + Business Media;
2014. p. 139–55.

[11] Melan E. Zur Plastizität des raümlichen Kontinuums. Ing Arch 1938;9:116–26.
[12] Koiter WT. General theorems for elastic-plastic structures. In: Sneddon IN, Hill

R, editors. Progress in solid mechanics. Amsterdam: North-Holland Publ Co;
1960. p. 165–221.

[13] Prager W. Shakedown in elastic-plastic media subjected to cycles of load and
temperature. In: Proc Symp Plasticita nella Scienza delle Construzioni,
Bologna. p. 239–44.

[14] de Donato O. Second shakedown theorem allowing for cycles of both loads and
temperature. 1st Lomb Sci Lett (A) 1970;104:265–77.

[15] Weichert D. On the influence of geometrical nonlinearities on the shakedown
of elastic–plastic structures. Int J Plast 1986;2:135–48.

[16] Gross-Weege J. A unified formulation of statical shakedown criteria for
geometrically nonlinear problems. Int J Plast 1990;6:433–47.

[17] Belouchrani MA, Weichert D. An extension of the static shakedown theorem to
inelastic cracked structures. Int J Mech Sci 1999;41:163–77.

[18] Pham D. Shakedown theory for elastic plastic kinematic hardening bodies. Int J
Plast 2007;23:1240–59.

[19] Stein E, Zhang G, König JA. Shakedown with nonlinear strain-hardening
including structural computation using finite element method. Int J Plast
1992;8:1–31.

[20] Simon JW. Direct evaluation of the limit states of engineering structures
exhibiting limited, nonlinear kinematical hardening. Int J Plast
2013;42:141–67.

http://refhub.elsevier.com/S0045-7949(17)30897-0/h0005
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0010
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0010
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0015
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0015
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0020
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0020
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0025
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0025
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0030
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0030
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0030
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0035
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0035
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0035
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0040
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0040
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0045
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0045
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0050
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0050
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0050
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0050
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0050
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0055
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0060
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0060
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0060
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0065
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0065
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0065
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0070
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0070
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0075
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0075
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0080
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0080
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0085
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0085
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0090
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0090
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0095
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0095
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0095
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0100
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0100
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0100


K.V. Spiliopoulos, K.D. Panagiotou / Computers and Structures 193 (2017) 155–171 171
[21] Bouby C, Kondo D, de Saxcé G. A comparative analysis of two formulations for
nonlinear hardening plasticity models: application to shakedown analysis. Eur
J Mech A/Solids 2015;53:48–61.

[22] Pycko S, Maier G. Shakedown theorems for some classes of non-associative
hardening elastic–plastic material models. Int J Plast 1995;11:367–95.

[23] Bousshine L, Chaaba A, de Saxcé G. A new approach to shakedown analysis for
non-standard elastoplastic material by the bipotential. Int J Plast
2003;19:583–98.

[24] Polizzotto C. Shakedown theorems for elastic–plastic solids in the framework
of gradient plasticity. Int J Plast 2008;24:218–41.

[25] Polizzotto C. Shakedown analysis within the framework of strain gradient
plasticity. In: Fuschi P, Pisano AA, Weichert D, editors. Direct methods for limit
and shakedown analysis of structures. Switzerland: Springer International
Publishing; 2015. p. 221–52.

[26] Maier G. Shakedown theory in perfect elastoplasticity with associated and
nonassociated flow-laws: a finite element, linear programming approach.
Meccanica 1969;4:1–11.

[27] Cohn MZ, Maier G. Engineering plasticity by mathematical programming. In:
Proceedings of NATO advanced study institute. New York: Pergamon Press;
1977.

[28] Zhang T, Raad L. An eigen-mode method in kinematic shakedown analysis. Int J
Plast 2002;18:71–90.

[29] Ngo NS, Tin-Loi F. Shakedown analysis using the p-adaptive finite element
method and linear programming. Eng Struct 2007;29:46–56.

[30] Ardito R, Cocchetti G, Maier G. On structural safety assessment by load factor
maximization in piecewise linear plasticity. Eur J Mech A/Solids
2008;27:859–81.

