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Abstract. We study the magnetization behaviour of small magnetic particle aggregates as a
function of temperature and an external applied field. The Monte Carlo technique is used for
the simulation of the aggregates and the magnetic particles interact via dipolar interactions. We
show that there is a simple relation between the magnetization and the fractal dimensionality
which characterizes the clusters produced in the aggregation process.

There has been interest for a number of years in small single domain magnetic particles.
Their magnetic properties depend on the structure of an individual particle [1, 2]. However
particles exist within clusters, and so interparticle interactions will also influence the
magnetic behaviour of the clusters and also the aggregation process by which the clusters
are formed. In practice, the small size of single domain particles (approximately a few
nanometres), coupled with the wide distribution in particle radii [1], make a characterization
of aggregation effects very difficult, although there have been attempts to measure fractal
dimensionalities of magnetic particle clusters [3]. The clustering in an ideal experiment
can be regarded as an example of diffusion limited cluster aggregation (DLCA). DLCA is
rather well understood when just short range forces are present. A key question is how
dipolar forces between magnetic particles will affect the process. This has been addressed
by Helgesenet al [4] in an elegant table-top experiment with iron-oxide-coated colloidal
microspheres in which scaling properties were studied. Related work on ferrofluids [5] and
magnetic holes [6] has also been reported in the literature. The aggregation process studied
is in a low particle density regime. At high particle density, the interaction of dipolar
particles can result in a liquid–gas transition [7].

In this letter we consider an idealized, but experimentally realizable, model of a system
of magnetic particles with equal size. We use Monte Carlo simulations to calculate the
magnetization of the system as a function of temperature and an external magnetic field.
We show that there is a simple power law relating the magnetization of a cluster to its
fractal dimensionality. The latter is characteristic of the sample preparation conditions.

It is convenient to perform aggregation simulations on a lattice where possible. Usually
in two dimensions, when a lattice can be used, a square one is employed. However
a triangular one has certain advantages [7, 8], and that is what we implemented in our
simulations.

The interaction energy between a pair of particles with magnetic momentsmi andmj

separated by distancerij is

Eij =
[
mi ·mj − 3

(
mi · uij

)(
mj · uij

)]/
r3
ij (1)

whereuij is the unit vector alongrij . The dimensionless parameter which determines the
effective strength of the dipole–dipole interaction relative to the disruptive thermal energy
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Figure 1. Zero temperature magnetization as a function ofx = N−1/D (with D = 1.23) for
an applied magnetic fieldHz = 2.5 perpendicular to the substrate. Clusters with sizes between
N = 10 andN = 110 particles have been used. The straight line is obtained from a least-squares
fit.

is K̂dd = m2/d3kBT and that which determines the strength of the dipole–field interaction
is K̂df = mH/kBT ; m is the moment of the magnetic particle. In the dimensionless units
used in our simulations,m, d and kB are taken to be one. The dipole moments are free
to reorient over three dimensions while the actual particle movements are confined to a
two dimensional surface. Moments are allowed to relax after a cluster move. Simulations
using a lattice of sizeL = 60, containingN = 120 particles at zero temperature, yielded
a fractal dimensionality of 1.23± 0.04 [7]. This value is obtained from a least-squares
straight-line fit to the radius of gyration,Rg, versus cluster size,N (Rg ∼ N1/D whereD is
the fractal dimensionality). Our value for the fractal dimensionality agrees with Helgesen
et al [4], demonstrating that simulations on a triangular lattice produce results in agreement
with off-lattice models. This value of the fractal dimensionality shows the tendency of the
particles to create linear chains. Within these chains the spins of the particles are aligned
nose-to-tail on the plane.

For a finite cluster containingN magnetic particles and having integer dimensionality
(D = 1, 2, 3), one can easily show that the magnetization as a function of temperatureT

and the applied magnetic fieldH obeys the power law

M = a + bN−1/D. (2)

Physically,a can be interpreted as the bulk contribution to the magnetization andbN1/D

the contribution due to the surface of the cluster. The parametersa andb are functions of
temperature and the applied magnetic field.

It is anticipated that the same power law will be obeyed in the case of clusters with
non-integer (fractal) dimensionality. Our simulations have demonstrated the validity of this
power law for magnetic clusters with fractal dimensionalityD = 1.23. This can be seen
in figure 1, where we plot the magnetization at zero temperature as a function ofx (where
x = N−1/D ∼ 1/Rg) for an applied fieldHz = 2.5 perpendicular to the substrate. For a
fractal object, bulk and surface are not so clearly distinct and so equation (2) should perhaps
be better regarded as a convenient way of expressing finite-size effects.

A practical implication of this simple power law is that knowing the fractal
dimensionality of an aggregate, which depends on the preparation conditions, one can
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Figure 2. Field dependence of the parametersa (squares) andb (triangles) at zero temperature
for an in-plane applied field (full symbols) and a field normal to the surface (open symbols).

estimate its magnetization behaviour.
Let us now examine the field dependence of the parametersa andb at zero temperature.

In figure 2 we plota andb versus field in the case of an in-plane applied field and for a
field applied normal to the surface. In both cases the parametersa andb initially increase
with increasing field. There is a crossover value of the field and after this the parametera

increases further up to its saturation value while the parameterb decreases to zero. This
behaviour confirms the origin of the two contributions to the magnetization as the bulk (first
term) and the surface (second term) contribution in equation (2). We might expect that the
cross-over field will be lower for the in-plane case since, as we showed above, the spins in
the clusters tend to align in the plane; this also results in the earlier elimination of surface
effects reflected in the low values ofb in this case.

The cross-over field in both cases occurs around the point at which we start to have
deviations in the magnetization from a linear (paramagnetic) behaviour.

In figure 3 we demonstrate the temperature dependence of the parametersa andb for a
fixed applied field. We choose the cross-over field values for both cases, namelyHz = 5.0
for the normal-to-surface field andHxy = 2.0 for the in-plane field.

Again the behaviour of the parameters reflects the character of their origin. The surface
contribution is more temperature dependent than the bulk one, due to the fact that the surface
spins, having less neighbours than the bulk spins, experience a weaker local field and they
respond better to the thermal effects.

Usually the physical systems under examination have an intrinsic anisotropy. In our
work we have ignored the effect of anisotropy during the aggregation process and in the study
of the magnetization behaviour of the clusters. In a previous work [9] we have examined
the interplay of uniaxial anisotropy and dipolar interactions in a system composed of small
magnetic particles and we have shown that for anisotropy energy up to about the dipolar
energy, the behaviour of the magnetization is mainly determined by the dipolar interactions.
We therefore expect that inclusion of a weak anisotropy in our present study will affect
the aggregation process, resulting in a different fractal dimensionality, but the scaling law,
equation (2), will still hold, with modified values of the parameters.

One of the authors (DK) would like to acknowledge the State Scholarships Foundation of
Greece for financial support during the course of this work.
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Figure 3. Temperature dependence of the parametersa (squares) andb (triangles) for an in-
plane applied fieldHxy = 2.0 (full symbols) and a normal-to-the-plane fieldHz = 5.0 (open
symbols). Full triangles refer to the lowest temperature axis, and all other symbols refer to the
upper temperature axis.
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