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The relation between the giant magnetoresistance (GMR) of a granular metal containing blocked
and superparamagnetic clusters and its underlying magnetic microstructure is studied numerically.
A Monte Carlo simulation is implemented to obtain the equilibrium magnetic configuration of the
system, and the real space Kubo formula for a spin-dependent tight binding Hamiltonian is used to
calculate the electronic conductivity. A flattening of the MR versus magnetization parabola is
found at low fields (H � 0) due to the dipolar interactions between the magnetic grains. This
effect is enhanced in systems containing a broad distribution of particle sizes. A maximum in the
GMR value is found close to the percolation threshold and attributed to particle coalescence.
Dipolar effects reduce the maximum GMR value and cause a faster decay with concentration.

The phenomenon of giant magnetoresistance (GMR) in metallic films containing transi-
tion metal grains (particles) [1] is attributed to the spin dependent scattering of conduc-
tion electrons off the magnetic grains. The asymmetry of the spin-up (majority) and spin-
down (minority) conductivities in the transition metal and the spatial separation of the
magnetic grains with different magnetization orientations at zero applied field are the two
basic physical ingredients that lead to the GMR effect [2]. Therefore, the field depen-
dence of the magnetoresistance reflects the evolution of the micromagnetic configuration
of the system as the externally applied magnetic field varies in strength and direction.
Experimental evidence [3] that intergranular interactions play an important role in

the formation of the magnetic configuration of the film is offered by the observed flat-
tening of the MR versus sample magnetization parabola. The interactions are expected
to be predominantly of magnetostatic character, due to the spatial separation of the
granules. Hence, the competition between the (uniaxial) anisotropy energy of the grains
and their dipolar interaction energy determines the magnetic configuration of the film.
Transition metal granules with typical diameters of a few nanometers are superparamag-

netic (SPM) at room temperature and consequently, dipolar interactions offer the only
mechanism for ordering of the grain moments [3]. However, as the temperature is lowered
or, equivalently, as the average grain size is increased due to grain coalescence at high
concentrations, blocking effects become important. In a previous work [4] we have pre-
sented a model for the study of the field dependent GMR in granular films, which is appro-
priate at high temperatures where all grains are SPM. In this work, we apply the same
formalism to study a polydisperse sample containing a mixture of SPM and blocked grains.
The magnetic granular film is approximated by an assembly of identical spherical

particles located at random on the sites of a finite cubic lattice with linear dimension L.
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The lattice parameter is equal to the particle diameter (D = a). Each particle carries a
three-dimensional moment of magnitude m0 = MsV0. Strong exchange interactions are
assumed between nearest neighbor particles leading to formation of magnetic clusters.
Consequently, at any finite concentration x of magnetic particles, the sample contains a
variety of magnetic clusters with random shape and a wide distribution of volumes [4].
Each cluster is approximated by a single magnetic domain and a random easy axis is
attributed to it. The magnetostatic energy of a pair of clusters is calculated by summa-
tion of the dipolar energy terms between all pairs of moments belonging to these clus-
ters. Dipolar energy terms between moments belonging to the same cluster are ne-
glected. Periodic boundaries and the Ewald method are used to deal with the long-
range character of the dipolar forces. The total energy of the system reads
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where c, c0 denote clusters, i, j denote sites within the clusters, nc is the number of
particles that constitute a cluster, ec is the easy axis direction, and hats indicate unit
vectors. The energy parameters are g = (MsV0)2/D3 for the dipolar energy, k = K1V0 for
the anisotropy energy, and h = MsV0H for the Zeeman energy, while the thermal en-
ergy is denoted t = kBT. In this study we use Ms = 1500 emu/cm3, D = 3.5 nm, and
K1 = 1.2 	 106 erg/cm3, which results in g/k � 1.0, for the parameters of Eq. (1). As in
our previous works [4, 5], the equilibrium magnetic configuration is obtained by a
Monte Carlo simulation using the standard Metropolis algorithm. Simulations were per-
formed on a finite sample (10 	 10 	 10) for various particle concentrations and
averages over ten random arrangements of the particles were taken.
The electronic structure of the sample is described within a spin-split s-band. The