[31] Heitzer M, Pop G, Staat M. Basis reduction for the shakedown problem for
bounded kinematic hardening material. J Glob Opt 2000;17:185–200.

[32] Zouain N, Borges L, Silveira JL. An algorithm for shakedown analysis with
nonlinear yield function. Comput Methods Appl Mech Eng 2002;191:2463–81.

[33] Andersen KD, Christiansen E, Cohn AR, Overton ML. An efficient primal-dual
interior point method for minimizing a sum of Euclidian norms. SIAM J Sci
Comput 2000;22:243–62.

[34] Vu DK, Yan AM, Nguyen-Dang H. A primal-dual algorithm for shakedown
analysis of structures. Comput Methods Appl Mech Eng 2004;193:4663–74.

[35] Magoariec H, Bourgeois S, Débordes O. Elastic plastic shakedown of 3D
periodic heterogeneous media: a direct numerical approach. Int J Plast
2004;20:1655–75.

[36] Bisbos CD, Makrodimopoulos A, Pardalos P. Second-order cone programming
approaches to static shakedown analysis in steel plasticity. Optim Meth Soft
2005;20:25–52.

[37] Nguyen AD, Hachemi A, Weichert D. Application of the interior point method
to shakedown analysis of pavements. Int J Numer Meth Eng 2008;4:414–39.

[38] Hachemi A, Mouhtamid S, Nguyen A, Weichert D. Application of shakedown
analysis to large-scale problemswith selective algorithm. In:WeichertD, Ponter
A, editors. Limit states of materials and structures. Springer; 2009. p. 289–305.

[39] Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T. An edge-based smoothed
finite element method for primal-dual shakedown analysis of structures. Int J
Numer Meth Eng 2010;82:917–38.

[40] Simon JW, Weichert D. Numerical lower bound shakedown analysis of
engineering structures. Comput Methods Appl Mech Eng 2011;200:2828–39.

[41] Zhou S, Liu Y, Wang D, Wang K, Yu S. Upper bound shakedown analysis with
the nodal natural element method. Comput Mech 2014;54:1111–28.

[42] Le CV, Tran TD, Pham DC. Rotating plasticity and nonshakedown collapse
modes for elastic–plastic bodies under cyclic loads. Int J Mech Sci
2016;111:55–64.

[43] Yamaguchi T, Kanno Y. Ellipsoidal load-domain shakedown analysis with von
Mises yield criterion: a robust optimization approach. Int J Numer Meth Eng
2016;107:1136–44.
[44] Cecot W. Application of h-adaptive FEM and Zarka’s approach to analysis of
shakedown problems. Int J Numer Meth Eng 2004;61:2139–58.

[45] Krabbenhøft K, Lyamin AV, Sloan SW. Bounds to shakedown loads for a class of
deviatoric plasticity models. Comput Mech 2007;39:879–88.

[46] Chen HF, Ponter ARS. Shakedown and limit analyses for 3-D structures using
the linear matching method. Int J Press Vess Pip 2001;78:443–51.

[47] Ponter ARS. Shakedown limit theorems for frictional contact on a linear elastic
body. Eur J Mech A/Solids 2016;60:17–27.

[48] Garcea G, Armentano G, Petrolo S, Casciaro R. Finite element shakedown
analysis of two-dimensional structures. Int J Numer Meth Eng
2005;63:1174–202.

[49] Garcea G, Leonetti L. A unified mathematical programming formulation of
strain driven and interior point algorithms for shakedown and limit analysis.
Int J Numer Meth Eng 2011;88:1085–111.

[50] Hjiaj M, Krabbenhøft K, Lyamin AV. Direct computation of shakedown loads
via incremental elastoplastic analysis. Fin Elem Anal Des 2016;122:39–48.

[51] Spiliopoulos KV, Panagiotou KD. A residual stress decomposition based
method for the shakedown analysis of structures. Comput Methods Appl
Mech Eng 2014;276:410–30.

[52] Spiliopoulos KV, Panagiotou KD. A numerical procedure for the shakedown
analysis of structures under thermomechanical loading. Arch Appl Mech
2015;85:1499–511.

[53] Spiliopoulos KV, Panagiotou KD. RSDM-S: a method for the evaluation of the
shakedown load of elastoplastic structures. In: Fuschi P, Pisano AA, Weichert
D, editors. Direct methods for limit and shakedown analysis of
structures. Springer International Publishing; 2015. p. 159–75.

[54] Panagiotou KD, Spiliopoulos KV. Assessment of the cyclic behavior of
structural components using novel approaches. ASME J Press Vess Tech
2016;138. 0412-01–041201-10.

[55] Simon JW, Weichert D. Shakedown analysis with multidimensional loading
spaces. Comput Mech 2012;49:477–85.

[56] Luenberger DG, Ye Y. Linear and nonlinear programming. New York: Springer;
2008.

[57] Frederick CO, Armstrong PJ. Convergent internal stresses and steady cyclic
states of stress. J Strain Anal 1966;1:154–69.

[58] Polizzotto C. Variational methods for the steady state response of elastic-
plastic solids subjected to cyclic loads. Int J Solids Struct 2003;40:2673–97.

[59] Gokhfeld DA, Cherniavsky OF. Limit analysis of structures at thermal
cycling. Netherlands: Sijthoff & Noordhoff; 1980.

[60] König JA, Kleiber M. On a new method of shakedown analysis. Bull Acad Polon
Sci Ser Sci Tech 1978;26:165–71.

[61] Boyd S, Vandenberghe L. Convex optimization. Cambridge: Cambridge
University Press; 2004.

[62] Bronshtein IN, Semendyayev KA, Musiol G, Mühlig H. Handbook of
mathematics. 4th ed. Berlin: Springer-Verlag; 2004.

[63] Panagiotou KD. Limit state numerical procedure for cyclically loaded
elastoplastic structures [Ph.D. Dissertation]. National Technical University of
Athens; 2015.

[64] Pham PT. Upper bound limit and shakedown analysis of elastic-plastic
bounded linearly kinematic hardening structure [Ph.D. Dissertation]. RWTH
Aachen University; 2011.

[65] Nijenhuis A, Wilf HS. Combinatorial algorithms. New York: Academic Press;
1978.

[66] Eurocode 1. Actions on structures. European Union EN; 1991.
[67] Leonetti L, Casciaro R, Garcea G. Effective treatment of complex statical and

dynamical load combinations within shakedown analysis of 3D frames.
Comput Struct 2015;158:124–39.

http://refhub.elsevier.com/S0045-7949(17)30897-0/h0105
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0105
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0105
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0110
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0110
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0115
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0115
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0115
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0120
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0120
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0125
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0125
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0125
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0125
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0130
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0130
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0130
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0135
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0135
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0135
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0140
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0140
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0145
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0145
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0150
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0150
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0150
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0155
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0155
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0160
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0160
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0165
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0165
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0165
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0170
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0170
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0175
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0175
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0175
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0180
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0180
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0180
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0185
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0185
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0190
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0190
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0190
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0195
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0195
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0195
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0200
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0200
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0205
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0205
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0210
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0210
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0210
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0215
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0215
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0215
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0220
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0220
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0225
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0225
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0225
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0230
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0230
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0235
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0235
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0240
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0240
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0240
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0245
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0245
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0245
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0250
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0250
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0250
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0255
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0255
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0255
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0260
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0260
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0260
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0265
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0265
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0265
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0265
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0270
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0270
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0270
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0275
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0275
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0280
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0280
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0285
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0285
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0290
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0290
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0295
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0295
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0300
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0300
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0305
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0305
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0310
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0310
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0315
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0315
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0315
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0320
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0320
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0320
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0325
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0325
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0330
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0335
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0335
http://refhub.elsevier.com/S0045-7949(17)30897-0/h0335

	An enhanced numerical procedure for the shakedown analysis in multidimensional loading domains
	1 Introduction
	2 Theoretical considerations
	3 An enhanced RSDM-S procedure
	4 2-D loading domain examples
	4.1 Frame example
	4.1.1 Standard loading domain
	4.1.2 Loading domain with different than zero origin

	4.2 Symmetric continuous beam under distributed load
	4.2.1 Standard loading domain
	4.2.2 Loading domain with different than zero origin


	5 3-D loading domain example
	6 Generalization for n-dimensional loading domain
	7 Conclusions
	References