conductivity of the sample is obtained by the real space form of Kubo’s formula that is
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Fig. 1. Temperature dependence of re-
manence. The inset shows the fraction
of blocked spins as a function of tem-
perature for the non-interacting sam-
ple (g = 0) at zero field (h = 0). The
concentration of magnetic particles is
x = 0.25. The solid lines are guides to
the eye



expressed in terms of the Green function of the system [4]. Finally the GMR is defined
as MR(H) = (R(H)/Rs –– 1) 	 100, where R(H) is the field dependent resistance and Rs

the resistance at saturation.
Results for the residual magnetization of a polydisperse system with x = 0.25 is

plotted as a function of temperature in Fig. 1. For comparison, results for a monodis-
perse sample containing only clusters with size equal to the average value of the poly-
disperse sample (hVi = 3.1V0) are also plotted. An abrupt drop of the remanence is
seen for the non-interacting monodisperse sample at the blocking temperature tb � 0.5k.
Both the size distribution of the clusters and the dipolar interactions between the clus-
ters introduce a distribution of energy barriers in the system and lead to a slow decay
of the remanence with temperature. At temperatures above the blocking of the corre-
sponding non-interacting system, magnetostatic interactions introduce ferromagnetic
correlations between the magnetic moments, as seen in Fig. 1 for both types of samples.
However, below the blocking temperature, the sample morphology is crucial. Reduction
of the remanence due to dipolar interactions is seen in the monodisperse sample in
agreement with previous studies [5–7], while enhancement of the remanence is ob-
served in the system with clustered particles. This behavior originates from the presence
of a few very large clusters in the polydisperse sample, that are blocked and produce a
strong magnetic field which causes an efficient alignment of the small clusters. The frac-
tion of blocked moments in a non-interacting sample and for zero field is defined as
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Fig. 2. GMR versus sample magnetization
for a) a monodisperse sample containing
clusters of size nc = 3 and b) a polydis-
perse sample with nch i ¼ 3:1 19%. For
both samples x = 0.25. Open circles are
non-interacting anisotropic clusters (g = 0,
k = 1), closed circles are interacting aniso-
tropic (g = k = 1) clusters, and triangles
are interacting anisotropic clusters (g = 1,
k = 0). Band structure parameters: atomic
potentials on the electrodes and the ma-
trix sites e0 = 0, on the magnetic sites
e1 = 1, exchange splitting of s-bands
J = 1, hopping integral V = 1, and Fermi
energy EF = 0. The dotted lines are
fitted parabolas



where brackets h. . .i indicate thermal aver-
age. Results for b are shown in the inset to
Fig. 1. Furthermore, in Fig. 2 we show the
GMR for the two types of samples at tem-
perature t = 1.2k, at which the polydisperse

sample contains a mixture of blocked and SPM clusters (b � 0.25), while the monodis-
perse sample contains only SPM clusters (b � 0). Both systems have similar values of
GMR (�19%) when the interactions are neglected. This result indicates that the large
and blocked clusters of the polydisperse sample do not contribute to the GMR effect.
However, when the interactions are present, a larger suppression of the GMR effect
(�25%) is observed in the polydisperse sample compared to the monodisperse sample.
We therefore deduce that the large clusters, through the strong magnetostatic fields that
they generate in the sample, are responsible for this effect. Further support is given to
this argument by the results for the polydisperse sample in the case that the uniaxial
anisotropy is neglected (Fig. 2b), which show a further flattening of the MR curve. In
other words, as the ferromagnetic correlations between the moments are enhanced rela-
tive to the uniaxial anisotropy the flattening of the MR curve increases. Finally, we vary
the magnetic particle concentration of the sample and we demonstrate the appearance
of a maximum GMR effect just below the percolation threshold. The existence of an
optimum concentration for the GMR effect is the result of the competition between the
increasing number of magnetic scattering centers that enhance the effect and the in-
crease of the average cluster size that suppresses the effect. Dipolar effects are most
efficient close to percolation (Fig. 3) and produce a faster decay of the effect with mag-
netic particle concentration, in agreement with recent experiments [8].
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Fig. 3. Dependence of GMR on magnetic parti-
cle concentration. Open circles are non-interact-
ing anisotropic clusters (g = 0, k = 1) and closed
circles are interacting anisotropic (g = k = 1)
clusters. The percolation threshold is at xp � 0.3


